Abstract

Cadmium telluride (CdTe) has been proven to be an attractive mid-infrared (MIR) material with a large refractive index (~2.68 at 4.5 μm) and broadband transparency (~1 to 25 μm). CdTe microwires (MWs) with diameters from a few to about ten micrometers were fabricated by a thermal evaporation process. MIR light was coupled into and guided through individual MWs. Excellent optical waveguiding properties of these MWs are experimentally obtained within MIR spectral range (up to 8.6 μm), with waveguiding losses from 1.3 to 13 dB/cm. Our results show that CdTe MWs can be used as wavelength or subwavelength-width waveguides for MIR microphotonics or circuits.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Mid-infrared silicon photonic waveguides and devices [Invited]

Yi Zou, Swapnajit Chakravarty, Chi-Jui Chung, Xiaochuan Xu, and Ray T. Chen
Photon. Res. 6(4) 254-276 (2018)

Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses

Amir H. Nejadmalayeri, Peter R. Herman, Jonas Burghoff, Matthias Will, Stefan Nolte, and Andreas Tünnermann
Opt. Lett. 30(9) 964-966 (2005)

Mid-infrared nonlinear silicon hybrid waveguide with high figure of merit

Zhihua Tu, Qiang Jin, Xibin Li, and Shiming Gao
J. Opt. Soc. Am. B 35(8) 1772-1779 (2018)

References

  • View by:
  • |
  • |
  • |

  1. T. Baehr-Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express 18(12), 12127–12135 (2010).
    [PubMed]
  2. B. Mizaikoff, “Waveguide-enhanced mid-infrared chem/bio sensors,” Chem. Soc. Rev. 42(22), 8683–8699 (2013).
    [PubMed]
  3. Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 mu m in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
  4. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
  5. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
  6. H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: a perspective,” Nanophotonics 7(2), 393–420 (2018).
  7. M. Nedeljkovic, A. Z. Khokhar, Y. Hu, X. Chen, J. S. Penades, S. Stankovic, H. M. H. Chong, D. J. Thomson, F. Y. Gardes, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic devices and platforms for the mid-infrared,” Opt. Mater. Express 3(9), 1205–1214 (2013).
  8. T. Schädle and B. Mizaikoff, “Mid-Infrared Waveguides: A Perspective,” Appl. Spectrosc. 70(10), 1625–1638 (2016).
    [PubMed]
  9. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008).
    [PubMed]
  10. S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
  11. X. Wang, S. S. Kim, R. Rossbach, M. Jetter, P. Michler, and B. Mizaikoff, “Ultra-sensitive mid-infrared evanescent field sensors combining thin-film strip waveguides with quantum cascade lasers,” Analyst (Lond.) 137(10), 2322–2327 (2012).
    [PubMed]
  12. X. Guo, Y. Ying, and L. Tong, “Photonic Nanowires: From Subwavelength Waveguides to Optical Sensors,” Acc. Chem. Res. 47(2), 656–666 (2014).
    [PubMed]
  13. N. Singh, D. D. Hudson, Y. Yu, C. Grillet, S. D. Jackson, A. Casas-Bedoya, A. Read, P. Atanackovic, S. G. Duvall, S. Palomba, B. Luther-Davies, S. Madden, D. J. Moss, and B. J. Eggleton, “Midinfrared supercontinuum generation from 2 to 6 mu m in a silicon nanowire,” Optica 2(9), 797–802 (2015).
  14. D.-I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
    [PubMed]
  15. Q. Zhang, M. Li, Q. Hao, D. Deng, H. Zhou, H. Zeng, L. Zhan, X. Wu, L. Liu, and L. Xu, “Fabrication and characterization of on-chip optical nonlinear chalcogenide nanofiber devices,” Opt. Lett. 35(22), 3829–3831 (2010).
    [PubMed]
  16. X. Gai, S. Madden, D.-Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W−1m−1 at 1550 nm,” Opt. Express 18(18), 18866–18874 (2010).
    [PubMed]
  17. V. Mittal, A. Aghajani, L. G. Carpenter, J. C. Gates, J. Butement, P. G. R. Smith, J. S. Wilkinson, and G. S. Murugan, “Fabrication and characterization of high-contrast mid-infrared GeTe4 channel waveguides,” Opt. Lett. 40(9), 2016–2019 (2015).
    [PubMed]
  18. V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
    [PubMed]
  19. G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. F. Hu, K. Li, M. Nedeljkovic, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).
  20. P. T. Lin, V. Singh, H.-Y. G. Lin, T. Tiwald, L. C. Kimerling, and A. M. Agarwal, “Low-Stress Silicon Nitride Platform for Mid-Infrared Broadband and Monolithically Integrated Microphotonics,” Adv. Opt. Mater. 1(10), 732–739 (2013).
  21. V. Mittal, N. P. Sessions, J. S. Wilkinson, and G. S. Murugan, “Optical quality ZnSe films and low loss waveguides on Si substrates for mid-infrared applications,” Opt. Mater. Express 7(3), 712–725 (2017).
  22. X. Wang, M. Karlsson, P. Forsberg, M. Sieger, F. Nikolajeff, L. Österlund, and B. Mizaikoff, “Diamonds Are a Spectroscopist’s Best Friend: Thin-Film Diamond Mid-Infrared Waveguides for Advanced Chemical Sensors/Biosensors,” Anal. Chem. 86(16), 8136–8141 (2014).
    [PubMed]
  23. R. Grille, G. Martin, L. Labadie, B. Arezki, P. Kern, T. Lewi, A. Tsun, and A. Katzir, “Single mode mid-infrared silver halide asymmetric flat waveguide obtained from crystal extrusion,” Opt. Express 17(15), 12516–12522 (2009).
    [PubMed]
  24. N. Hô, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, and N. C. Anheier., “Single-mode low-loss chalcogenide glass waveguides for the mid-infrared,” Opt. Lett. 31(12), 1860–1862 (2006).
    [PubMed]
  25. S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102(12), 121104 (2013).
  26. M. Schall, H. Helm, and S. R. Keiding, “Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy,” Int. Infrared Millimeter Waves 20(4), 595–604 (1999).
  27. M. Grätzel, “Recent Advances in Sensitized Mesoscopic Solar Cells,” Acc. Chem. Res. 42(11), 1788–1798 (2009).
    [PubMed]
  28. J. E. Kiefer and A. Yariv, “Electro-optic Characteristics of CdTe at 3.39 and 10.6 μm,” Appl. Phys. Lett. 15(1), 26–27 (1969).
  29. N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmuller, and H. Weller, “Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes,” J. Phys. Chem. B 106(29), 7177–7185 (2002).
  30. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14(9), 2268–2294 (1997).
  31. M. Cherchi, A. Taormina, A. C. Busacca, R. L. Oliveri, S. Bivona, A. C. Cino, S. Stivala, S. R. Sanseverino, and C. Leone, “Exploiting the Optical Quadratic Nonlinearity of Zinc-Blende Semiconductors for Guided-Wave Terahertz Generation: A Material Comparison,” IEEE J. Quantum Electron. 46(3), 368–376 (2010).
  32. J. Zhang, A. A. Lutich, A. S. Susha, A. L. Rogach, F. Jaeckel, and J. Feldmann, “Single-mode waveguiding in bundles of self-assembled semiconductor nanowires,” Appl. Phys. Lett. 97(22), 221915 (2010).
  33. C. Xin, S. Yu, Q. Bao, X. Wu, B. Chen, Y. Wang, Y. Xu, Z. Yang, and L. Tong, “Single CdTe Nanowire Optical Correlator for Femtojoule Pulses,” Nano Lett. 16(8), 4807–4810 (2016).
    [PubMed]
  34. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  35. L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared,” Nanophotonics 3(4–5), 247–268 (2014).
  36. R. A. Soref and H. W. Moos, “Optical Second-harmonic Generation in ZnS-CdS+CdS-CdSe Alloys,” J. Appl. Phys. 35(7), 2152 (1964).
  37. H. P. Wagner, M. Kuhnelt, W. Langbein, and J. M. Hvam, “Dispersion of the second-order nonlinear susceptibility in ZnTe, ZnSe, and ZnS,” Phys. Rev. B 58(16), 10494–10501 (1998).
  38. S. Tatsuura, T. Matsubara, H. Mitsu, Y. Sato, I. Iwasa, M. Q. Tian, and M. Furuki, “Cadmium telluride bulk crystal as an ultrafast nonlinear optical switch,” Appl. Phys. Lett. 87(25), 251110 (2005).
  39. A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1–3), 1–12 (2003).
  40. A. A. Said, M. Sheikbahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W. Vanstryland, “Determination of Bound-electronic and Free-carrier Nonlinearities in ZnSe, GaAs, CdTe, and ZnTe,” J. Opt. Soc. Am. B 9(3), 405–414 (1992).
  41. L. Huang, S. Lu, P. Chang, K. Banerjee, R. Hellwarth, and J. G. Lu, “Structural and optical verification of residual strain effect in single crystalline CdTe nanowires,” Nano Res. 7(2), 228–235 (2014).
  42. F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial Bandgap Engineering along Single Alloy Nanowires,” J. Am. Chem. Soc. 133(7), 2037–2039 (2011).
    [PubMed]
  43. X. Wu and L. Tong, “Optical microfibers and nanofibers,” Nanophotonics 2(5–6), 407–428 (2013).
  44. K. Huang, S. Yang, and L. Tong, “Modeling of evanescent coupling between two parallel optical nanowires,” Appl. Opt. 46(9), 1429–1434 (2007).
    [PubMed]
  45. B. Chen, H. Wu, C. Xin, D. Dai, and L. Tong, “Flexible integration of free-standing nanowires into silicon photonics,” Nat. Commun. 8(1), 20 (2017).
    [PubMed]
  46. J. Yao, H. Yan, and C. M. Lieber, “A nanoscale combing technique for the large-scale assembly of highly aligned nanowires,” Nat. Nanotechnol. 8(5), 329–335 (2013).
    [PubMed]
  47. M. Schvartzman, D. Tsivion, D. Mahalu, O. Raslin, and E. Joselevich, “Self-integration of nanowires into circuits via guided growth,” Proc. Natl. Acad. Sci. U.S.A. 110(38), 15195–15200 (2013).
    [PubMed]
  48. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
    [PubMed]
  49. B. E. A. Saleh and M. C. Teich, Fundamental of Photonics (John Wiley & Sons, 1991).
  50. M. Sieger and B. Mizaikoff, “Toward On-Chip Mid-Infrared Sensors,” Anal. Chem. 88(11), 5562–5573 (2016).
    [PubMed]
  51. R. R. Gattass, R. Thapa, F. H. Kung, L. E. Busse, L. B. Shaw, and J. S. Sanghera, “Review of infrared fiber-based components,” Appl. Opt. 54(31), F25–F34 (2015).
    [PubMed]
  52. Y. Chen, Z. Ma, Q. Yang, and L. M. Tong, “Compact optical short-pass filters based on microfibers,” Opt. Lett. 33(21), 2565–2567 (2008).
    [PubMed]
  53. D. J. Sirbuly, M. Law, H. Yan, and P. Yang, “Semiconductor nanowires for subwavelength photonics integration,” J. Phys. Chem. B 109(32), 15190–15213 (2005).
    [PubMed]
  54. R. Yan, P. Pausauskie, J. Huang, and P. Yang, “Direct photonic-plasmonic coupling and routing in single nanowires,” Proc. Natl. Acad. Sci. U.S.A. 106(50), 21045–21050 (2009).
    [PubMed]
  55. J. Pyo, J. T. Kim, J. Yoo, and J. H. Je, “Light propagation in conjugated polymer nanowires decoupled from a substrate,” Nanoscale 6(11), 5620–5623 (2014).
    [PubMed]

