Abstract

The light field microscope has the potential of recording the 3D information of biological specimens in real time with a conventional light source. To further extend the depth of field to broaden its applications, in this paper, we proposed a multifocal high-resistance liquid crystal microlens array instead of the fixed microlens array. The developed multifocal liquid crystal microlens array can provide high quality point spread function in multiple focal lengths. By adjusting the focal length of the liquid crystal microlens array sequentially, the total working range of the light field microscope can be much extended. Furthermore, in our proposed system, the intermediate image was placed in the virtual image space of the microlens array, where the condition of the lenslets numerical aperture was considerably smaller. Consequently, a thin-cell-gap liquid crystal microlens array with fast response time can be implemented for time-multiplexed scanning.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhancing the performance of the light field microscope using wavefront coding

Noy Cohen, Samuel Yang, Aaron Andalman, Michael Broxton, Logan Grosenick, Karl Deisseroth, Mark Horowitz, and Marc Levoy
Opt. Express 22(20) 24817-24839 (2014)

Liquid-crystal microlens arrays using patterned polymer networks

Hongwen Ren, Yun-Hsing Fan, and Shin-Tson Wu
Opt. Lett. 29(14) 1608-1610 (2004)

Enhancement of the depth-of-field of integral imaging microscope by using switchable bifocal liquid-crystalline polymer micro lens array

