Abstract

We experimentally demonstrate a novel design of a cascaded plasmonic superlens, which can directly image subwavelength objects with magnification in the far field at visible wavelengths. The lens consists of two cascaded plasmonic slabs. One is a plasmonic metasurface used for near field coupling, and the other one is a planar plasmonic lens used for phase compensation and thus image magnification. First, we show numerical calculations about the performance of the lens. Based on these results we then describe the fabrication of both sub-structures and their combination. Finally, we demonstrate imaging performance of the lens for a subwavelength double-slit object as an example. The fabricated superlens exhibits a lateral resolution down to 180 nm at a wavelength of 640 nm, as predicted by numerical calculations. This might be the first experimental demonstration in which a planar plasmonic lens is employed for near-field image magnification. Our results could open a way for designing and fabricating novel miniaturized plasmonic superlenses in the future.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Cascaded DBR plasmonic cavity lens for far-field subwavelength imaging at a visible wavelength

Huiyu Li, Liwei Fu, Karsten Frenner, and Wolfgang Osten
Opt. Express 26(15) 19574-19582 (2018)

Design of high-transmission metallic meander stacks with different grating periodicities for subwavelength-imaging applications

Philipp Schau, Karsten Frenner, Liwei Fu, Heinz Schweizer, Harald Giessen, and Wolfgang Osten
Opt. Express 19(4) 3627-3636 (2011)

Quasi-3D plasmonic coupling scheme for near-field optical lithography and imaging