2018 (1)

H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: a perspective,” Nanophotonics 7(2), 393–420 (2018).

2017 (3)

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 mu m in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).

B. Chen, H. Wu, C. Xin, D. Dai, and L. Tong, “Flexible integration of free-standing nanowires into silicon photonics,” Nat. Commun. 8(1), 20 (2017).
[PubMed]

V. Mittal, N. P. Sessions, J. S. Wilkinson, and G. S. Murugan, “Optical quality ZnSe films and low loss waveguides on Si substrates for mid-infrared applications,” Opt. Mater. Express 7(3), 712–725 (2017).

2016 (3)

T. Schädle and B. Mizaikoff, “Mid-Infrared Waveguides: A Perspective,” Appl. Spectrosc. 70(10), 1625–1638 (2016).
[PubMed]

M. Sieger and B. Mizaikoff, “Toward On-Chip Mid-Infrared Sensors,” Anal. Chem. 88(11), 5562–5573 (2016).
[PubMed]

C. Xin, S. Yu, Q. Bao, X. Wu, B. Chen, Y. Wang, Y. Xu, Z. Yang, and L. Tong, “Single CdTe Nanowire Optical Correlator for Femtojoule Pulses,” Nano Lett. 16(8), 4807–4810 (2016).
[PubMed]

2015 (4)

2014 (6)

J. Pyo, J. T. Kim, J. Yoo, and J. H. Je, “Light propagation in conjugated polymer nanowires decoupled from a substrate,” Nanoscale 6(11), 5620–5623 (2014).
[PubMed]

X. Wang, M. Karlsson, P. Forsberg, M. Sieger, F. Nikolajeff, L. Österlund, and B. Mizaikoff, “Diamonds Are a Spectroscopist’s Best Friend: Thin-Film Diamond Mid-Infrared Waveguides for Advanced Chemical Sensors/Biosensors,” Anal. Chem. 86(16), 8136–8141 (2014).
[PubMed]

X. Guo, Y. Ying, and L. Tong, “Photonic Nanowires: From Subwavelength Waveguides to Optical Sensors,” Acc. Chem. Res. 47(2), 656–666 (2014).
[PubMed]

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
[PubMed]

L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared,” Nanophotonics 3(4–5), 247–268 (2014).

L. Huang, S. Lu, P. Chang, K. Banerjee, R. Hellwarth, and J. G. Lu, “Structural and optical verification of residual strain effect in single crystalline CdTe nanowires,” Nano Res. 7(2), 228–235 (2014).

2013 (8)

X. Wu and L. Tong, “Optical microfibers and nanofibers,” Nanophotonics 2(5–6), 407–428 (2013).

J. Yao, H. Yan, and C. M. Lieber, “A nanoscale combing technique for the large-scale assembly of highly aligned nanowires,” Nat. Nanotechnol. 8(5), 329–335 (2013).
[PubMed]

M. Schvartzman, D. Tsivion, D. Mahalu, O. Raslin, and E. Joselevich, “Self-integration of nanowires into circuits via guided growth,” Proc. Natl. Acad. Sci. U.S.A. 110(38), 15195–15200 (2013).
[PubMed]

B. Mizaikoff, “Waveguide-enhanced mid-infrared chem/bio sensors,” Chem. Soc. Rev. 42(22), 8683–8699 (2013).
[PubMed]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102(12), 121104 (2013).

P. T. Lin, V. Singh, H.-Y. G. Lin, T. Tiwald, L. C. Kimerling, and A. M. Agarwal, “Low-Stress Silicon Nitride Platform for Mid-Infrared Broadband and Monolithically Integrated Microphotonics,” Adv. Opt. Mater. 1(10), 732–739 (2013).

M. Nedeljkovic, A. Z. Khokhar, Y. Hu, X. Chen, J. S. Penades, S. Stankovic, H. M. H. Chong, D. J. Thomson, F. Y. Gardes, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic devices and platforms for the mid-infrared,” Opt. Mater. Express 3(9), 1205–1214 (2013).

2012 (1)

X. Wang, S. S. Kim, R. Rossbach, M. Jetter, P. Michler, and B. Mizaikoff, “Ultra-sensitive mid-infrared evanescent field sensors combining thin-film strip waveguides with quantum cascade lasers,” Analyst (Lond.) 137(10), 2322–2327 (2012).
[PubMed]

2011 (2)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial Bandgap Engineering along Single Alloy Nanowires,” J. Am. Chem. Soc. 133(7), 2037–2039 (2011).
[PubMed]

2010 (6)

M. Cherchi, A. Taormina, A. C. Busacca, R. L. Oliveri, S. Bivona, A. C. Cino, S. Stivala, S. R. Sanseverino, and C. Leone, “Exploiting the Optical Quadratic Nonlinearity of Zinc-Blende Semiconductors for Guided-Wave Terahertz Generation: A Material Comparison,” IEEE J. Quantum Electron. 46(3), 368–376 (2010).

J. Zhang, A. A. Lutich, A. S. Susha, A. L. Rogach, F. Jaeckel, and J. Feldmann, “Single-mode waveguiding in bundles of self-assembled semiconductor nanowires,” Appl. Phys. Lett. 97(22), 221915 (2010).

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).

T. Baehr-Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express 18(12), 12127–12135 (2010).
[PubMed]

X. Gai, S. Madden, D.-Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W−1m−1 at 1550 nm,” Opt. Express 18(18), 18866–18874 (2010).
[PubMed]

Q. Zhang, M. Li, Q. Hao, D. Deng, H. Zhou, H. Zeng, L. Zhan, X. Wu, L. Liu, and L. Xu, “Fabrication and characterization of on-chip optical nonlinear chalcogenide nanofiber devices,” Opt. Lett. 35(22), 3829–3831 (2010).
[PubMed]

2009 (3)

R. Grille, G. Martin, L. Labadie, B. Arezki, P. Kern, T. Lewi, A. Tsun, and A. Katzir, “Single mode mid-infrared silver halide asymmetric flat waveguide obtained from crystal extrusion,” Opt. Express 17(15), 12516–12522 (2009).
[PubMed]

R. Yan, P. Pausauskie, J. Huang, and P. Yang, “Direct photonic-plasmonic coupling and routing in single nanowires,” Proc. Natl. Acad. Sci. U.S.A. 106(50), 21045–21050 (2009).
[PubMed]

M. Grätzel, “Recent Advances in Sensitized Mesoscopic Solar Cells,” Acc. Chem. Res. 42(11), 1788–1798 (2009).
[PubMed]

2008 (3)

2007 (1)

2006 (1)

2005 (3)

S. Tatsuura, T. Matsubara, H. Mitsu, Y. Sato, I. Iwasa, M. Q. Tian, and M. Furuki, “Cadmium telluride bulk crystal as an ultrafast nonlinear optical switch,” Appl. Phys. Lett. 87(25), 251110 (2005).

