Abstract

Optical technologies offering electrically tunable optical power have found a broad range of applications, from head-mounted displays for virtual and augmented reality applications to microscopy. In this paper, we present a novel design and prototype of a digitally switchable multi-focal lens (MFL) that offers the capability of rapidly switching the optical power of the system among multiple foci. It consists of a freeform singlet and a customized programmable optical shutter array (POSA). Time-multiplexed multiple foci can be obtained by electrically controlling the POSA to switch the light path through different segments of the freeform singlet rapidly. While this method can be applied to a broad range of imaging and display systems, we experimentally demonstrate a proof-of-concept prototype for a multi-foci imaging system.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-performance integral-imaging-based light field augmented reality display using freeform optics

Hekun Huang and Hong Hua
Opt. Express 26(13) 17578-17590 (2018)

Fast-response switchable lens for 3D and wearable displays

Yun-Han Lee, Fenglin Peng, and Shin-Tson Wu
Opt. Express 24(2) 1668-1675 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. J. Moghimi, B. J. Lutzenberger, B. M. Kaylor, and D. L. Dickensheets, “MOEMS deformable mirrors for focus control in vital microscopy,” J. Micro. Nanolithogr. MEMS MOEMS 10(2), 023005 (2011).
  2. M. Kang and R. Yue, “Variable-focus liquid lens based on EWOD,” J. Adhes. Sci. Technol. 26(12–17), 1941–1946 (2012).
  3. S. T. Choi, J. Y. Lee, J. O. Kwon, S. Lee, and W. Kim, “Liquid-filled varifocal lens on a chip,” in MOEMS and Miniaturized Systems VIII. Vol. 7208 (ISOP, 2009).
  4. S. Suyama, M. Date, and Hi. Takada, “Three-dimensional display system with dual-frequency liquid-crystal varifocal lens,” Jpn. J. Appl. Phys. 39(2R), 480 (2000).
  5. S. H. Lu and H. Hua, “Structured illumination assisted microdeflectometry with optical depth scanning capability,” Opt. Lett. 41(17), 4114–4117 (2016).
    [PubMed]
  6. S. Liu and H. Hua, “Extended depth-of-field microscopic imaging with a variable focus microscope objective,” Opt. Express 19(1), 353–362 (2011).
    [PubMed]
  7. S. H. Lu and H. Hua, “Imaging properties of extended depth of field microscopy through single-shot focus scanning,” Opt. Express 23(8), 10714–10731 (2015).
    [PubMed]
  8. F. O. Fahrbach, F. F. Voigt, B. Schmid, F. Helmchen, and J. Huisken, “Rapid 3D light-sheet microscopy with a tunable lens,” Opt. Express 21(18), 21010–21026 (2013).
    [PubMed]
  9. Y. Qin and H. Hua, “Continuously zoom imaging probe for the multi-resolution foveated laparoscope,” Biomed. Opt. Express 7(4), 1175–1182 (2016).
    [PubMed]
  10. Y. Zou, W. Zhang, F. S. Chau, and G. Zhou, “Miniature adjustable-focus endoscope with a solid electrically tunable lens,” Opt. Express 23(16), 20582–20592 (2015).
    [PubMed]
  11. E. J. Tremblay, I. Stamenov, R. D. Beer, A. Arianpour, and J. E. Ford, “Switchable telescopic contact lens,” Opt. Express 21(13), 15980–15986 (2013).
    [PubMed]
  12. H. Hua, “Enabling focus cues in head-mounted displays,” Proc. IEEE 105(5), 805–824 (2017).
  13. S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
    [PubMed]
  14. S. Liu and H. Hua, “Time-multiplexed dual-focal plane head-mounted display with a liquid lens,” Opt. Lett. 34(11), 1642–1644 (2009).
    [PubMed]
  15. G. D. Love, D. M. Hoffman, P. J. Hands, J. Gao, A. K. Kirby, and M. S. Banks, “High-speed switchable lens enables the development of a volumetric stereoscopic display,” Opt. Express 17(18), 15716–15725 (2009).
    [PubMed]
  16. X. Hu and H. Hua, “High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics,” Opt. Express 22(11), 13896–13903 (2014).
    [PubMed]
  17. Y. H. Lee, F. Peng, and S. T. Wu, “Fast-response switchable lens for 3D and wearable displays,” Opt. Express 24(2), 1668–1675 (2016).
    [PubMed]
  18. Optotune, Inc., “Fast electrically tunable lens EL-16-40-TC,” http://www.optotune.com/products/focus-tunable-lenses/electrical-lens-el-16-40-tc .
  19. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), Chap. 4.
  20. M. Xu and H. Hua, “High dynamic range head mounted display based on dual-layer spatial modulation,” Opt. Express 25(19), 23320–23333 (2017).
    [PubMed]