Yuan Wang, Zhidong Du, Yongshik Park, Chen Chen, Xiang Zhang, and Liang Pan
Opt. Lett. 40(16) 3918-3921 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Jost and R. Heintzmann, “Superresolution multidimensional imaging with structured illumination microscopy,” Annu. Rev. Mater. Res. 43(1), 261–282 (2013).
  2. X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
    [PubMed]
  3. K. A. Willets, A. J. Wilson, V. Sundaresan, and P. B. Joshi, “Super-resolution imaging and plasmonics,” Chem. Rev. 117(11), 7538–7582 (2017).
    [PubMed]
  4. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251(5000), 1468–1470 (1991).
    [PubMed]
  5. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [PubMed]
  6. R. Heintzmann and C. G. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE 3569, 185–196 (1999).
  7. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(Pt 2), 82–87 (2000).
    [PubMed]
  8. F. Hu, M. G. Somekh, D. J. Albutt, K. Webb, E. Moradi, and C. W. See, “Sub-100 nm resolution microscopy based on proximity projection grating scheme,” Sci. Rep. 5, 8589 (2015).
    [PubMed]
  9. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [PubMed]
  10. J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1(9), 143 (2010).
    [PubMed]
  11. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
    [PubMed]
  12. K. Yan, L. Liu, N. Yao, K. Liu, W. Du, W. Zhang, W. Yan, C. Wang, and X. Luo, “Far-field super-resolution imaging of nano-transparent objects by hyperlens with plasmonic resonant cavity,” Plasmonics 11(2), 475–481 (2016).
  13. Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
    [PubMed]
  14. C. Ma and Z. Liu, “A super resolution metalens with phase compensation mechanism,” Appl. Phys. Lett. 96(18), 183103 (2010).
    [PubMed]
  15. L. Fu, P. Schau, K. Frenner, and W. Osten, “A cascaded plasmonic superlens for near field imaging with magnification,” Proc. SPIE 9526, 95260Z (2015).
  16. H. Li, L. Fu, K. Frenner, and W. Osten, “Nanofabrication results of a novel cascaded plasmonic superlens: lessons learned,” Proc. SPIE 10330, 103300Y (2017).
  17. P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4(1), 139–152 (2017).
  18. M. Pu, X. Ma, X. Li, Y. Guo, and X. Luo, “Merging plasmonics and metamaterials by two-dimensional subwavelength structures,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(18), 4361–4378 (2017).
  19. M. Totzeck, “Numerical simulation of high-NA quantitative polarization microscopy and corresponding near-fields,” Optik Int. J. Light Electron Opt. 112(9), 399–406 (2001).
  20. L. Fu, P. Schau, K. Frenner, W. Osten, T. Weiss, H. Schweizer, and H. Giessen, “Mode coupling and interaction in a plasmonic microcavity with resonant mirrors,” Phys. Rev. B 84(23), 235402 (2011).
  21. P. Schau, K. Frenner, L. Fu, H. Schweizer, H. Giessen, and W. Osten, “Design of high-transmission metallic meander stacks with different grating periodicities for subwavelength-imaging applications,” Opt. Express 19(4), 3627–3636 (2011).
    [PubMed]
  22. P. Schau, K. Frenner, L. Fu, W. Osten, H. Schweizer, and H. Giessen, “Sub-wavelength imaging using stacks of metallic meander structures with different periodicities,” Proc. SPIE 8093, 80931K (2011).
  23. H. Schweizer, L. Fu, M. Hentschel, T. Wess, C. Bauer, P. Schau, K. Frenner, W. Osten, and H. Giessen, “Resonant multimeander-metasurfaces: A model system for superlenses and communication devices,” Phys. Status Solidi, B Basic Res. 249(7), 1415–1421 (2012).
  24. H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
    [PubMed]
  25. L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
    [PubMed]
  26. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
  27. W. Chen, M. D. Thoreson, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer,” Opt. Express 18(5), 5124–5134 (2010).
    [PubMed]
  28. L. Fu, H. Schweizer, T. Weiss, and H. Giessen, “Optical properties of metallic meanders,” J. Opt. Soc. Am. B 26(12), B111–B119 (2009).
  29. L. E. Helseth, “The almost perfect lens and focusing of evanescent waves,” Opt. Commun. 281(8), 1981–1985 (2008).
  30. L. Fu, A. Berrier, H. Li, P. Schau, K. Frenner, M. Dressel, and W. Osten, “Depolarization of a randomly distributed plasmonic meander metasurface characterized by Mueller matrix spectroscopic ellipsometry,” Opt. Express 24(24), 28056–28064 (2016).
    [PubMed]
  31. C. J. Zapata-Rodríguez, D. Pastor, V. Camps, M. T. Caballero, and J. J. Miret, “Three-dimensional point spread function of multilayered flat lenses and its application to extreme subwavelength resolution,” J. Nanophotonics 5(1), 51807 (2011).
  32. Y. Zhu, W. Yuan, Y. Yu, and P. Wang, “Robustly efficient superfocusing of immersion plasmonic lenses based on coupled nanoslits,” Plasmonics 11(6), 1543–1548 (2016).
  33. S. Saxena, R. P. Chaudhary, A. Singh, S. Awasthi, and S. Shukla, “Plasmonic micro lens for extraordinary transmission of broadband light,” Sci. Rep. 4, 5586 (2014).
    [PubMed]
  34. Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, and X. Luo, “Achromatic flat optical components via compensation between structure and material dispersions,” Sci. Rep. 6, 19885 (2016).
    [PubMed]

2017 (4)

K. A. Willets, A. J. Wilson, V. Sundaresan, and P. B. Joshi, “Super-resolution imaging and plasmonics,” Chem. Rev. 117(11), 7538–7582 (2017).
[PubMed]

H. Li, L. Fu, K. Frenner, and W. Osten, “Nanofabrication results of a novel cascaded plasmonic superlens: lessons learned,” Proc. SPIE 10330, 103300Y (2017).

M. Pu, X. Ma, X. Li, Y. Guo, and X. Luo, “Merging plasmonics and metamaterials by two-dimensional subwavelength structures,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(18), 4361–4378 (2017).

P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4(1), 139–152 (2017).

2016 (4)

L. Fu, A. Berrier, H. Li, P. Schau, K. Frenner, M. Dressel, and W. Osten, “Depolarization of a randomly distributed plasmonic meander metasurface characterized by Mueller matrix spectroscopic ellipsometry,” Opt. Express 24(24), 28056–28064 (2016).
[PubMed]

Y. Zhu, W. Yuan, Y. Yu, and P. Wang, “Robustly efficient superfocusing of immersion plasmonic lenses based on coupled nanoslits,” Plasmonics 11(6), 1543–1548 (2016).

Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, and X. Luo, “Achromatic flat optical components via compensation between structure and material dispersions,” Sci. Rep. 6, 19885 (2016).
[PubMed]

K. Yan, L. Liu, N. Yao, K. Liu, W. Du, W. Zhang, W. Yan, C. Wang, and X. Luo, “Far-field super-resolution imaging of nano-transparent objects by hyperlens with plasmonic resonant cavity,” Plasmonics 11(2), 475–481 (2016).

2015 (2)

F. Hu, M. G. Somekh, D. J. Albutt, K. Webb, E. Moradi, and C. W. See, “Sub-100 nm resolution microscopy based on proximity projection grating scheme,” Sci. Rep. 5, 8589 (2015).
[PubMed]

L. Fu, P. Schau, K. Frenner, and W. Osten, “A cascaded plasmonic superlens for near field imaging with magnification,” Proc. SPIE 9526, 95260Z (2015).

2014 (1)

S. Saxena, R. P. Chaudhary, A. Singh, S. Awasthi, and S. Shukla, “Plasmonic micro lens for extraordinary transmission of broadband light,” Sci. Rep. 4, 5586 (2014).
[PubMed]

2013 (1)

A. Jost and R. Heintzmann, “Superresolution multidimensional imaging with structured illumination microscopy,” Annu. Rev. Mater. Res. 43(1), 261–282 (2013).

2012 (1)

H. Schweizer, L. Fu, M. Hentschel, T. Wess, C. Bauer, P. Schau, K. Frenner, W. Osten, and H. Giessen, “Resonant multimeander-metasurfaces: A model system for superlenses and communication devices,” Phys. Status Solidi, B Basic Res. 249(7), 1415–1421 (2012).

2011 (4)

C. J. Zapata-Rodríguez, D. Pastor, V. Camps, M. T. Caballero, and J. J. Miret, “Three-dimensional point spread function of multilayered flat lenses and its application to extreme subwavelength resolution,” J. Nanophotonics 5(1), 51807 (2011).

P. Schau, K. Frenner, L. Fu, H. Schweizer, H. Giessen, and W. Osten, “Design of high-transmission metallic meander stacks with different grating periodicities for subwavelength-imaging applications,” Opt. Express 19(4), 3627–3636 (2011).
[PubMed]

L. Fu, P. Schau, K. Frenner, W. Osten, T. Weiss, H. Schweizer, and H. Giessen, “Mode coupling and interaction in a plasmonic microcavity with resonant mirrors,” Phys. Rev. B 84(23), 235402 (2011).

P. Schau, K. Frenner, L. Fu, W. Osten, H. Schweizer, and H. Giessen, “Sub-wavelength imaging using stacks of metallic meander structures with different periodicities,” Proc. SPIE 8093, 80931K (2011).

2010 (3)

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1(9), 143 (2010).
[PubMed]

C. Ma and Z. Liu, “A super resolution metalens with phase compensation mechanism,” Appl. Phys. Lett. 96(18), 183103 (2010).
[PubMed]

W. Chen, M. D. Thoreson, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer,” Opt. Express 18(5), 5124–5134 (2010).
[PubMed]

2009 (2)

L. Fu, H. Schweizer, T. Weiss, and H. Giessen, “Optical properties of metallic meanders,” J. Opt. Soc. Am. B 26(12), B111–B119 (2009).

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[PubMed]

2008 (2)

L. E. Helseth, “The almost perfect lens and focusing of evanescent waves,” Opt. Commun. 281(8), 1981–1985 (2008).

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[PubMed]

2007 (1)

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[PubMed]

2006 (1)

2005 (2)

H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
[PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[PubMed]

2001 (1)

M. Totzeck, “Numerical simulation of high-NA quantitative polarization microscopy and corresponding near-fields,” Optik Int. J. Light Electron Opt. 112(9), 399–406 (2001).

2000 (1)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(Pt 2), 82–87 (2000).
[PubMed]

1999 (1)

R. Heintzmann and C. G. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE 3569, 185–196 (1999).

1994 (1)

1991 (1)

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251(5000), 1468–1470 (1991).
[PubMed]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).