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[PubMed]

D. J. Sirbuly, M. Law, H. Yan, and P. Yang, “Semiconductor nanowires for subwavelength photonics integration,” J. Phys. Chem. B 109(32), 15190–15213 (2005).
[PubMed]

2003 (1)

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1–3), 1–12 (2003).

2002 (1)

N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmuller, and H. Weller, “Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes,” J. Phys. Chem. B 106(29), 7177–7185 (2002).

1999 (1)

M. Schall, H. Helm, and S. R. Keiding, “Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy,” Int. Infrared Millimeter Waves 20(4), 595–604 (1999).

1998 (1)

H. P. Wagner, M. Kuhnelt, W. Langbein, and J. M. Hvam, “Dispersion of the second-order nonlinear susceptibility in ZnTe, ZnSe, and ZnS,” Phys. Rev. B 58(16), 10494–10501 (1998).

1997 (1)

1992 (1)

1969 (1)

J. E. Kiefer and A. Yariv, “Electro-optic Characteristics of CdTe at 3.39 and 10.6 μm,” Appl. Phys. Lett. 15(1), 26–27 (1969).

1964 (1)

R. A. Soref and H. W. Moos, “Optical Second-harmonic Generation in ZnS-CdS+CdS-CdSe Alloys,” J. Appl. Phys. 35(7), 2152 (1964).

Agarwal, A.

H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: a perspective,” Nanophotonics 7(2), 393–420 (2018).

Agarwal, A. M.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
[PubMed]

L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared,” Nanophotonics 3(4–5), 247–268 (2014).

P. T. Lin, V. Singh, H.-Y. G. Lin, T. Tiwald, L. C. Kimerling, and A. M. Agarwal, “Low-Stress Silicon Nitride Platform for Mid-Infrared Broadband and Monolithically Integrated Microphotonics,” Adv. Opt. Mater. 1(10), 732–739 (2013).

Aghajani, A.

Alic, N.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).

Allen, P. J.

Anheier, N. C.

Arezki, B.

Asher, W.

Atanackovic, P.

Aussenegg, F. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[PubMed]

Baehr-Jones, T.

Banerjee, K.

L. Huang, S. Lu, P. Chang, K. Banerjee, R. Hellwarth, and J. G. Lu, “Structural and optical verification of residual strain effect in single crystalline CdTe nanowires,” Nano Res. 7(2), 228–235 (2014).

Bao, Q.

C. Xin, S. Yu, Q. Bao, X. Wu, B. Chen, Y. Wang, Y. Xu, Z. Yang, and L. Tong, “Single CdTe Nanowire Optical Correlator for Femtojoule Pulses,” Nano Lett. 16(8), 4807–4810 (2016).
[PubMed]

Bivona, S.

M. Cherchi, A. Taormina, A. C. Busacca, R. L. Oliveri, S. Bivona, A. C. Cino, S. Stivala, S. R. Sanseverino, and C. Leone, “Exploiting the Optical Quadratic Nonlinearity of Zinc-Blende Semiconductors for Guided-Wave Terahertz Generation: A Material Comparison,” IEEE J. Quantum Electron. 46(3), 368–376 (2010).

Boggio, J. M. C.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).

Bucio, T. D.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. F. Hu, K. Li, M. Nedeljkovic, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).

Bulla, D.

Busacca, A. C.

M. Cherchi, A. Taormina, A. C. Busacca, R. L. Oliveri, S. Bivona, A. C. Cino, S. Stivala, S. R. Sanseverino, and C. Leone, “Exploiting the Optical Quadratic Nonlinearity of Zinc-Blende Semiconductors for Guided-Wave Terahertz Generation: A Material Comparison,” IEEE J. Quantum Electron. 46(3), 368–376 (2010).

Busse, L. E.

Butement, J.

Carpenter, L. G.

Casas-Bedoya, A.

Chang, P.

L. Huang, S. Lu, P. Chang, K. Banerjee, R. Hellwarth, and J. G. Lu, “Structural and optical verification of residual strain effect in single crystalline CdTe nanowires,” Nano Res. 7(2), 228–235 (2014).

Chen, B.

B. Chen, H. Wu, C. Xin, D. Dai, and L. Tong, “Flexible integration of free-standing nanowires into silicon photonics,” Nat. Commun. 8(1), 20 (2017).
[PubMed]

C. Xin, S. Yu, Q. Bao, X. Wu, B. Chen, Y. Wang, Y. Xu, Z. Yang, and L. Tong, “Single CdTe Nanowire Optical Correlator for Femtojoule Pulses,” Nano Lett. 16(8), 4807–4810 (2016).
[PubMed]

Chen, X.

Chen, Y.

Cherchi, M.

M. Cherchi, A. Taormina, A. C. Busacca, R. L. Oliveri, S. Bivona, A. C. Cino, S. Stivala, S. R. Sanseverino, and C. Leone, “Exploiting the Optical Quadratic Nonlinearity of Zinc-Blende Semiconductors for Guided-Wave Terahertz Generation: A Material Comparison,” IEEE J. Quantum Electron. 46(3), 368–376 (2010).

Chiles, J.

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102(12), 121104 (2013).

Choi, D.-Y.

Chong, H. M. H.

Cino, A. C.

M. Cherchi, A. Taormina, A. C. Busacca, R. L. Oliveri, S. Bivona, A. C. Cino, S. Stivala, S. R. Sanseverino, and C. Leone, “Exploiting the Optical Quadratic Nonlinearity of Zinc-Blende Semiconductors for Guided-Wave Terahertz Generation: A Material Comparison,” IEEE J. Quantum Electron. 46(3), 368–376 (2010).

Dai, D.

B. Chen, H. Wu, C. Xin, D. Dai, and L. Tong, “Flexible integration of free-standing nanowires into silicon photonics,” Nat. Commun. 8(1), 20 (2017).
[PubMed]

Dai, S.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 mu m in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).

Danto, S.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
[PubMed]

Deng, D.

Deng, F.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
[PubMed]

Ditlbacher, H.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[PubMed]

Divliansky, I. B.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).

Duvall, S. G.

Eggleton, B. J.

Elliott, S. R.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1–3), 1–12 (2003).

Eychmuller, A.

N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmuller, and H. Weller, “Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes,” J. Phys. Chem. B 106(29), 7177–7185 (2002).

Fathpour, S.

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102(12), 121104 (2013).

Feldmann, J.

J. Zhang, A. A. Lutich, A. S. Susha, A. L. Rogach, F. Jaeckel, and J. Feldmann, “Single-mode waveguiding in bundles of self-assembled semiconductor nanowires,” Appl. Phys. Lett. 97(22), 221915 (2010).

Forsberg, P.

X. Wang, M. Karlsson, P. Forsberg, M. Sieger, F. Nikolajeff, L. Österlund, and B. Mizaikoff, “Diamonds Are a Spectroscopist’s Best Friend: Thin-Film Diamond Mid-Infrared Waveguides for Advanced Chemical Sensors/Biosensors,” Anal. Chem. 86(16), 8136–8141 (2014).
[PubMed]

Foster, M. A.

Fu, L.

Furuki, M.

S. Tatsuura, T. Matsubara, H. Mitsu, Y. Sato, I. Iwasa, M. Q. Tian, and M. Furuki, “Cadmium telluride bulk crystal as an ultrafast nonlinear optical switch,” Appl. Phys. Lett. 87(25), 251110 (2005).

Gaeta, A. L.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).

M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008).
[PubMed]

Gai, X.

Gaponik, N.

N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmuller, and H. Weller, “Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes,” J. Phys. Chem. B 106(29), 7177–7185 (2002).

Gardes, F. Y.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. F. Hu, K. Li, M. Nedeljkovic, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).

M. Nedeljkovic, A. Z. Khokhar, Y. Hu, X. Chen, J. S. Penades, S. Stankovic, H. M. H. Chong, D. J. Thomson, F. Y. Gardes, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic devices and platforms for the mid-infrared,” Opt. Mater. Express 3(9), 1205–1214 (2013).

Gates, J. C.

Gattass, R. R.

Giammarco, J.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
[PubMed]

Grätzel, M.