Ki-Chul Kwon, Munkh-Uchral Erdenebat, Young-Tae Lim, Kyung-Il Joo, Min-Kyu Park, Heewon Park, Jong-Rae Jeong, Hak-Rin Kim, and Nam Kim
Opt. Express 25(24) 30503-30512 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J.-S. Jang and B. Javidi, “Three-dimensional integral imaging of micro-objects,” Opt. Lett. 29(11), 1230–1232 (2004).
    [Crossref] [PubMed]
  2. M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
    [Crossref]
  3. M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
    [Crossref] [PubMed]
  4. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. Theor. Appl. 7(1), 821–825 (1908).
    [Crossref]
  5. E. H. Adelson and J. Y. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. 14(2), 99–106 (1992).
    [Crossref]
  6. R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Rep. CTSR (Stanford University, 2005), pp. 1–11.
  7. R. Ng, “Digital light field photography,” Ph.D, Department of Computer Science (Stanford University California, 2006).
  8. C. Zhou and S. K. Nayar, “Computational cameras: convergence of optics and processing,” IEEE Trans. Image Process. 20(12), 3322–3340 (2011).
    [Crossref] [PubMed]
  9. E. Y. Lam, “Computational photography with plenoptic camera and light field capture: tutorial,” J. Opt. Soc. Am. A 32(11), 2021–2032 (2015).
    [Crossref] [PubMed]
  10. E. H. Adelson and J. R. Bergen, “The plenoptic function and the elements of early vision,” in Computational Models of Visual Processing (MIT Press, 1991), pp. 3–20.
  11. M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings of the 23rd annual conference on Computer graphics and interactive techniques (ACM1996), pp. 31–42.
  12. A. Isaksen, L. McMillan, and S. J. Gortler, “Dynamically reparameterized light fields,” in Proceedings of the 27th annual conference on Computer graphics and interactive techniques (ACM Press/Addison-Wesley Publishing Co.2000), pp. 297–306.
  13. D.-H. Shin and E.-S. Kim, “Computational integral imaging reconstruction of 3D object using a depth conversion technique,” J. Opt. Soc. Korea 12(3), 131–135 (2008).
    [Crossref]
  14. L. Erdmann and K. J. Gabriel, “High-resolution digital integral photography by use of a scanning microlens array,” Appl. Opt. 40(31), 5592–5599 (2001).
    [Crossref] [PubMed]
  15. P. Didyk, E. Eisemann, T. Ritschel, K. Myszkowski, and H.-P. Seidel, “Apparent display resolution enhancement for moving images,” ACM Trans. Graph. 29(4), 113 (2010).
    [Crossref]
  16. T.-H. Jen, X. Shen, G. Yao, Y.-P. Huang, H.-P. D. Shieh, and B. Javidi, “Dynamic integral imaging display with electrically moving array lenslet technique using liquid crystal lens,” Opt. Express 23(14), 18415–18421 (2015).
    [Crossref] [PubMed]
  17. T. E. Bishop, S. Zanetti, and P. Favaro, “Light field superresolution,” in Proceedings IEEE Conference on Computational Photography (IEEE, 2009), pp. 1–9.
  18. Y. Wang, G. Hou, Z. Sun, Z. Wang, and T. Tan, “A simple and robust super resolution method for light field images,” in Proceedings IEEE Conference on Image Processing (IEEE, 2016), pp. 1459–1463.
    [Crossref]
  19. H. Li, C. Guo, and S. Jia, “High-resolution light-field microscopy,” in Frontiers in Optics (Optical Society of America, 2017), paper FW6D.3.
  20. M. Rossi and P. Frossard, “Light Field Super-Resolution Via Graph-Based Regularization,” arXiv preprint arXiv:1701.02141 (2017).
  21. C.-H. Lu, S. Muenzel, and J. Fleischer, “High-Resolution Light-Field Microscopy,” in Computational Optical Sensing and Imaging on Microscopy and Tomography I, OSA Technical Digest (Optical Society of America, 2013), paper CTh3B.2.
  22. V. Boominathan, K. Mitra, and A. Veeraraghavan, “Improving resolution and depth-of-field of light field cameras using a hybrid imaging system,” in Proceedings IEEE Conference on Computational Photography (IEEE, 2014), pp. 1–10.
    [Crossref]
  23. J. Wu, H. Wang, X. Wang, and Y. Zhang, “A novel light field super-resolution framework based on hybrid imaging system,” in Proceedings IEEE Conference on Visual Communications and Image Processing (IEEE, 2015), pp. 1–4.
    [Crossref]
  24. M. Z. Alam and B. K. Gunturk, “Hybrid Light Field Imaging for Improved Spatial Resolution and Depth Range,” arXiv preprint arXiv:1611.05008 (2016).
  25. A. Lumsdaine and T. Georgiev, “Full resolution lightfield rendering,” Indiana University and Adobe Systems, Tech. Rep (2008).
  26. T. Georgiev and A. Lumsdaine, “Focused plenoptic camera and rendering,” J. Electron. Imaging 19(2), 021106 (2010).
    [Crossref]
  27. C.-W. Chen, M. Cho, Y.-P. Huang, and B. Javidi, “Three-dimensional imaging with axially distributed sensing using electronically controlled liquid crystal lens,” Opt. Lett. 37(19), 4125–4127 (2012).
    [Crossref] [PubMed]
  28. M. Martı, P.-Y. Hsieh, A. Doblas, E. Sánchez-Ortiga, G. Saavedra, and Y.-P. Huang, “Fast axial-scanning widefield microscopy with constant magnification and resolution,” J. Disp. Technol. 11(11), 913–920 (2015).
    [Crossref]
  29. M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, “Integral imaging with improved depth of field by use of amplitude-modulated microlens arrays,” Appl. Opt. 43(31), 5806–5813 (2004).
    [Crossref] [PubMed]
  30. K.-C. Kwon, M.-U. Erdenebat, Y.-T. Lim, K.-I. Joo, M.-K. Park, H. Park, J.-R. Jeong, H.-R. Kim, and N. Kim, “Enhancement of the depth-of-field of integral imaging microscope by using switchable bifocal liquid-crystalline polymer micro lens array,” Opt. Express 25(24), 30503–30512 (2017).
    [Crossref] [PubMed]
  31. K.-C. Kwon, Y.-T. Lim, C.-W. Shin, M.-U. Erdenebatz, J.-M. Hwang, and N. Kim, “Enhanced depth-of-field of an integral imaging microscope using a bifocal holographic optical element-micro lens array,” Opt. Lett. 42(16), 3209–3212 (2017).
    [Crossref] [PubMed]
  32. J.-S. Jang and B. Javidi, “Large depth-of-focus time-multiplexed three-dimensional integral imaging by use of lenslets with nonuniform focal lengths and aperture sizes,” Opt. Lett. 28(20), 1924–1926 (2003).
    [Crossref] [PubMed]
  33. T. Georgiev and A. Lumsdaine, “The multifocus plenoptic camera,” Proc. SPIE 8299, 829908 (2012).
    [Crossref]
  34. C. Perwass and L. Wietzke, “Single lens 3D-camera with extended depth-of-field,” Proc. SPIE 8291, 829108 (2012).
    [Crossref]
  35. A. Tolosa, R. Martínez-Cuenca, A. Pons, G. Saavedra, M. Martínez-Corral, and B. Javidi, “Optical implementation of micro-zoom arrays for parallel focusing in integral imaging,” J. Opt. Soc. Am. A 27(3), 495–500 (2010).
    [Crossref] [PubMed]
  36. Y. Lei, Q. Tong, X. Zhang, H. Sang, A. Ji, and C. Xie, “An electrically tunable plenoptic camera using a liquid crystal microlens array,” Rev. Sci. Instrum. 86(5), 053101 (2015).
    [Crossref] [PubMed]
  37. A. F. Naumov, M. Yu. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett. 23(13), 992–994 (1998).
    [Crossref] [PubMed]
  38. Y.-C. Chang, T.-H. Jen, C.-H. Ting, and Y.-P. Huang, “High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display,” Opt. Express 22(3), 2714–2724 (2014).
    [Crossref] [PubMed]
  39. J. Beeckman, I. Nys, O. Willekens, and K. Neyts, “Optimization of liquid crystal devices based on weakly conductive layers for lensing and beam steering,” J. Appl. Phys. 121(2), 023106 (2017).
    [Crossref]
  40. Y. P. Huang, L. Y. Liao, and C. W. Chen, “2‐D/3‐D switchable autostereoscopic display with multi‐electrically driven liquid‐crystal (MeD‐LC) lenses,” J. Soc. Inf. Disp. 18(9), 642–646 (2010).
    [Crossref]
  41. Y.-T. Lim, J.-H. Park, K.-C. Kwon, and N. Kim, “Analysis on enhanced depth of field for integral imaging microscope,” Opt. Express 20(21), 23480–23488 (2012).
    [Crossref] [PubMed]
  42. J.-S. Jang, F. Jin, and B. Javidi, “Three-dimensional integral imaging with large depth of focus by use of real and virtual image fields,” Opt. Lett. 28(16), 1421–1423 (2003).
    [Crossref] [PubMed]
  43. S. Oka, T. Naganuma, T. Koito, Y. Yang, and S. Komura, “15.5: Invited Paper: High Performance Autostereoscopic 2D/3D Switchable Display Using Liquid Crystal Lens,” in SID Symposium Digest of Technical Papers (Wiley Online Library, 2013), pp. 150–153.
    [Crossref]
  44. H.-A. Lin, “Response Time Acceleration and Image Quality Analysis of Light Field Microscope with Liquid Crystal Lens Array,” in Institute of Lighting and Energy Photonics (National Chiao Tung University, 2017).