2017 (2)

2016 (3)

2015 (2)

2014 (1)

2013 (2)

2012 (1)

M. Kang and R. Yue, “Variable-focus liquid lens based on EWOD,” J. Adhes. Sci. Technol. 26(12–17), 1941–1946 (2012).

2011 (2)

S. Liu and H. Hua, “Extended depth-of-field microscopic imaging with a variable focus microscope objective,” Opt. Express 19(1), 353–362 (2011).
[PubMed]

M. J. Moghimi, B. J. Lutzenberger, B. M. Kaylor, and D. L. Dickensheets, “MOEMS deformable mirrors for focus control in vital microscopy,” J. Micro. Nanolithogr. MEMS MOEMS 10(2), 023005 (2011).

2010 (1)

S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
[PubMed]

2009 (2)

2000 (1)

S. Suyama, M. Date, and Hi. Takada, “Three-dimensional display system with dual-frequency liquid-crystal varifocal lens,” Jpn. J. Appl. Phys. 39(2R), 480 (2000).

Arianpour, A.

Banks, M. S.

Beer, R. D.

Chau, F. S.

Cheng, D.

S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
[PubMed]

Date, M.

S. Suyama, M. Date, and Hi. Takada, “Three-dimensional display system with dual-frequency liquid-crystal varifocal lens,” Jpn. J. Appl. Phys. 39(2R), 480 (2000).

Dickensheets, D. L.

M. J. Moghimi, B. J. Lutzenberger, B. M. Kaylor, and D. L. Dickensheets, “MOEMS deformable mirrors for focus control in vital microscopy,” J. Micro. Nanolithogr. MEMS MOEMS 10(2), 023005 (2011).

Fahrbach, F. O.

Ford, J. E.

Gao, J.

Hands, P. J.

Helmchen, F.

Hoffman, D. M.

Hu, X.

Hua, H.

Huisken, J.

Kang, M.

M. Kang and R. Yue, “Variable-focus liquid lens based on EWOD,” J. Adhes. Sci. Technol. 26(12–17), 1941–1946 (2012).

Kaylor, B. M.

M. J. Moghimi, B. J. Lutzenberger, B. M. Kaylor, and D. L. Dickensheets, “MOEMS deformable mirrors for focus control in vital microscopy,” J. Micro. Nanolithogr. MEMS MOEMS 10(2), 023005 (2011).

Kirby, A. K.

Lee, Y. H.

Liu, S.

Love, G. D.

Lu, S. H.

Lutzenberger, B. J.

M. J. Moghimi, B. J. Lutzenberger, B. M. Kaylor, and D. L. Dickensheets, “MOEMS deformable mirrors for focus control in vital microscopy,” J. Micro. Nanolithogr. MEMS MOEMS 10(2), 023005 (2011).

Moghimi, M. J.

M. J. Moghimi, B. J. Lutzenberger, B. M. Kaylor, and D. L. Dickensheets, “MOEMS deformable mirrors for focus control in vital microscopy,” J. Micro. Nanolithogr. MEMS MOEMS 10(2), 023005 (2011).

Peng, F.

Qin, Y.

Schmid, B.

Stamenov, I.

Suyama, S.

S. Suyama, M. Date, and Hi. Takada, “Three-dimensional display system with dual-frequency liquid-crystal varifocal lens,” Jpn. J. Appl. Phys. 39(2R), 480 (2000).

Takada, Hi.

S. Suyama, M. Date, and Hi. Takada, “Three-dimensional display system with dual-frequency liquid-crystal varifocal lens,” Jpn. J. Appl. Phys. 39(2R), 480 (2000).

Tremblay, E. J.

Voigt, F. F.

Wu, S. T.

Xu, M.

Yue, R.

M. Kang and R. Yue, “Variable-focus liquid lens based on EWOD,” J. Adhes. Sci. Technol. 26(12–17), 1941–1946 (2012).

Zhang, W.

Zhou, G.

Zou, Y.

Biomed. Opt. Express (1)

IEEE Trans. Vis. Comput. Graph. (1)

S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
[PubMed]

J. Adhes. Sci. Technol. (1)

M. Kang and R. Yue, “Variable-focus liquid lens based on EWOD,” J. Adhes. Sci. Technol. 26(12–17), 1941–1946 (2012).

J. Micro. Nanolithogr. MEMS MOEMS (1)

M. J. Moghimi, B. J. Lutzenberger, B. M. Kaylor, and D. L. Dickensheets, “MOEMS deformable mirrors for focus control in vital microscopy,” J. Micro. Nanolithogr. MEMS MOEMS 10(2), 023005 (2011).

Jpn. J. Appl. Phys. (1)

S. Suyama, M. Date, and Hi. Takada, “Three-dimensional display system with dual-frequency liquid-crystal varifocal lens,” Jpn. J. Appl. Phys. 39(2R), 480 (2000).