M. Grätzel, “Recent Advances in Sensitized Mesoscopic Solar Cells,” Acc. Chem. Res. 42(11), 1788–1798 (2009).
[PubMed]

Grille, R.

Grillet, C.

Gu, F.

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial Bandgap Engineering along Single Alloy Nanowires,” J. Am. Chem. Soc. 133(7), 2037–2039 (2011).
[PubMed]

Gu, T.

H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: a perspective,” Nanophotonics 7(2), 393–420 (2018).

Guo, X.

X. Guo, Y. Ying, and L. Tong, “Photonic Nanowires: From Subwavelength Waveguides to Optical Sensors,” Acc. Chem. Res. 47(2), 656–666 (2014).
[PubMed]

Hagan, D. J.

Hao, Q.

Hellwarth, R.

L. Huang, S. Lu, P. Chang, K. Banerjee, R. Hellwarth, and J. G. Lu, “Structural and optical verification of residual strain effect in single crystalline CdTe nanowires,” Nano Res. 7(2), 228–235 (2014).

Helm, H.

M. Schall, H. Helm, and S. R. Keiding, “Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy,” Int. Infrared Millimeter Waves 20(4), 595–604 (1999).

Hô, N.

Hochberg, M.

Hofer, F.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[PubMed]

Hohenau, A.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[PubMed]

Hoppe, K.

N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmuller, and H. Weller, “Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes,” J. Phys. Chem. B 106(29), 7177–7185 (2002).

Hu, J.

H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: a perspective,” Nanophotonics 7(2), 393–420 (2018).

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
[PubMed]

Hu, Y.

Hu, Y. F.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. F. Hu, K. Li, M. Nedeljkovic, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).

Huang, J.

R. Yan, P. Pausauskie, J. Huang, and P. Yang, “Direct photonic-plasmonic coupling and routing in single nanowires,” Proc. Natl. Acad. Sci. U.S.A. 106(50), 21045–21050 (2009).
[PubMed]

Huang, K.

Huang, L.

L. Huang, S. Lu, P. Chang, K. Banerjee, R. Hellwarth, and J. G. Lu, “Structural and optical verification of residual strain effect in single crystalline CdTe nanowires,” Nano Res. 7(2), 228–235 (2014).

Hudson, D. D.

Hvam, J. M.

H. P. Wagner, M. Kuhnelt, W. Langbein, and J. M. Hvam, “Dispersion of the second-order nonlinear susceptibility in ZnTe, ZnSe, and ZnS,” Phys. Rev. B 58(16), 10494–10501 (1998).

Ilic, R.

Ito, R.

Iwasa, I.

S. Tatsuura, T. Matsubara, H. Mitsu, Y. Sato, I. Iwasa, M. Q. Tian, and M. Furuki, “Cadmium telluride bulk crystal as an ultrafast nonlinear optical switch,” Appl. Phys. Lett. 87(25), 251110 (2005).

Jackson, S. D.

Jaeckel, F.

J. Zhang, A. A. Lutich, A. S. Susha, A. L. Rogach, F. Jaeckel, and J. Feldmann, “Single-mode waveguiding in bundles of self-assembled semiconductor nanowires,” Appl. Phys. Lett. 97(22), 221915 (2010).

Je, J. H.

J. Pyo, J. T. Kim, J. Yoo, and J. H. Je, “Light propagation in conjugated polymer nanowires decoupled from a substrate,” Nanoscale 6(11), 5620–5623 (2014).
[PubMed]

Jetter, M.

X. Wang, S. S. Kim, R. Rossbach, M. Jetter, P. Michler, and B. Mizaikoff, “Ultra-sensitive mid-infrared evanescent field sensors combining thin-film strip waveguides with quantum cascade lasers,” Analyst (Lond.) 137(10), 2322–2327 (2012).
[PubMed]

Joselevich, E.

M. Schvartzman, D. Tsivion, D. Mahalu, O. Raslin, and E. Joselevich, “Self-integration of nanowires into circuits via guided growth,” Proc. Natl. Acad. Sci. U.S.A. 110(38), 15195–15200 (2013).
[PubMed]

Karlsson, M.

X. Wang, M. Karlsson, P. Forsberg, M. Sieger, F. Nikolajeff, L. Österlund, and B. Mizaikoff, “Diamonds Are a Spectroscopist’s Best Friend: Thin-Film Diamond Mid-Infrared Waveguides for Advanced Chemical Sensors/Biosensors,” Anal. Chem. 86(16), 8136–8141 (2014).
[PubMed]

Katzir, A.

Keiding, S. R.

M. Schall, H. Helm, and S. R. Keiding, “Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy,” Int. Infrared Millimeter Waves 20(4), 595–604 (1999).

Kern, P.

Khan, S.

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102(12), 121104 (2013).

Khokhar, A. Z.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. F. Hu, K. Li, M. Nedeljkovic, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).

M. Nedeljkovic, A. Z. Khokhar, Y. Hu, X. Chen, J. S. Penades, S. Stankovic, H. M. H. Chong, D. J. Thomson, F. Y. Gardes, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic devices and platforms for the mid-infrared,” Opt. Mater. Express 3(9), 1205–1214 (2013).

Kiefer, J. E.

J. E. Kiefer and A. Yariv, “Electro-optic Characteristics of CdTe at 3.39 and 10.6 μm,” Appl. Phys. Lett. 15(1), 26–27 (1969).

Kim, J. T.

J. Pyo, J. T. Kim, J. Yoo, and J. H. Je, “Light propagation in conjugated polymer nanowires decoupled from a substrate,” Nanoscale 6(11), 5620–5623 (2014).
[PubMed]

Kim, S. S.

X. Wang, S. S. Kim, R. Rossbach, M. Jetter, P. Michler, and B. Mizaikoff, “Ultra-sensitive mid-infrared evanescent field sensors combining thin-film strip waveguides with quantum cascade lasers,” Analyst (Lond.) 137(10), 2322–2327 (2012).
[PubMed]

Kimerling, L. C.

H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: a perspective,” Nanophotonics 7(2), 393–420 (2018).

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
[PubMed]

L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared,” Nanophotonics 3(4–5), 247–268 (2014).

P. T. Lin, V. Singh, H.-Y. G. Lin, T. Tiwald, L. C. Kimerling, and A. M. Agarwal, “Low-Stress Silicon Nitride Platform for Mid-Infrared Broadband and Monolithically Integrated Microphotonics,” Adv. Opt. Mater. 1(10), 732–739 (2013).

Kitamoto, A.

Kondo, T.

Kornowski, A.

N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmuller, and H. Weller, “Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes,” J. Phys. Chem. B 106(29), 7177–7185 (2002).

Kreibig, U.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[PubMed]

Krenn, J. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[PubMed]

Krishnaswami, K.

Kuhnelt, M.

H. P. Wagner, M. Kuhnelt, W. Langbein, and J. M. Hvam, “Dispersion of the second-order nonlinear susceptibility in ZnTe, ZnSe, and ZnS,” Phys. Rev. B 58(16), 10494–10501 (1998).

Kung, F. H.

Labadie, L.

Lamont, M. R. E.

Langbein, W.

H. P. Wagner, M. Kuhnelt, W. Langbein, and J. M. Hvam, “Dispersion of the second-order nonlinear susceptibility in ZnTe, ZnSe, and ZnS,” Phys. Rev. B 58(16), 10494–10501 (1998).

Law, M.

D. J. Sirbuly, M. Law, H. Yan, and P. Yang, “Semiconductor nanowires for subwavelength photonics integration,” J. Phys. Chem. B 109(32), 15190–15213 (2005).
[PubMed]

Leone, C.

M. Cherchi, A. Taormina, A. C. Busacca, R. L. Oliveri, S. Bivona, A. C. Cino, S. Stivala, S. R. Sanseverino, and C. Leone, “Exploiting the Optical Quadratic Nonlinearity of Zinc-Blende Semiconductors for Guided-Wave Terahertz Generation: A Material Comparison,” IEEE J. Quantum Electron. 46(3), 368–376 (2010).

Lewi, T.

Li, K.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. F. Hu, K. Li, M. Nedeljkovic, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).

Li, L.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
[PubMed]

Li, M.

Lieber, C. M.

J. Yao, H. Yan, and C. M. Lieber, “A nanoscale combing technique for the large-scale assembly of highly aligned nanowires,” Nat. Nanotechnol. 8(5), 329–335 (2013).
[PubMed]

Lin, H.

H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: a perspective,” Nanophotonics 7(2), 393–420 (2018).

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
[PubMed]

Lin, H.-Y. G.

P. T. Lin, V. Singh, H.-Y. G. Lin, T. Tiwald, L. C. Kimerling, and A. M. Agarwal, “Low-Stress Silicon Nitride Platform for Mid-Infrared Broadband and Monolithically Integrated Microphotonics,” Adv. Opt. Mater. 1(10), 732–739 (2013).