2017 (3)

2015 (4)

Y. Lei, Q. Tong, X. Zhang, H. Sang, A. Ji, and C. Xie, “An electrically tunable plenoptic camera using a liquid crystal microlens array,” Rev. Sci. Instrum. 86(5), 053101 (2015).
[Crossref] [PubMed]

M. Martı, P.-Y. Hsieh, A. Doblas, E. Sánchez-Ortiga, G. Saavedra, and Y.-P. Huang, “Fast axial-scanning widefield microscopy with constant magnification and resolution,” J. Disp. Technol. 11(11), 913–920 (2015).
[Crossref]

T.-H. Jen, X. Shen, G. Yao, Y.-P. Huang, H.-P. D. Shieh, and B. Javidi, “Dynamic integral imaging display with electrically moving array lenslet technique using liquid crystal lens,” Opt. Express 23(14), 18415–18421 (2015).
[Crossref] [PubMed]

E. Y. Lam, “Computational photography with plenoptic camera and light field capture: tutorial,” J. Opt. Soc. Am. A 32(11), 2021–2032 (2015).
[Crossref] [PubMed]

2014 (1)

2012 (4)

2011 (1)

C. Zhou and S. K. Nayar, “Computational cameras: convergence of optics and processing,” IEEE Trans. Image Process. 20(12), 3322–3340 (2011).
[Crossref] [PubMed]

2010 (4)

P. Didyk, E. Eisemann, T. Ritschel, K. Myszkowski, and H.-P. Seidel, “Apparent display resolution enhancement for moving images,” ACM Trans. Graph. 29(4), 113 (2010).
[Crossref]

T. Georgiev and A. Lumsdaine, “Focused plenoptic camera and rendering,” J. Electron. Imaging 19(2), 021106 (2010).
[Crossref]

Y. P. Huang, L. Y. Liao, and C. W. Chen, “2‐D/3‐D switchable autostereoscopic display with multi‐electrically driven liquid‐crystal (MeD‐LC) lenses,” J. Soc. Inf. Disp. 18(9), 642–646 (2010).
[Crossref]

A. Tolosa, R. Martínez-Cuenca, A. Pons, G. Saavedra, M. Martínez-Corral, and B. Javidi, “Optical implementation of micro-zoom arrays for parallel focusing in integral imaging,” J. Opt. Soc. Am. A 27(3), 495–500 (2010).
[Crossref] [PubMed]

2009 (1)

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref] [PubMed]

2008 (1)

2006 (1)

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[Crossref]

2004 (2)

2003 (2)

2001 (1)

1998 (1)

1992 (1)

E. H. Adelson and J. Y. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. 14(2), 99–106 (1992).
[Crossref]

1908 (1)

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. Theor. Appl. 7(1), 821–825 (1908).
[Crossref]

Adams, A.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[Crossref]

Adelson, E. H.

E. H. Adelson and J. Y. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. 14(2), 99–106 (1992).
[Crossref]

Beeckman, J.

J. Beeckman, I. Nys, O. Willekens, and K. Neyts, “Optimization of liquid crystal devices based on weakly conductive layers for lensing and beam steering,” J. Appl. Phys. 121(2), 023106 (2017).
[Crossref]

Bishop, T. E.

T. E. Bishop, S. Zanetti, and P. Favaro, “Light field superresolution,” in Proceedings IEEE Conference on Computational Photography (IEEE, 2009), pp. 1–9.

Boominathan, V.

V. Boominathan, K. Mitra, and A. Veeraraghavan, “Improving resolution and depth-of-field of light field cameras using a hybrid imaging system,” in Proceedings IEEE Conference on Computational Photography (IEEE, 2014), pp. 1–10.
[Crossref]

Chang, Y.-C.

Chen, C. W.

Y. P. Huang, L. Y. Liao, and C. W. Chen, “2‐D/3‐D switchable autostereoscopic display with multi‐electrically driven liquid‐crystal (MeD‐LC) lenses,” J. Soc. Inf. Disp. 18(9), 642–646 (2010).
[Crossref]

Chen, C.-W.

Cho, M.

Didyk, P.

P. Didyk, E. Eisemann, T. Ritschel, K. Myszkowski, and H.-P. Seidel, “Apparent display resolution enhancement for moving images,” ACM Trans. Graph. 29(4), 113 (2010).
[Crossref]

Doblas, A.

M. Martı, P.-Y. Hsieh, A. Doblas, E. Sánchez-Ortiga, G. Saavedra, and Y.-P. Huang, “Fast axial-scanning widefield microscopy with constant magnification and resolution,” J. Disp. Technol. 11(11), 913–920 (2015).
[Crossref]

Eisemann, E.