Aieta, F.

Albutt, D. J.

F. Hu, M. G. Somekh, D. J. Albutt, K. Webb, E. Moradi, and C. W. See, “Sub-100 nm resolution microscopy based on proximity projection grating scheme,” Sci. Rep. 5, 8589 (2015).
[PubMed]

Alekseyev, L. V.

Awasthi, S.

S. Saxena, R. P. Chaudhary, A. Singh, S. Awasthi, and S. Shukla, “Plasmonic micro lens for extraordinary transmission of broadband light,” Sci. Rep. 4, 5586 (2014).
[PubMed]

Barnard, E. S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[PubMed]

Bartal, G.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1(9), 143 (2010).
[PubMed]

Bauer, C.

H. Schweizer, L. Fu, M. Hentschel, T. Wess, C. Bauer, P. Schau, K. Frenner, W. Osten, and H. Giessen, “Resonant multimeander-metasurfaces: A model system for superlenses and communication devices,” Phys. Status Solidi, B Basic Res. 249(7), 1415–1421 (2012).

Berrier, A.

Betzig, E.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251(5000), 1468–1470 (1991).
[PubMed]

Brongersma, M. L.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[PubMed]

Caballero, M. T.

C. J. Zapata-Rodríguez, D. Pastor, V. Camps, M. T. Caballero, and J. J. Miret, “Three-dimensional point spread function of multilayered flat lenses and its application to extreme subwavelength resolution,” J. Nanophotonics 5(1), 51807 (2011).

Camps, V.

C. J. Zapata-Rodríguez, D. Pastor, V. Camps, M. T. Caballero, and J. J. Miret, “Three-dimensional point spread function of multilayered flat lenses and its application to extreme subwavelength resolution,” J. Nanophotonics 5(1), 51807 (2011).

Capasso, F.

Catrysse, P. B.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[PubMed]

Chaudhary, R. P.

S. Saxena, R. P. Chaudhary, A. Singh, S. Awasthi, and S. Shukla, “Plasmonic micro lens for extraordinary transmission of broadband light,” Sci. Rep. 4, 5586 (2014).
[PubMed]

Chen, W.

Choi, H.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1(9), 143 (2010).
[PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).

Cremer, C. G.

R. Heintzmann and C. G. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE 3569, 185–196 (1999).

Devlin, R.

Dong, X.

Dressel, M.

Du, C.

Du, W.

K. Yan, L. Liu, N. Yao, K. Liu, W. Du, W. Zhang, W. Yan, C. Wang, and X. Luo, “Far-field super-resolution imaging of nano-transparent objects by hyperlens with plasmonic resonant cavity,” Plasmonics 11(2), 475–481 (2016).

Durant, S.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[PubMed]

Fan, S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[PubMed]

Fang, N.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[PubMed]

Frenner, K.

H. Li, L. Fu, K. Frenner, and W. Osten, “Nanofabrication results of a novel cascaded plasmonic superlens: lessons learned,” Proc. SPIE 10330, 103300Y (2017).

L. Fu, A. Berrier, H. Li, P. Schau, K. Frenner, M. Dressel, and W. Osten, “Depolarization of a randomly distributed plasmonic meander metasurface characterized by Mueller matrix spectroscopic ellipsometry,” Opt. Express 24(24), 28056–28064 (2016).
[PubMed]

L. Fu, P. Schau, K. Frenner, and W. Osten, “A cascaded plasmonic superlens for near field imaging with magnification,” Proc. SPIE 9526, 95260Z (2015).

H. Schweizer, L. Fu, M. Hentschel, T. Wess, C. Bauer, P. Schau, K. Frenner, W. Osten, and H. Giessen, “Resonant multimeander-metasurfaces: A model system for superlenses and communication devices,” Phys. Status Solidi, B Basic Res. 249(7), 1415–1421 (2012).

L. Fu, P. Schau, K. Frenner, W. Osten, T. Weiss, H. Schweizer, and H. Giessen, “Mode coupling and interaction in a plasmonic microcavity with resonant mirrors,” Phys. Rev. B 84(23), 235402 (2011).