Lin, P. T.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
[PubMed]

P. T. Lin, V. Singh, H.-Y. G. Lin, T. Tiwald, L. C. Kimerling, and A. M. Agarwal, “Low-Stress Silicon Nitride Platform for Mid-Infrared Broadband and Monolithically Integrated Microphotonics,” Adv. Opt. Mater. 1(10), 732–739 (2013).

Lipson, M.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).

M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008).
[PubMed]

Littlejohns, C. G.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. F. Hu, K. Li, M. Nedeljkovic, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).

Liu, L.

Liu, Z.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 mu m in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).

Lu, J. G.

L. Huang, S. Lu, P. Chang, K. Banerjee, R. Hellwarth, and J. G. Lu, “Structural and optical verification of residual strain effect in single crystalline CdTe nanowires,” Nano Res. 7(2), 228–235 (2014).

Lu, S.

L. Huang, S. Lu, P. Chang, K. Banerjee, R. Hellwarth, and J. G. Lu, “Structural and optical verification of residual strain effect in single crystalline CdTe nanowires,” Nano Res. 7(2), 228–235 (2014).

Luo, Z.

H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: a perspective,” Nanophotonics 7(2), 393–420 (2018).

Luther-Davies, B.

Lutich, A. A.

J. Zhang, A. A. Lutich, A. S. Susha, A. L. Rogach, F. Jaeckel, and J. Feldmann, “Single-mode waveguiding in bundles of self-assembled semiconductor nanowires,” Appl. Phys. Lett. 97(22), 221915 (2010).

Luzinov, I.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
[PubMed]

Ma, J.

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102(12), 121104 (2013).

Ma, Z.

Madden, S.

Mägi, E. C.

Mahalu, D.

M. Schvartzman, D. Tsivion, D. Mahalu, O. Raslin, and E. Joselevich, “Self-integration of nanowires into circuits via guided growth,” Proc. Natl. Acad. Sci. U.S.A. 110(38), 15195–15200 (2013).
[PubMed]

Martin, G.

Mashanovich, G. Z.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. F. Hu, K. Li, M. Nedeljkovic, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).

M. Nedeljkovic, A. Z. Khokhar, Y. Hu, X. Chen, J. S. Penades, S. Stankovic, H. M. H. Chong, D. J. Thomson, F. Y. Gardes, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic devices and platforms for the mid-infrared,” Opt. Mater. Express 3(9), 1205–1214 (2013).

Matsubara, T.

S. Tatsuura, T. Matsubara, H. Mitsu, Y. Sato, I. Iwasa, M. Q. Tian, and M. Furuki, “Cadmium telluride bulk crystal as an ultrafast nonlinear optical switch,” Appl. Phys. Lett. 87(25), 251110 (2005).

Michel, J.

L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared,” Nanophotonics 3(4–5), 247–268 (2014).

Michler, P.

X. Wang, S. S. Kim, R. Rossbach, M. Jetter, P. Michler, and B. Mizaikoff, “Ultra-sensitive mid-infrared evanescent field sensors combining thin-film strip waveguides with quantum cascade lasers,” Analyst (Lond.) 137(10), 2322–2327 (2012).
[PubMed]

Mitchell, C. J.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. F. Hu, K. Li, M. Nedeljkovic, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).

Mitsu, H.

S. Tatsuura, T. Matsubara, H. Mitsu, Y. Sato, I. Iwasa, M. Q. Tian, and M. Furuki, “Cadmium telluride bulk crystal as an ultrafast nonlinear optical switch,” Appl. Phys. Lett. 87(25), 251110 (2005).

Mittal, V.

Mizaikoff, B.

T. Schädle and B. Mizaikoff, “Mid-Infrared Waveguides: A Perspective,” Appl. Spectrosc. 70(10), 1625–1638 (2016).
[PubMed]

M. Sieger and B. Mizaikoff, “Toward On-Chip Mid-Infrared Sensors,” Anal. Chem. 88(11), 5562–5573 (2016).
[PubMed]

X. Wang, M. Karlsson, P. Forsberg, M. Sieger, F. Nikolajeff, L. Österlund, and B. Mizaikoff, “Diamonds Are a Spectroscopist’s Best Friend: Thin-Film Diamond Mid-Infrared Waveguides for Advanced Chemical Sensors/Biosensors,” Anal. Chem. 86(16), 8136–8141 (2014).
[PubMed]

B. Mizaikoff, “Waveguide-enhanced mid-infrared chem/bio sensors,” Chem. Soc. Rev. 42(22), 8683–8699 (2013).
[PubMed]

X. Wang, S. S. Kim, R. Rossbach, M. Jetter, P. Michler, and B. Mizaikoff, “Ultra-sensitive mid-infrared evanescent field sensors combining thin-film strip waveguides with quantum cascade lasers,” Analyst (Lond.) 137(10), 2322–2327 (2012).
[PubMed]

Mookherjea, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).

Moos, H. W.

R. A. Soref and H. W. Moos, “Optical Second-harmonic Generation in ZnS-CdS+CdS-CdSe Alloys,” J. Appl. Phys. 35(7), 2152 (1964).

Morandotti, R.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).

Moro, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).

Moss, D. J.

Murugan, G. S.

Musgraves, J. D.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
[PubMed]

Myers, T. L.

Nedeljkovic, M.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. F. Hu, K. Li, M. Nedeljkovic, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).

M. Nedeljkovic, A. Z. Khokhar, Y. Hu, X. Chen, J. S. Penades, S. Stankovic, H. M. H. Chong, D. J. Thomson, F. Y. Gardes, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic devices and platforms for the mid-infrared,” Opt. Mater. Express 3(9), 1205–1214 (2013).

Ni, C.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
[PubMed]

Nie, Q.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 mu m in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).

Nikolajeff, F.

X. Wang, M. Karlsson, P. Forsberg, M. Sieger, F. Nikolajeff, L. Österlund, and B. Mizaikoff, “Diamonds Are a Spectroscopist’s Best Friend: Thin-Film Diamond Mid-Infrared Waveguides for Advanced Chemical Sensors/Biosensors,” Anal. Chem. 86(16), 8136–8141 (2014).
[PubMed]

Novak, J.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
[PubMed]

Novak, S.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
[PubMed]

Oliveri, R. L.

M. Cherchi, A. Taormina, A. C. Busacca, R. L. Oliveri, S. Bivona, A. C. Cino, S. Stivala, S. R. Sanseverino, and C. Leone, “Exploiting the Optical Quadratic Nonlinearity of Zinc-Blende Semiconductors for Guided-Wave Terahertz Generation: A Material Comparison,” IEEE J. Quantum Electron. 46(3), 368–376 (2010).

Österlund, L.

X. Wang, M. Karlsson, P. Forsberg, M. Sieger, F. Nikolajeff, L. Österlund, and B. Mizaikoff, “Diamonds Are a Spectroscopist’s Best Friend: Thin-Film Diamond Mid-Infrared Waveguides for Advanced Chemical Sensors/Biosensors,” Anal. Chem. 86(16), 8136–8141 (2014).
[PubMed]

Palomba, S.

Pan, A.

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial Bandgap Engineering along Single Alloy Nanowires,” J. Am. Chem. Soc. 133(7), 2037–2039 (2011).
[PubMed]

Pan, Z.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 mu m in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).

Park, J. S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).

Passaro, V. M. N.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. F. Hu, K. Li, M. Nedeljkovic, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).

Patel, N.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
[PubMed]

Pausauskie, P.

R. Yan, P. Pausauskie, J. Huang, and P. Yang, “Direct photonic-plasmonic coupling and routing in single nanowires,” Proc. Natl. Acad. Sci. U.S.A. 106(50), 21045–21050 (2009).
[PubMed]

Penades, J. S.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. F. Hu, K. Li, M. Nedeljkovic, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).

M. Nedeljkovic, A. Z. Khokhar, Y. Hu, X. Chen, J. S. Penades, S. Stankovic, H. M. H. Chong, D. J. Thomson, F. Y. Gardes, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic devices and platforms for the mid-infrared,” Opt. Mater. Express 3(9), 1205–1214 (2013).

Penkov, B.

Phillips, M. C.

Pyo, J.

J. Pyo, J. T. Kim, J. Yoo, and J. H. Je, “Light propagation in conjugated polymer nanowires decoupled from a substrate,” Nanoscale 6(11), 5620–5623 (2014).
[PubMed]

Qiao, H.

Radic, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).

Raslin, O.

M. Schvartzman, D. Tsivion, D. Mahalu, O. Raslin, and E. Joselevich, “Self-integration of nanowires into circuits via guided growth,” Proc. Natl. Acad. Sci. U.S.A. 110(38), 15195–15200 (2013).
[PubMed]

Read, A.

Reed, G. T.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. F. Hu, K. Li, M. Nedeljkovic, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).

M. Nedeljkovic, A. Z. Khokhar, Y. Hu, X. Chen, J. S. Penades, S. Stankovic, H. M. H. Chong, D. J. Thomson, F. Y. Gardes, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic devices and platforms for the mid-infrared,” Opt. Mater. Express 3(9), 1205–1214 (2013).