P. Didyk, E. Eisemann, T. Ritschel, K. Myszkowski, and H.-P. Seidel, “Apparent display resolution enhancement for moving images,” ACM Trans. Graph. 29(4), 113 (2010).
[Crossref]

Erdenebat, M.-U.

Erdenebatz, M.-U.

Erdmann, L.

Favaro, P.

T. E. Bishop, S. Zanetti, and P. Favaro, “Light field superresolution,” in Proceedings IEEE Conference on Computational Photography (IEEE, 2009), pp. 1–9.

Footer, M.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[Crossref]

Gabriel, K. J.

Georgiev, T.

T. Georgiev and A. Lumsdaine, “The multifocus plenoptic camera,” Proc. SPIE 8299, 829908 (2012).
[Crossref]

T. Georgiev and A. Lumsdaine, “Focused plenoptic camera and rendering,” J. Electron. Imaging 19(2), 021106 (2010).
[Crossref]

Gortler, S. J.

A. Isaksen, L. McMillan, and S. J. Gortler, “Dynamically reparameterized light fields,” in Proceedings of the 27th annual conference on Computer graphics and interactive techniques (ACM Press/Addison-Wesley Publishing Co.2000), pp. 297–306.

Guralnik, I. R.

Horowitz, M.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[Crossref]

Hou, G.

Y. Wang, G. Hou, Z. Sun, Z. Wang, and T. Tan, “A simple and robust super resolution method for light field images,” in Proceedings IEEE Conference on Image Processing (IEEE, 2016), pp. 1459–1463.
[Crossref]

Hsieh, P.-Y.

M. Martı, P.-Y. Hsieh, A. Doblas, E. Sánchez-Ortiga, G. Saavedra, and Y.-P. Huang, “Fast axial-scanning widefield microscopy with constant magnification and resolution,” J. Disp. Technol. 11(11), 913–920 (2015).
[Crossref]

Huang, Y. P.

Y. P. Huang, L. Y. Liao, and C. W. Chen, “2‐D/3‐D switchable autostereoscopic display with multi‐electrically driven liquid‐crystal (MeD‐LC) lenses,” J. Soc. Inf. Disp. 18(9), 642–646 (2010).
[Crossref]

Huang, Y.-P.

Hwang, J.-M.

Isaksen, A.

A. Isaksen, L. McMillan, and S. J. Gortler, “Dynamically reparameterized light fields,” in Proceedings of the 27th annual conference on Computer graphics and interactive techniques (ACM Press/Addison-Wesley Publishing Co.2000), pp. 297–306.

Jang, J.-S.

Javidi, B.

T.-H. Jen, X. Shen, G. Yao, Y.-P. Huang, H.-P. D. Shieh, and B. Javidi, “Dynamic integral imaging display with electrically moving array lenslet technique using liquid crystal lens,” Opt. Express 23(14), 18415–18421 (2015).
[Crossref] [PubMed]

C.-W. Chen, M. Cho, Y.-P. Huang, and B. Javidi, “Three-dimensional imaging with axially distributed sensing using electronically controlled liquid crystal lens,” Opt. Lett. 37(19), 4125–4127 (2012).
[Crossref] [PubMed]

A. Tolosa, R. Martínez-Cuenca, A. Pons, G. Saavedra, M. Martínez-Corral, and B. Javidi, “Optical implementation of micro-zoom arrays for parallel focusing in integral imaging,” J. Opt. Soc. Am. A 27(3), 495–500 (2010).
[Crossref] [PubMed]

M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, “Integral imaging with improved depth of field by use of amplitude-modulated microlens arrays,” Appl. Opt. 43(31), 5806–5813 (2004).
[Crossref] [PubMed]

J.-S. Jang and B. Javidi, “Three-dimensional integral imaging of micro-objects,” Opt. Lett. 29(11), 1230–1232 (2004).
[Crossref] [PubMed]

J.-S. Jang, F. Jin, and B. Javidi, “Three-dimensional integral imaging with large depth of focus by use of real and virtual image fields,” Opt. Lett. 28(16), 1421–1423 (2003).
[Crossref] [PubMed]

J.-S. Jang and B. Javidi, “Large depth-of-focus time-multiplexed three-dimensional integral imaging by use of lenslets with nonuniform focal lengths and aperture sizes,” Opt. Lett. 28(20), 1924–1926 (2003).
[Crossref] [PubMed]

Jen, T.-H.

Jeong, J.-R.

Ji, A.

Y. Lei, Q. Tong, X. Zhang, H. Sang, A. Ji, and C. Xie, “An electrically tunable plenoptic camera using a liquid crystal microlens array,” Rev. Sci. Instrum. 86(5), 053101 (2015).
[Crossref] [PubMed]

Jin, F.

Joo, K.-I.

Kim, E.-S.

Kim, H.-R.

Kim, N.

Koito, T.

S. Oka, T. Naganuma, T. Koito, Y. Yang, and S. Komura, “15.5: Invited Paper: High Performance Autostereoscopic 2D/3D Switchable Display Using Liquid Crystal Lens,” in SID Symposium Digest of Technical Papers (Wiley Online Library, 2013), pp. 150–153.
[Crossref]

Komura, S.