P. Schau, K. Frenner, L. Fu, W. Osten, H. Schweizer, and H. Giessen, “Sub-wavelength imaging using stacks of metallic meander structures with different periodicities,” Proc. SPIE 8093, 80931K (2011).

P. Schau, K. Frenner, L. Fu, H. Schweizer, H. Giessen, and W. Osten, “Design of high-transmission metallic meander stacks with different grating periodicities for subwavelength-imaging applications,” Opt. Express 19(4), 3627–3636 (2011).
[PubMed]

Fu, L.

H. Li, L. Fu, K. Frenner, and W. Osten, “Nanofabrication results of a novel cascaded plasmonic superlens: lessons learned,” Proc. SPIE 10330, 103300Y (2017).

L. Fu, A. Berrier, H. Li, P. Schau, K. Frenner, M. Dressel, and W. Osten, “Depolarization of a randomly distributed plasmonic meander metasurface characterized by Mueller matrix spectroscopic ellipsometry,” Opt. Express 24(24), 28056–28064 (2016).
[PubMed]

L. Fu, P. Schau, K. Frenner, and W. Osten, “A cascaded plasmonic superlens for near field imaging with magnification,” Proc. SPIE 9526, 95260Z (2015).

H. Schweizer, L. Fu, M. Hentschel, T. Wess, C. Bauer, P. Schau, K. Frenner, W. Osten, and H. Giessen, “Resonant multimeander-metasurfaces: A model system for superlenses and communication devices,” Phys. Status Solidi, B Basic Res. 249(7), 1415–1421 (2012).

P. Schau, K. Frenner, L. Fu, W. Osten, H. Schweizer, and H. Giessen, “Sub-wavelength imaging using stacks of metallic meander structures with different periodicities,” Proc. SPIE 8093, 80931K (2011).

L. Fu, P. Schau, K. Frenner, W. Osten, T. Weiss, H. Schweizer, and H. Giessen, “Mode coupling and interaction in a plasmonic microcavity with resonant mirrors,” Phys. Rev. B 84(23), 235402 (2011).

P. Schau, K. Frenner, L. Fu, H. Schweizer, H. Giessen, and W. Osten, “Design of high-transmission metallic meander stacks with different grating periodicities for subwavelength-imaging applications,” Opt. Express 19(4), 3627–3636 (2011).
[PubMed]

L. Fu, H. Schweizer, T. Weiss, and H. Giessen, “Optical properties of metallic meanders,” J. Opt. Soc. Am. B 26(12), B111–B119 (2009).

Gao, H.

Genevet, P.

Giessen, H.

H. Schweizer, L. Fu, M. Hentschel, T. Wess, C. Bauer, P. Schau, K. Frenner, W. Osten, and H. Giessen, “Resonant multimeander-metasurfaces: A model system for superlenses and communication devices,” Phys. Status Solidi, B Basic Res. 249(7), 1415–1421 (2012).

L. Fu, P. Schau, K. Frenner, W. Osten, T. Weiss, H. Schweizer, and H. Giessen, “Mode coupling and interaction in a plasmonic microcavity with resonant mirrors,” Phys. Rev. B 84(23), 235402 (2011).

P. Schau, K. Frenner, L. Fu, W. Osten, H. Schweizer, and H. Giessen, “Sub-wavelength imaging using stacks of metallic meander structures with different periodicities,” Proc. SPIE 8093, 80931K (2011).

P. Schau, K. Frenner, L. Fu, H. Schweizer, H. Giessen, and W. Osten, “Design of high-transmission metallic meander stacks with different grating periodicities for subwavelength-imaging applications,” Opt. Express 19(4), 3627–3636 (2011).
[PubMed]

L. Fu, H. Schweizer, T. Weiss, and H. Giessen, “Optical properties of metallic meanders,” J. Opt. Soc. Am. B 26(12), B111–B119 (2009).

Guo, Y.

M. Pu, X. Ma, X. Li, Y. Guo, and X. Luo, “Merging plasmonics and metamaterials by two-dimensional subwavelength structures,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(18), 4361–4378 (2017).