Reynolds, S. A.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. F. Hu, K. Li, M. Nedeljkovic, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).

Richardson, K.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
[PubMed]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).

Riley, B. J.

Roelens, M. A. F.

Rogach, A. L.

J. Zhang, A. A. Lutich, A. S. Susha, A. L. Rogach, F. Jaeckel, and J. Feldmann, “Single-mode waveguiding in bundles of self-assembled semiconductor nanowires,” Appl. Phys. Lett. 97(22), 221915 (2010).

N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmuller, and H. Weller, “Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes,” J. Phys. Chem. B 106(29), 7177–7185 (2002).

Rogers, M.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[PubMed]

Rossbach, R.

X. Wang, S. S. Kim, R. Rossbach, M. Jetter, P. Michler, and B. Mizaikoff, “Ultra-sensitive mid-infrared evanescent field sensors combining thin-film strip waveguides with quantum cascade lasers,” Analyst (Lond.) 137(10), 2322–2327 (2012).
[PubMed]

Said, A. A.

Sanghera, J. S.

Sanseverino, S. R.

M. Cherchi, A. Taormina, A. C. Busacca, R. L. Oliveri, S. Bivona, A. C. Cino, S. Stivala, S. R. Sanseverino, and C. Leone, “Exploiting the Optical Quadratic Nonlinearity of Zinc-Blende Semiconductors for Guided-Wave Terahertz Generation: A Material Comparison,” IEEE J. Quantum Electron. 46(3), 368–376 (2010).

Sato, Y.

S. Tatsuura, T. Matsubara, H. Mitsu, Y. Sato, I. Iwasa, M. Q. Tian, and M. Furuki, “Cadmium telluride bulk crystal as an ultrafast nonlinear optical switch,” Appl. Phys. Lett. 87(25), 251110 (2005).

Schädle, T.

Schall, M.

M. Schall, H. Helm, and S. R. Keiding, “Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy,” Int. Infrared Millimeter Waves 20(4), 595–604 (1999).

Schvartzman, M.

M. Schvartzman, D. Tsivion, D. Mahalu, O. Raslin, and E. Joselevich, “Self-integration of nanowires into circuits via guided growth,” Proc. Natl. Acad. Sci. U.S.A. 110(38), 15195–15200 (2013).
[PubMed]

Sessions, N. P.

Shaw, L. B.

Sheikbahae, M.

Shen, X.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 mu m in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).

Shevchenko, E. V.

N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmuller, and H. Weller, “Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes,” J. Phys. Chem. B 106(29), 7177–7185 (2002).

Shirane, M.

Shoji, I.

Sieger, M.

M. Sieger and B. Mizaikoff, “Toward On-Chip Mid-Infrared Sensors,” Anal. Chem. 88(11), 5562–5573 (2016).
[PubMed]

X. Wang, M. Karlsson, P. Forsberg, M. Sieger, F. Nikolajeff, L. Österlund, and B. Mizaikoff, “Diamonds Are a Spectroscopist’s Best Friend: Thin-Film Diamond Mid-Infrared Waveguides for Advanced Chemical Sensors/Biosensors,” Anal. Chem. 86(16), 8136–8141 (2014).
[PubMed]

Singh, N.

Singh, V.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
[PubMed]

P. T. Lin, V. Singh, H.-Y. G. Lin, T. Tiwald, L. C. Kimerling, and A. M. Agarwal, “Low-Stress Silicon Nitride Platform for Mid-Infrared Broadband and Monolithically Integrated Microphotonics,” Adv. Opt. Mater. 1(10), 732–739 (2013).

Sirbuly, D. J.

D. J. Sirbuly, M. Law, H. Yan, and P. Yang, “Semiconductor nanowires for subwavelength photonics integration,” J. Phys. Chem. B 109(32), 15190–15213 (2005).
[PubMed]

Smith, P. G. R.

Soliani, A. P.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
[PubMed]

Soref, R. A.

R. A. Soref and H. W. Moos, “Optical Second-harmonic Generation in ZnS-CdS+CdS-CdSe Alloys,” J. Appl. Phys. 35(7), 2152 (1964).

Spott, A.

Stankovic, S.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. F. Hu, K. Li, M. Nedeljkovic, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).

M. Nedeljkovic, A. Z. Khokhar, Y. Hu, X. Chen, J. S. Penades, S. Stankovic, H. M. H. Chong, D. J. Thomson, F. Y. Gardes, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic devices and platforms for the mid-infrared,” Opt. Mater. Express 3(9), 1205–1214 (2013).

Stivala, S.

M. Cherchi, A. Taormina, A. C. Busacca, R. L. Oliveri, S. Bivona, A. C. Cino, S. Stivala, S. R. Sanseverino, and C. Leone, “Exploiting the Optical Quadratic Nonlinearity of Zinc-Blende Semiconductors for Guided-Wave Terahertz Generation: A Material Comparison,” IEEE J. Quantum Electron. 46(3), 368–376 (2010).

Susha, A. S.

J. Zhang, A. A. Lutich, A. S. Susha, A. L. Rogach, F. Jaeckel, and J. Feldmann, “Single-mode waveguiding in bundles of self-assembled semiconductor nanowires,” Appl. Phys. Lett. 97(22), 221915 (2010).

Talapin, D. V.

N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmuller, and H. Weller, “Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes,” J. Phys. Chem. B 106(29), 7177–7185 (2002).

Taormina, A.

M. Cherchi, A. Taormina, A. C. Busacca, R. L. Oliveri, S. Bivona, A. C. Cino, S. Stivala, S. R. Sanseverino, and C. Leone, “Exploiting the Optical Quadratic Nonlinearity of Zinc-Blende Semiconductors for Guided-Wave Terahertz Generation: A Material Comparison,” IEEE J. Quantum Electron. 46(3), 368–376 (2010).

Tatsuura, S.

S. Tatsuura, T. Matsubara, H. Mitsu, Y. Sato, I. Iwasa, M. Q. Tian, and M. Furuki, “Cadmium telluride bulk crystal as an ultrafast nonlinear optical switch,” Appl. Phys. Lett. 87(25), 251110 (2005).

Thapa, R.

Thomson, D. J.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. F. Hu, K. Li, M. Nedeljkovic, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).

M. Nedeljkovic, A. Z. Khokhar, Y. Hu, X. Chen, J. S. Penades, S. Stankovic, H. M. H. Chong, D. J. Thomson, F. Y. Gardes, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic devices and platforms for the mid-infrared,” Opt. Mater. Express 3(9), 1205–1214 (2013).

Tian, M. Q.

S. Tatsuura, T. Matsubara, H. Mitsu, Y. Sato, I. Iwasa, M. Q. Tian, and M. Furuki, “Cadmium telluride bulk crystal as an ultrafast nonlinear optical switch,” Appl. Phys. Lett. 87(25), 251110 (2005).

Tiwald, T.

P. T. Lin, V. Singh, H.-Y. G. Lin, T. Tiwald, L. C. Kimerling, and A. M. Agarwal, “Low-Stress Silicon Nitride Platform for Mid-Infrared Broadband and Monolithically Integrated Microphotonics,” Adv. Opt. Mater. 1(10), 732–739 (2013).

Tong, L.

B. Chen, H. Wu, C. Xin, D. Dai, and L. Tong, “Flexible integration of free-standing nanowires into silicon photonics,” Nat. Commun. 8(1), 20 (2017).
[PubMed]

C. Xin, S. Yu, Q. Bao, X. Wu, B. Chen, Y. Wang, Y. Xu, Z. Yang, and L. Tong, “Single CdTe Nanowire Optical Correlator for Femtojoule Pulses,” Nano Lett. 16(8), 4807–4810 (2016).
[PubMed]

X. Guo, Y. Ying, and L. Tong, “Photonic Nanowires: From Subwavelength Waveguides to Optical Sensors,” Acc. Chem. Res. 47(2), 656–666 (2014).
[PubMed]

X. Wu and L. Tong, “Optical microfibers and nanofibers,” Nanophotonics 2(5–6), 407–428 (2013).

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial Bandgap Engineering along Single Alloy Nanowires,” J. Am. Chem. Soc. 133(7), 2037–2039 (2011).
[PubMed]

K. Huang, S. Yang, and L. Tong, “Modeling of evanescent coupling between two parallel optical nanowires,” Appl. Opt. 46(9), 1429–1434 (2007).
[PubMed]

Tong, L. M.

Topley, R.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. F. Hu, K. Li, M. Nedeljkovic, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).

Troia, B.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. F. Hu, K. Li, M. Nedeljkovic, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).

Tsivion, D.

M. Schvartzman, D. Tsivion, D. Mahalu, O. Raslin, and E. Joselevich, “Self-integration of nanowires into circuits via guided growth,” Proc. Natl. Acad. Sci. U.S.A. 110(38), 15195–15200 (2013).
[PubMed]

Tsun, A.