S. Oka, T. Naganuma, T. Koito, Y. Yang, and S. Komura, “15.5: Invited Paper: High Performance Autostereoscopic 2D/3D Switchable Display Using Liquid Crystal Lens,” in SID Symposium Digest of Technical Papers (Wiley Online Library, 2013), pp. 150–153.
[Crossref]

Kwon, K.-C.

Lam, E. Y.

Lei, Y.

Y. Lei, Q. Tong, X. Zhang, H. Sang, A. Ji, and C. Xie, “An electrically tunable plenoptic camera using a liquid crystal microlens array,” Rev. Sci. Instrum. 86(5), 053101 (2015).
[Crossref] [PubMed]

Levoy, M.

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref] [PubMed]

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[Crossref]

Liao, L. Y.

Y. P. Huang, L. Y. Liao, and C. W. Chen, “2‐D/3‐D switchable autostereoscopic display with multi‐electrically driven liquid‐crystal (MeD‐LC) lenses,” J. Soc. Inf. Disp. 18(9), 642–646 (2010).
[Crossref]

Lim, Y.-T.

Lippmann, G.

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. Theor. Appl. 7(1), 821–825 (1908).
[Crossref]

Loktev, M. Yu.

Lumsdaine, A.

T. Georgiev and A. Lumsdaine, “The multifocus plenoptic camera,” Proc. SPIE 8299, 829908 (2012).
[Crossref]

T. Georgiev and A. Lumsdaine, “Focused plenoptic camera and rendering,” J. Electron. Imaging 19(2), 021106 (2010).
[Crossref]

Marti, M.

M. Martı, P.-Y. Hsieh, A. Doblas, E. Sánchez-Ortiga, G. Saavedra, and Y.-P. Huang, “Fast axial-scanning widefield microscopy with constant magnification and resolution,” J. Disp. Technol. 11(11), 913–920 (2015).
[Crossref]

Martínez-Corral, M.

Martínez-Cuenca, R.

McDowall, I.

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref] [PubMed]

McMillan, L.

A. Isaksen, L. McMillan, and S. J. Gortler, “Dynamically reparameterized light fields,” in Proceedings of the 27th annual conference on Computer graphics and interactive techniques (ACM Press/Addison-Wesley Publishing Co.2000), pp. 297–306.

Mitra, K.

V. Boominathan, K. Mitra, and A. Veeraraghavan, “Improving resolution and depth-of-field of light field cameras using a hybrid imaging system,” in Proceedings IEEE Conference on Computational Photography (IEEE, 2014), pp. 1–10.
[Crossref]

Myszkowski, K.

P. Didyk, E. Eisemann, T. Ritschel, K. Myszkowski, and H.-P. Seidel, “Apparent display resolution enhancement for moving images,” ACM Trans. Graph. 29(4), 113 (2010).
[Crossref]

Naganuma, T.

S. Oka, T. Naganuma, T. Koito, Y. Yang, and S. Komura, “15.5: Invited Paper: High Performance Autostereoscopic 2D/3D Switchable Display Using Liquid Crystal Lens,” in SID Symposium Digest of Technical Papers (Wiley Online Library, 2013), pp. 150–153.
[Crossref]

Naumov, A. F.

Nayar, S. K.

C. Zhou and S. K. Nayar, “Computational cameras: convergence of optics and processing,” IEEE Trans. Image Process. 20(12), 3322–3340 (2011).
[Crossref] [PubMed]

Neyts, K.

J. Beeckman, I. Nys, O. Willekens, and K. Neyts, “Optimization of liquid crystal devices based on weakly conductive layers for lensing and beam steering,” J. Appl. Phys. 121(2), 023106 (2017).
[Crossref]

Ng, R.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[Crossref]

Nys, I.

J. Beeckman, I. Nys, O. Willekens, and K. Neyts, “Optimization of liquid crystal devices based on weakly conductive layers for lensing and beam steering,” J. Appl. Phys. 121(2), 023106 (2017).
[Crossref]

Oka, S.

S. Oka, T. Naganuma, T. Koito, Y. Yang, and S. Komura, “15.5: Invited Paper: High Performance Autostereoscopic 2D/3D Switchable Display Using Liquid Crystal Lens,” in SID Symposium Digest of Technical Papers (Wiley Online Library, 2013), pp. 150–153.
[Crossref]

Park, H.

Park, J.-H.

Park, M.-K.

Perwass, C.

C. Perwass and L. Wietzke, “Single lens 3D-camera with extended depth-of-field,” Proc. SPIE 8291, 829108 (2012).
[Crossref]

Pons, A.

Ritschel, T.

P. Didyk, E. Eisemann, T. Ritschel, K. Myszkowski, and H.-P. Seidel, “Apparent display resolution enhancement for moving images,” ACM Trans. Graph. 29(4), 113 (2010).
[Crossref]

Saavedra, G.

Sánchez-Ortiga, E.

M. Martı, P.-Y. Hsieh, A. Doblas, E. Sánchez-Ortiga, G. Saavedra, and Y.-P. Huang, “Fast axial-scanning widefield microscopy with constant magnification and resolution,” J. Disp. Technol. 11(11), 913–920 (2015).
[Crossref]

Sang, H.