Opt. Express (9)

G. D. Love, D. M. Hoffman, P. J. Hands, J. Gao, A. K. Kirby, and M. S. Banks, “High-speed switchable lens enables the development of a volumetric stereoscopic display,” Opt. Express 17(18), 15716–15725 (2009).
[PubMed]

S. Liu and H. Hua, “Extended depth-of-field microscopic imaging with a variable focus microscope objective,” Opt. Express 19(1), 353–362 (2011).
[PubMed]

E. J. Tremblay, I. Stamenov, R. D. Beer, A. Arianpour, and J. E. Ford, “Switchable telescopic contact lens,” Opt. Express 21(13), 15980–15986 (2013).
[PubMed]

F. O. Fahrbach, F. F. Voigt, B. Schmid, F. Helmchen, and J. Huisken, “Rapid 3D light-sheet microscopy with a tunable lens,” Opt. Express 21(18), 21010–21026 (2013).
[PubMed]

X. Hu and H. Hua, “High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics,” Opt. Express 22(11), 13896–13903 (2014).
[PubMed]

S. H. Lu and H. Hua, “Imaging properties of extended depth of field microscopy through single-shot focus scanning,” Opt. Express 23(8), 10714–10731 (2015).
[PubMed]

Y. Zou, W. Zhang, F. S. Chau, and G. Zhou, “Miniature adjustable-focus endoscope with a solid electrically tunable lens,” Opt. Express 23(16), 20582–20592 (2015).
[PubMed]

Y. H. Lee, F. Peng, and S. T. Wu, “Fast-response switchable lens for 3D and wearable displays,” Opt. Express 24(2), 1668–1675 (2016).
[PubMed]

M. Xu and H. Hua, “High dynamic range head mounted display based on dual-layer spatial modulation,” Opt. Express 25(19), 23320–23333 (2017).
[PubMed]

Opt. Lett. (2)

Proc. IEEE (1)

H. Hua, “Enabling focus cues in head-mounted displays,” Proc. IEEE 105(5), 805–824 (2017).

Other (3)

S. T. Choi, J. Y. Lee, J. O. Kwon, S. Lee, and W. Kim, “Liquid-filled varifocal lens on a chip,” in MOEMS and Miniaturized Systems VIII. Vol. 7208 (ISOP, 2009).

Optotune, Inc., “Fast electrically tunable lens EL-16-40-TC,” http://www.optotune.com/products/focus-tunable-lenses/electrical-lens-el-16-40-tc .

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), Chap. 4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 (a) Four focal planes of the singlet. (b) The profile of the singlet.
Fig. 2
Fig. 2 (a) Optical layout of a MFL design. (b) photograph of our freeform lens prototype.
Fig. 3
Fig. 3 Modulation mask sequence on an LCD for the four zones of the MFL singlet.
Fig. 4
Fig. 4 (a) SLM pixelated aperture model. (b) Relationship between 1st order diffraction intensity ratio and fill factor.
Fig. 5
Fig. 5 (a) Design of the aperture patterns. (b) Liquid crystal device construction.
Fig. 6
Fig. 6 (a) Illustration for calculating SA. (b) Effective area.
Fig. 7
Fig. 7 Simulation results. (a) Relationship between solid angles of on-axis points and POSA-MFL distance for the four foci. (b) Solid angles of off-axis points at different FOV for the four focal zones when the POSA-MFL distance is 1.6mm.
Fig. 8
Fig. 8 (a) The picture of POSA. (b) Response time of the POSA.
Fig. 9
Fig. 9 Demonstration of the four states of the POSA.
Fig. 10
Fig. 10 Schematic layout of a multi-focal imaging system using a switchable multi-focal lens
Fig. 11
Fig. 11 Experimental setup of a MFL-based imaging system prototype
Fig. 12
Fig. 12 Images of the three objects. a) Image distance = 1000 mm. b) Image distance = 339 mm. c) image distance = 157 mm

Tables (1)

Tables Icon

Table 1 SLM aperture size configuration.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

r i 2 r i1 2 f i 2 = r 1 2 f 1 2 i=2......N
z i ( r i1 )= z i1 ( r i1 ) i=2......N
z i (r)= r 2 R i (1+ 1(1+ K i ) r 2 R i 2 ) + a 4,i r 4 + a 6,i r 6 r( r i1 , r i )
η= a 2 d 2
P(x,y)=[comb( x d , y d )×circ( x r 0 , y r 0 )]**rect( x a , y a )
h(u,v)=[comb( du λ f 1 , dv λ f 1 )**somb( r 0 ρ λ f 1 )]sinc( au λ f 1 , av λ f 1 )

Metrics