Turner, A. C.

Vanstryland, E. W.

Wachtel, P.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
[PubMed]

Wada, K.

H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: a perspective,” Nanophotonics 7(2), 393–420 (2018).

Wagner, D.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[PubMed]

Wagner, H. P.

H. P. Wagner, M. Kuhnelt, W. Langbein, and J. M. Hvam, “Dispersion of the second-order nonlinear susceptibility in ZnTe, ZnSe, and ZnS,” Phys. Rev. B 58(16), 10494–10501 (1998).

Wang, J.

Wang, P.

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial Bandgap Engineering along Single Alloy Nanowires,” J. Am. Chem. Soc. 133(7), 2037–2039 (2011).
[PubMed]

Wang, R.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 mu m in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).

Wang, X.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 mu m in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).

X. Wang, M. Karlsson, P. Forsberg, M. Sieger, F. Nikolajeff, L. Österlund, and B. Mizaikoff, “Diamonds Are a Spectroscopist’s Best Friend: Thin-Film Diamond Mid-Infrared Waveguides for Advanced Chemical Sensors/Biosensors,” Anal. Chem. 86(16), 8136–8141 (2014).
[PubMed]

X. Wang, S. S. Kim, R. Rossbach, M. Jetter, P. Michler, and B. Mizaikoff, “Ultra-sensitive mid-infrared evanescent field sensors combining thin-film strip waveguides with quantum cascade lasers,” Analyst (Lond.) 137(10), 2322–2327 (2012).
[PubMed]

Wang, Y.

C. Xin, S. Yu, Q. Bao, X. Wu, B. Chen, Y. Wang, Y. Xu, Z. Yang, and L. Tong, “Single CdTe Nanowire Optical Correlator for Femtojoule Pulses,” Nano Lett. 16(8), 4807–4810 (2016).
[PubMed]

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. F. Hu, K. Li, M. Nedeljkovic, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).

Wei, T. H.

Weller, H.

N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmuller, and H. Weller, “Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes,” J. Phys. Chem. B 106(29), 7177–7185 (2002).

Wilkinson, J. S.

Wilson, P. R.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. F. Hu, K. Li, M. Nedeljkovic, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).

Wu, B.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 mu m in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).

Wu, H.

B. Chen, H. Wu, C. Xin, D. Dai, and L. Tong, “Flexible integration of free-standing nanowires into silicon photonics,” Nat. Commun. 8(1), 20 (2017).
[PubMed]

Wu, X.

C. Xin, S. Yu, Q. Bao, X. Wu, B. Chen, Y. Wang, Y. Xu, Z. Yang, and L. Tong, “Single CdTe Nanowire Optical Correlator for Femtojoule Pulses,” Nano Lett. 16(8), 4807–4810 (2016).
[PubMed]

X. Wu and L. Tong, “Optical microfibers and nanofibers,” Nanophotonics 2(5–6), 407–428 (2013).

Q. Zhang, M. Li, Q. Hao, D. Deng, H. Zhou, H. Zeng, L. Zhan, X. Wu, L. Liu, and L. Xu, “Fabrication and characterization of on-chip optical nonlinear chalcogenide nanofiber devices,” Opt. Lett. 35(22), 3829–3831 (2010).
[PubMed]

Xin, C.

B. Chen, H. Wu, C. Xin, D. Dai, and L. Tong, “Flexible integration of free-standing nanowires into silicon photonics,” Nat. Commun. 8(1), 20 (2017).
[PubMed]

C. Xin, S. Yu, Q. Bao, X. Wu, B. Chen, Y. Wang, Y. Xu, Z. Yang, and L. Tong, “Single CdTe Nanowire Optical Correlator for Femtojoule Pulses,” Nano Lett. 16(8), 4807–4810 (2016).
[PubMed]

Xu, J.

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial Bandgap Engineering along Single Alloy Nanowires,” J. Am. Chem. Soc. 133(7), 2037–2039 (2011).
[PubMed]

Xu, L.

Xu, Y.

C. Xin, S. Yu, Q. Bao, X. Wu, B. Chen, Y. Wang, Y. Xu, Z. Yang, and L. Tong, “Single CdTe Nanowire Optical Correlator for Femtojoule Pulses,” Nano Lett. 16(8), 4807–4810 (2016).
[PubMed]

Yan, H.

J. Yao, H. Yan, and C. M. Lieber, “A nanoscale combing technique for the large-scale assembly of highly aligned nanowires,” Nat. Nanotechnol. 8(5), 329–335 (2013).
[PubMed]

D. J. Sirbuly, M. Law, H. Yan, and P. Yang, “Semiconductor nanowires for subwavelength photonics integration,” J. Phys. Chem. B 109(32), 15190–15213 (2005).
[PubMed]

Yan, R.

R. Yan, P. Pausauskie, J. Huang, and P. Yang, “Direct photonic-plasmonic coupling and routing in single nanowires,” Proc. Natl. Acad. Sci. U.S.A. 106(50), 21045–21050 (2009).
[PubMed]

Yang, P.

R. Yan, P. Pausauskie, J. Huang, and P. Yang, “Direct photonic-plasmonic coupling and routing in single nanowires,” Proc. Natl. Acad. Sci. U.S.A. 106(50), 21045–21050 (2009).
[PubMed]

D. J. Sirbuly, M. Law, H. Yan, and P. Yang, “Semiconductor nanowires for subwavelength photonics integration,” J. Phys. Chem. B 109(32), 15190–15213 (2005).
[PubMed]

Yang, Q.

Yang, S.

Yang, Z.

C. Xin, S. Yu, Q. Bao, X. Wu, B. Chen, Y. Wang, Y. Xu, Z. Yang, and L. Tong, “Single CdTe Nanowire Optical Correlator for Femtojoule Pulses,” Nano Lett. 16(8), 4807–4810 (2016).
[PubMed]

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial Bandgap Engineering along Single Alloy Nanowires,” J. Am. Chem. Soc. 133(7), 2037–2039 (2011).
[PubMed]

Yao, J.

J. Yao, H. Yan, and C. M. Lieber, “A nanoscale combing technique for the large-scale assembly of highly aligned nanowires,” Nat. Nanotechnol. 8(5), 329–335 (2013).
[PubMed]

Yariv, A.

J. E. Kiefer and A. Yariv, “Electro-optic Characteristics of CdTe at 3.39 and 10.6 μm,” Appl. Phys. Lett. 15(1), 26–27 (1969).

Yeom, D.-I.

Ying, Y.

X. Guo, Y. Ying, and L. Tong, “Photonic Nanowires: From Subwavelength Waveguides to Optical Sensors,” Acc. Chem. Res. 47(2), 656–666 (2014).
[PubMed]

Yoo, J.

J. Pyo, J. T. Kim, J. Yoo, and J. H. Je, “Light propagation in conjugated polymer nanowires decoupled from a substrate,” Nanoscale 6(11), 5620–5623 (2014).
[PubMed]

Young, J.

Yu, H.

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial Bandgap Engineering along Single Alloy Nanowires,” J. Am. Chem. Soc. 133(7), 2037–2039 (2011).
[PubMed]

Yu, S.

C. Xin, S. Yu, Q. Bao, X. Wu, B. Chen, Y. Wang, Y. Xu, Z. Yang, and L. Tong, “Single CdTe Nanowire Optical Correlator for Femtojoule Pulses,” Nano Lett. 16(8), 4807–4810 (2016).
[PubMed]

Yu, Y.

Zakery, A.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1–3), 1–12 (2003).

Zdyrko, B.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
[PubMed]

Zeng, H.

Zhan, L.

Zhang, J.

J. Zhang, A. A. Lutich, A. S. Susha, A. L. Rogach, F. Jaeckel, and J. Feldmann, “Single-mode waveguiding in bundles of self-assembled semiconductor nanowires,” Appl. Phys. Lett. 97(22), 221915 (2010).

Zhang, L.

L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared,” Nanophotonics 3(4–5), 247–268 (2014).

Zhang, P.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 mu m in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).

Zhang, Q.

Zhao, Z.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 mu m in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).

Zhou, H.

Zlatanovic, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).

Zou, Y.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
[PubMed]

Acc. Chem. Res. (2)

X. Guo, Y. Ying, and L. Tong, “Photonic Nanowires: From Subwavelength Waveguides to Optical Sensors,” Acc. Chem. Res. 47(2), 656–666 (2014).
[PubMed]

M. Grätzel, “Recent Advances in Sensitized Mesoscopic Solar Cells,” Acc. Chem. Res. 42(11), 1788–1798 (2009).
[PubMed]

Adv. Opt. Mater. (1)

P. T. Lin, V. Singh, H.-Y. G. Lin, T. Tiwald, L. C. Kimerling, and A. M. Agarwal, “Low-Stress Silicon Nitride Platform for Mid-Infrared Broadband and Monolithically Integrated Microphotonics,” Adv. Opt. Mater. 1(10), 732–739 (2013).