Y. Lei, Q. Tong, X. Zhang, H. Sang, A. Ji, and C. Xie, “An electrically tunable plenoptic camera using a liquid crystal microlens array,” Rev. Sci. Instrum. 86(5), 053101 (2015).
[Crossref] [PubMed]

Seidel, H.-P.

P. Didyk, E. Eisemann, T. Ritschel, K. Myszkowski, and H.-P. Seidel, “Apparent display resolution enhancement for moving images,” ACM Trans. Graph. 29(4), 113 (2010).
[Crossref]

Shen, X.

Shieh, H.-P. D.

Shin, C.-W.

Shin, D.-H.

Sun, Z.

Y. Wang, G. Hou, Z. Sun, Z. Wang, and T. Tan, “A simple and robust super resolution method for light field images,” in Proceedings IEEE Conference on Image Processing (IEEE, 2016), pp. 1459–1463.
[Crossref]

Tan, T.

Y. Wang, G. Hou, Z. Sun, Z. Wang, and T. Tan, “A simple and robust super resolution method for light field images,” in Proceedings IEEE Conference on Image Processing (IEEE, 2016), pp. 1459–1463.
[Crossref]

Ting, C.-H.

Tolosa, A.

Tong, Q.

Y. Lei, Q. Tong, X. Zhang, H. Sang, A. Ji, and C. Xie, “An electrically tunable plenoptic camera using a liquid crystal microlens array,” Rev. Sci. Instrum. 86(5), 053101 (2015).
[Crossref] [PubMed]

Vdovin, G.

Veeraraghavan, A.

V. Boominathan, K. Mitra, and A. Veeraraghavan, “Improving resolution and depth-of-field of light field cameras using a hybrid imaging system,” in Proceedings IEEE Conference on Computational Photography (IEEE, 2014), pp. 1–10.
[Crossref]

Wang, H.

J. Wu, H. Wang, X. Wang, and Y. Zhang, “A novel light field super-resolution framework based on hybrid imaging system,” in Proceedings IEEE Conference on Visual Communications and Image Processing (IEEE, 2015), pp. 1–4.
[Crossref]

Wang, J. Y.

E. H. Adelson and J. Y. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. 14(2), 99–106 (1992).
[Crossref]

Wang, X.

J. Wu, H. Wang, X. Wang, and Y. Zhang, “A novel light field super-resolution framework based on hybrid imaging system,” in Proceedings IEEE Conference on Visual Communications and Image Processing (IEEE, 2015), pp. 1–4.
[Crossref]

Wang, Y.

Y. Wang, G. Hou, Z. Sun, Z. Wang, and T. Tan, “A simple and robust super resolution method for light field images,” in Proceedings IEEE Conference on Image Processing (IEEE, 2016), pp. 1459–1463.
[Crossref]

Wang, Z.

Y. Wang, G. Hou, Z. Sun, Z. Wang, and T. Tan, “A simple and robust super resolution method for light field images,” in Proceedings IEEE Conference on Image Processing (IEEE, 2016), pp. 1459–1463.
[Crossref]

Wietzke, L.

C. Perwass and L. Wietzke, “Single lens 3D-camera with extended depth-of-field,” Proc. SPIE 8291, 829108 (2012).
[Crossref]

Willekens, O.

J. Beeckman, I. Nys, O. Willekens, and K. Neyts, “Optimization of liquid crystal devices based on weakly conductive layers for lensing and beam steering,” J. Appl. Phys. 121(2), 023106 (2017).
[Crossref]

Wu, J.

J. Wu, H. Wang, X. Wang, and Y. Zhang, “A novel light field super-resolution framework based on hybrid imaging system,” in Proceedings IEEE Conference on Visual Communications and Image Processing (IEEE, 2015), pp. 1–4.
[Crossref]

Xie, C.

Y. Lei, Q. Tong, X. Zhang, H. Sang, A. Ji, and C. Xie, “An electrically tunable plenoptic camera using a liquid crystal microlens array,” Rev. Sci. Instrum. 86(5), 053101 (2015).
[Crossref] [PubMed]

Yang, Y.

S. Oka, T. Naganuma, T. Koito, Y. Yang, and S. Komura, “15.5: Invited Paper: High Performance Autostereoscopic 2D/3D Switchable Display Using Liquid Crystal Lens,” in SID Symposium Digest of Technical Papers (Wiley Online Library, 2013), pp. 150–153.
[Crossref]

Yao, G.

Zanetti, S.

T. E. Bishop, S. Zanetti, and P. Favaro, “Light field superresolution,” in Proceedings IEEE Conference on Computational Photography (IEEE, 2009), pp. 1–9.

Zhang, X.

Y. Lei, Q. Tong, X. Zhang, H. Sang, A. Ji, and C. Xie, “An electrically tunable plenoptic camera using a liquid crystal microlens array,” Rev. Sci. Instrum. 86(5), 053101 (2015).
[Crossref] [PubMed]

Zhang, Y.

J. Wu, H. Wang, X. Wang, and Y. Zhang, “A novel light field super-resolution framework based on hybrid imaging system,” in Proceedings IEEE Conference on Visual Communications and Image Processing (IEEE, 2015), pp. 1–4.
[Crossref]

Zhang, Z.

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref] [PubMed]

Zhou, C.

C. Zhou and S. K. Nayar, “Computational cameras: convergence of optics and processing,” IEEE Trans. Image Process. 20(12), 3322–3340 (2011).
[Crossref] [PubMed]

ACM Trans. Graph. (2)

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[Crossref]

P. Didyk, E. Eisemann, T. Ritschel, K. Myszkowski, and H.-P. Seidel, “Apparent display resolution enhancement for moving images,” ACM Trans. Graph. 29(4), 113 (2010).
[Crossref]

Appl. Opt. (2)

IEEE Trans. Image Process. (1)

C. Zhou and S. K. Nayar, “Computational cameras: convergence of optics and processing,” IEEE Trans. Image Process. 20(12), 3322–3340 (2011).
[Crossref] [PubMed]

IEEE Trans. Pattern Anal. (1)

E. H. Adelson and J. Y. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. 14(2), 99–106 (1992).
[Crossref]

J. Appl. Phys. (1)

J. Beeckman, I. Nys, O. Willekens, and K. Neyts, “Optimization of liquid crystal devices based on weakly conductive layers for lensing and beam steering,” J. Appl. Phys. 121(2), 023106 (2017).
[Crossref]

J. Disp. Technol. (1)

M. Martı, P.-Y. Hsieh, A. Doblas, E. Sánchez-Ortiga, G. Saavedra, and Y.-P. Huang, “Fast axial-scanning widefield microscopy with constant magnification and resolution,” J. Disp. Technol. 11(11), 913–920 (2015).
[Crossref]

J. Electron. Imaging (1)

T. Georgiev and A. Lumsdaine, “Focused plenoptic camera and rendering,” J. Electron. Imaging 19(2), 021106 (2010).
[Crossref]

J. Microsc. (1)

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Korea (1)

J. Phys. Theor. Appl. (1)

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. Theor. Appl. 7(1), 821–825 (1908).
[Crossref]

J. Soc. Inf. Disp. (1)

Y. P. Huang, L. Y. Liao, and C. W. Chen, “2‐D/3‐D switchable autostereoscopic display with multi‐electrically driven liquid‐crystal (MeD‐LC) lenses,” J. Soc. Inf. Disp. 18(9), 642–646 (2010).
[Crossref]

Opt. Express (4)

Opt. Lett. (6)

Proc. SPIE (2)

T. Georgiev and A. Lumsdaine, “The multifocus plenoptic camera,” Proc. SPIE 8299, 829908 (2012).
[Crossref]

C. Perwass and L. Wietzke, “Single lens 3D-camera with extended depth-of-field,” Proc. SPIE 8291, 829108 (2012).
[Crossref]

Rev. Sci. Instrum. (1)

Y. Lei, Q. Tong, X. Zhang, H. Sang, A. Ji, and C. Xie, “An electrically tunable plenoptic camera using a liquid crystal microlens array,” Rev. Sci. Instrum. 86(5), 053101 (2015).
[Crossref] [PubMed]

Other (16)

S. Oka, T. Naganuma, T. Koito, Y. Yang, and S. Komura, “15.5: Invited Paper: High Performance Autostereoscopic 2D/3D Switchable Display Using Liquid Crystal Lens,” in SID Symposium Digest of Technical Papers (Wiley Online Library, 2013), pp. 150–153.
[Crossref]

H.-A. Lin, “Response Time Acceleration and Image Quality Analysis of Light Field Microscope with Liquid Crystal Lens Array,” in Institute of Lighting and Energy Photonics (National Chiao Tung University, 2017).

T. E. Bishop, S. Zanetti, and P. Favaro, “Light field superresolution,” in Proceedings IEEE Conference on Computational Photography (IEEE, 2009), pp. 1–9.

Y. Wang, G. Hou, Z. Sun, Z. Wang, and T. Tan, “A simple and robust super resolution method for light field images,” in Proceedings IEEE Conference on Image Processing (IEEE, 2016), pp. 1459–1463.
[Crossref]

H. Li, C. Guo, and S. Jia, “High-resolution light-field microscopy,” in Frontiers in Optics (Optical Society of America, 2017), paper FW6D.3.

M. Rossi and P. Frossard, “Light Field Super-Resolution Via Graph-Based Regularization,” arXiv preprint arXiv:1701.02141 (2017).

C.-H. Lu, S. Muenzel, and J. Fleischer, “High-Resolution Light-Field Microscopy,” in Computational Optical Sensing and Imaging on Microscopy and Tomography I, OSA Technical Digest (Optical Society of America, 2013), paper CTh3B.2.

V. Boominathan, K. Mitra, and A. Veeraraghavan, “Improving resolution and depth-of-field of light field cameras using a hybrid imaging system,” in Proceedings IEEE Conference on Computational Photography (IEEE, 2014), pp. 1–10.
[Crossref]

J. Wu, H. Wang, X. Wang, and Y. Zhang, “A novel light field super-resolution framework based on hybrid imaging system,” in Proceedings IEEE Conference on Visual Communications and Image Processing (IEEE, 2015), pp. 1–4.
[Crossref]

M. Z. Alam and B. K. Gunturk, “Hybrid Light Field Imaging for Improved Spatial Resolution and Depth Range,” arXiv preprint arXiv:1611.05008 (2016).

A. Lumsdaine and T. Georgiev, “Full resolution lightfield rendering,” Indiana University and Adobe Systems, Tech. Rep (2008).