Anal. Chem. (2)

X. Wang, M. Karlsson, P. Forsberg, M. Sieger, F. Nikolajeff, L. Österlund, and B. Mizaikoff, “Diamonds Are a Spectroscopist’s Best Friend: Thin-Film Diamond Mid-Infrared Waveguides for Advanced Chemical Sensors/Biosensors,” Anal. Chem. 86(16), 8136–8141 (2014).
[PubMed]

M. Sieger and B. Mizaikoff, “Toward On-Chip Mid-Infrared Sensors,” Anal. Chem. 88(11), 5562–5573 (2016).
[PubMed]

Analyst (Lond.) (1)

X. Wang, S. S. Kim, R. Rossbach, M. Jetter, P. Michler, and B. Mizaikoff, “Ultra-sensitive mid-infrared evanescent field sensors combining thin-film strip waveguides with quantum cascade lasers,” Analyst (Lond.) 137(10), 2322–2327 (2012).
[PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

S. Tatsuura, T. Matsubara, H. Mitsu, Y. Sato, I. Iwasa, M. Q. Tian, and M. Furuki, “Cadmium telluride bulk crystal as an ultrafast nonlinear optical switch,” Appl. Phys. Lett. 87(25), 251110 (2005).

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102(12), 121104 (2013).

J. E. Kiefer and A. Yariv, “Electro-optic Characteristics of CdTe at 3.39 and 10.6 μm,” Appl. Phys. Lett. 15(1), 26–27 (1969).

J. Zhang, A. A. Lutich, A. S. Susha, A. L. Rogach, F. Jaeckel, and J. Feldmann, “Single-mode waveguiding in bundles of self-assembled semiconductor nanowires,” Appl. Phys. Lett. 97(22), 221915 (2010).

Appl. Spectrosc. (1)

Chem. Soc. Rev. (1)

B. Mizaikoff, “Waveguide-enhanced mid-infrared chem/bio sensors,” Chem. Soc. Rev. 42(22), 8683–8699 (2013).
[PubMed]

IEEE J. Quantum Electron. (1)

M. Cherchi, A. Taormina, A. C. Busacca, R. L. Oliveri, S. Bivona, A. C. Cino, S. Stivala, S. R. Sanseverino, and C. Leone, “Exploiting the Optical Quadratic Nonlinearity of Zinc-Blende Semiconductors for Guided-Wave Terahertz Generation: A Material Comparison,” IEEE J. Quantum Electron. 46(3), 368–376 (2010).

IEEE J. Sel. Top. Quantum Electron. (1)

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. F. Hu, K. Li, M. Nedeljkovic, J. S. Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, Y. Wang, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. D. Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21(4), 8200112 (2015).

Int. Infrared Millimeter Waves (1)

M. Schall, H. Helm, and S. R. Keiding, “Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy,” Int. Infrared Millimeter Waves 20(4), 595–604 (1999).

J. Am. Chem. Soc. (1)

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial Bandgap Engineering along Single Alloy Nanowires,” J. Am. Chem. Soc. 133(7), 2037–2039 (2011).
[PubMed]

J. Appl. Phys. (1)

R. A. Soref and H. W. Moos, “Optical Second-harmonic Generation in ZnS-CdS+CdS-CdSe Alloys,” J. Appl. Phys. 35(7), 2152 (1964).

J. Non-Cryst. Solids (1)

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1–3), 1–12 (2003).

J. Opt. Soc. Am. B (2)

J. Phys. Chem. B (2)

N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmuller, and H. Weller, “Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes,” J. Phys. Chem. B 106(29), 7177–7185 (2002).

D. J. Sirbuly, M. Law, H. Yan, and P. Yang, “Semiconductor nanowires for subwavelength photonics integration,” J. Phys. Chem. B 109(32), 15190–15213 (2005).
[PubMed]

Laser Photonics Rev. (1)

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 mu m in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).

Nano Lett. (1)

C. Xin, S. Yu, Q. Bao, X. Wu, B. Chen, Y. Wang, Y. Xu, Z. Yang, and L. Tong, “Single CdTe Nanowire Optical Correlator for Femtojoule Pulses,” Nano Lett. 16(8), 4807–4810 (2016).
[PubMed]

Nano Res. (1)

L. Huang, S. Lu, P. Chang, K. Banerjee, R. Hellwarth, and J. G. Lu, “Structural and optical verification of residual strain effect in single crystalline CdTe nanowires,” Nano Res. 7(2), 228–235 (2014).

Nanophotonics (3)

X. Wu and L. Tong, “Optical microfibers and nanofibers,” Nanophotonics 2(5–6), 407–428 (2013).

L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared,” Nanophotonics 3(4–5), 247–268 (2014).

H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: a perspective,” Nanophotonics 7(2), 393–420 (2018).

Nanoscale (1)

J. Pyo, J. T. Kim, J. Yoo, and J. H. Je, “Light propagation in conjugated polymer nanowires decoupled from a substrate,” Nanoscale 6(11), 5620–5623 (2014).
[PubMed]

Nat. Commun. (1)

B. Chen, H. Wu, C. Xin, D. Dai, and L. Tong, “Flexible integration of free-standing nanowires into silicon photonics,” Nat. Commun. 8(1), 20 (2017).
[PubMed]

Nat. Nanotechnol. (1)

J. Yao, H. Yan, and C. M. Lieber, “A nanoscale combing technique for the large-scale assembly of highly aligned nanowires,” Nat. Nanotechnol. 8(5), 329–335 (2013).
[PubMed]

Nat. Photonics (3)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).

Opt. Express (4)

Opt. Lett. (5)

Opt. Mater. Express (2)

Optica (1)

Phys. Rev. B (1)

H. P. Wagner, M. Kuhnelt, W. Langbein, and J. M. Hvam, “Dispersion of the second-order nonlinear susceptibility in ZnTe, ZnSe, and ZnS,” Phys. Rev. B 58(16), 10494–10501 (1998).

Phys. Rev. Lett. (1)

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

R. Yan, P. Pausauskie, J. Huang, and P. Yang, “Direct photonic-plasmonic coupling and routing in single nanowires,” Proc. Natl. Acad. Sci. U.S.A. 106(50), 21045–21050 (2009).
[PubMed]

M. Schvartzman, D. Tsivion, D. Mahalu, O. Raslin, and E. Joselevich, “Self-integration of nanowires into circuits via guided growth,” Proc. Natl. Acad. Sci. U.S.A. 110(38), 15195–15200 (2013).
[PubMed]

Sci. Technol. Adv. Mater. (1)

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
[PubMed]

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

B. E. A. Saleh and M. C. Teich, Fundamental of Photonics (John Wiley & Sons, 1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Scanning electron microscope image of a CdTe MW (scale bar, 10 μm). (b) CdTe MWs fabricated by the evaporation method (scale bar, 100 μm). (c) X-ray diffraction characterization of the CdTe MWs. Insets are high-resolution transmission electron microscope image (scar bar, 5 nm) and electron diffraction pattern, which reveal a [001] growth direction along the axis of the MWs (indicated by the white arrows).
Fig. 2
Fig. 2 (a) Schematic diagram of transmission spectra measurement. (b) Normalized transmission spectra of CdTe MWs. The insets show the profiles of fundamental modes and corresponding modal areas at wavelength of 1.31 μm, 4.5 μm and 8.5 μm respectively. In the simulation, the MWs with hexagonal cross-section are put on MgF2 substrate. The side-to-side diameters of MWs are 1.5 μm, 1.5 μm and 3.5 μm respectively, which agreed with the actual experiment sets.
Fig. 3
Fig. 3 Schematic diagram of waveguiding losses measurement. Inset is the bright-field optical microscope image of a CdTe MW FP cavity on MgF2 substrate (scar bar, 100 μm).
Fig. 4
Fig. 4 (a) Optical microscope images of MW endfaces fabricated by FIB milling (scar bar, 5 μm). (b) SEM image of the endface shown in (a) (scar bar, 5 μm). (c) Resonance spectrum of single MW FP cavity with length of 450 μm. The upper red points give the FWHM of Lorenz fitting profiles of each resonance peak respectively. Inset show the Lorenz fitting profile of one peak. The under is optical microscope image of the cavity (scar bar, 100 μm). (d) Waveguiding losses of several MWs at different wavelengths. The sizes of MWs are defined by modal area of fundamental mode.

Tables (1)

Tables Icon

Table 1 Optical Constants of Several Typical MIR Materials

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Q=2π ν 0 τ R = ν 0 Δν ,
δ= 2π n eff Δν c .
R 2 e 2αL = e 2δL ,
R 2 e 2αL = e 4π n eff ΔνL c .
R 2 e 2α L 1 = e 4π n eff Δ ν 1 L 1 c ,
R 2 e 2α L 2 =e . 4π n eff Δ ν 2 L 2 c
α= 2π n eff ( Δ ν 1 L 1 Δ ν 2 L 2 ) c( L 1 L 2 ) .

Metrics