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Rep. CTSR (Stanford University, 2005), pp. 1–11.

R. Ng, “Digital light field photography,” Ph.D, Department of Computer Science (Stanford University California, 2006).

E. H. Adelson and J. R. Bergen, “The plenoptic function and the elements of early vision,” in Computational Models of Visual Processing (MIT Press, 1991), pp. 3–20.

M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings of the 23rd annual conference on Computer graphics and interactive techniques (ACM1996), pp. 31–42.

A. Isaksen, L. McMillan, and S. J. Gortler, “Dynamically reparameterized light fields,” in Proceedings of the 27th annual conference on Computer graphics and interactive techniques (ACM Press/Addison-Wesley Publishing Co.2000), pp. 297–306.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1 Schematic lay out of the LFM as reported by Levoy et al.
Fig. 2
Fig. 2 The LFM working in the plenoptic 2.0 mode. In the scheme p stands for the MLA pitch, and δ for the pixel size.
Fig. 3
Fig. 3 The FOV of any microimage. (a) LFM working in real mode; (b) LFM working in virtual mode.
Fig. 4
Fig. 4 Scheme for the calculation of the size of the defocused light spot.
Fig. 5
Fig. 5 Effective resolution ratio corresponding to the host microscope and the LFM. The position z=0 is at the optimal focus plane a=2.25 mm.
Fig. 6
Fig. 6 The extended working range of the LFM with multifocal LC-MLA.
Fig. 7
Fig. 7 Effective resolution ratio (ERR) and working range of the LFM (a) with the fixed MLA and (b) with the multifocal LC-MLA. The MLA plane is set at a=0. The symbol a is the depth from the intermediate image plane to the MLA plane.
Fig. 8
Fig. 8 (a) Section view and (b) hexagonal electrode pattern of the HiR LC-MLA.
Fig. 9
Fig. 9 R-C circuit model of an LC microlens with the HiR layer.
Fig. 10
Fig. 10 Electric field distribution and LC molecule orientation of the (a) conventional fringe-field-controlled LC lens without the HiR layer and (b) HiR LC lens.
Fig. 11
Fig. 11 Interference patterns of the (a) conventional fringe-field-controlled LC-MLA and (b) HiR LC-MLA.
Fig. 12
Fig. 12 Interference patterns (IPs) and point spread functions (PSFs) of the HiR LC-MLA with different focal lengths. Microlens aperture size: ϕ ML =350 μm; LC cell gap: d LC =60 μm.
Fig. 13
Fig. 13 Focal length of the HiR LC-MLA with different driving frequencies. Microlens aperture size: ϕ ML =350 μm; LC cell gap: d LC =60 μm; driving voltage: V=2.6 V rms .
Fig. 14
Fig. 14 Intermediate image placed in the (a) real image space and (b) virtual image space of LC-MLA. The thickness and numerical aperture of the LC-MLA in real mode are larger than those in virtual mode.
Fig. 15
Fig. 15 Raw light field image with f ML =3.5 mm. The partial enlarged views show that (a) the root ( a=6.0 mm) of the wing is out-of-focus, and (b) the tip ( a=1.4 mm ) of the wing is in-focus.
Fig. 16
Fig. 16 Rendered images of the LFM with (a) fixed focal length MLA and (b) multifocal HiR LC-MLA that refocuses at different depth planes.
Fig. 17
Fig. 17 Effective resolution ratio and total working range of the light field microscope with the tunable-focus HiR LC-MLA, which covers from a=1 mm to a=7.99 mm in the intermediate space.

Tables (1)

Tables Icon

Table 1 HiR LC-MLA with a large aperture size, high N A ML , and fast response time.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

( x θ )=( f ob / f L 0 0 f L / f ob )( x' θ' )=( γ 0 0 M )( x' θ' ).
1 a + 1 g = 1 f ML ,
ρ''=max{ δ, s λ }.
s( z )= ϕ ML | g f ML g az' 1 |= ϕ ML | g f ML g a M 2 z 1 |,
ρ''( z )=max{ δ, s λ ,s( z ) }.
ρ'( z )= ρ'' | M ML | = | a M 2 z | g ρ'',
ρ( z )= ρ'( z ) | M | = f ob | a M 2 z | f L g ρ''( z ).
ρ ' hst ( z )=max{ δ, 0.5λM NA ,2NA| zM | },
ERR( z )= ρ ' hst ( 0 ) ρ'( z ) .
ER R hst ( z )= ρ ' hst ( 0 ) ρ ' hst ( z ) .
ER R max = δ ϕ ML λ| a | + δ ϕ ML ,
WR= 1 M 2 2δ| a | ER R min ϕ ML ,
W R total = 1 M 2 ( | a N a 1 |+ δ| a N + a 1 | ϕ ML ER R min ),
f ML = ϕ ML 2 8Δn d LC ,
δ ϕ ML λ| a | + δ ϕ ML ER R min .
1 M 2 2δ| a | ER R min ϕ ML d hst .
λ( ER R min δ ϕ ML ) 2δ + α' 2κ N A ML δ M 2 d hst ER R min + α' 2κ ,
α' 2κ δ M 2 d hst ER R min N A ML α' 2κ λ( ER R min δ ϕ ML ) 2δ .

Metrics