Gustafsson, M. G. L.

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(Pt 2), 82–87 (2000).
[PubMed]

Harris, T. D.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251(5000), 1468–1470 (1991).
[PubMed]

Heintzmann, R.

A. Jost and R. Heintzmann, “Superresolution multidimensional imaging with structured illumination microscopy,” Annu. Rev. Mater. Res. 43(1), 261–282 (2013).

R. Heintzmann and C. G. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE 3569, 185–196 (1999).

Hell, S. W.

Helseth, L. E.

L. E. Helseth, “The almost perfect lens and focusing of evanescent waves,” Opt. Commun. 281(8), 1981–1985 (2008).

Hentschel, M.

H. Schweizer, L. Fu, M. Hentschel, T. Wess, C. Bauer, P. Schau, K. Frenner, W. Osten, and H. Giessen, “Resonant multimeander-metasurfaces: A model system for superlenses and communication devices,” Phys. Status Solidi, B Basic Res. 249(7), 1415–1421 (2012).

Hu, F.

F. Hu, M. G. Somekh, D. J. Albutt, K. Webb, E. Moradi, and C. W. See, “Sub-100 nm resolution microscopy based on proximity projection grating scheme,” Sci. Rep. 5, 8589 (2015).
[PubMed]

Ishii, S.

Jacob, Z.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).

Joshi, P. B.

K. A. Willets, A. J. Wilson, V. Sundaresan, and P. B. Joshi, “Super-resolution imaging and plasmonics,” Chem. Rev. 117(11), 7538–7582 (2017).
[PubMed]

Jost, A.

A. Jost and R. Heintzmann, “Superresolution multidimensional imaging with structured illumination microscopy,” Annu. Rev. Mater. Res. 43(1), 261–282 (2013).

Khorasaninejad, M.

Kildishev, A. V.

Kostelak, R. L.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251(5000), 1468–1470 (1991).
[PubMed]

Lee, H.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[PubMed]

Li, H.

Li, X.

M. Pu, X. Ma, X. Li, Y. Guo, and X. Luo, “Merging plasmonics and metamaterials by two-dimensional subwavelength structures,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(18), 4361–4378 (2017).

Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, and X. Luo, “Achromatic flat optical components via compensation between structure and material dispersions,” Sci. Rep. 6, 19885 (2016).
[PubMed]

Li, Y.

Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, and X. Luo, “Achromatic flat optical components via compensation between structure and material dispersions,” Sci. Rep. 6, 19885 (2016).
[PubMed]

Liu, K.

K. Yan, L. Liu, N. Yao, K. Liu, W. Du, W. Zhang, W. Yan, C. Wang, and X. Luo, “Far-field super-resolution imaging of nano-transparent objects by hyperlens with plasmonic resonant cavity,” Plasmonics 11(2), 475–481 (2016).

Liu, L.

K. Yan, L. Liu, N. Yao, K. Liu, W. Du, W. Zhang, W. Yan, C. Wang, and X. Luo, “Far-field super-resolution imaging of nano-transparent objects by hyperlens with plasmonic resonant cavity,” Plasmonics 11(2), 475–481 (2016).

Liu, Z.

C. Ma and Z. Liu, “A super resolution metalens with phase compensation mechanism,” Appl. Phys. Lett. 96(18), 183103 (2010).
[PubMed]

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1(9), 143 (2010).
[PubMed]

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[PubMed]

Luo, X.

M. Pu, X. Ma, X. Li, Y. Guo, and X. Luo, “Merging plasmonics and metamaterials by two-dimensional subwavelength structures,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(18), 4361–4378 (2017).

K. Yan, L. Liu, N. Yao, K. Liu, W. Du, W. Zhang, W. Yan, C. Wang, and X. Luo, “Far-field super-resolution imaging of nano-transparent objects by hyperlens with plasmonic resonant cavity,” Plasmonics 11(2), 475–481 (2016).

Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, and X. Luo, “Achromatic flat optical components via compensation between structure and material dispersions,” Sci. Rep. 6, 19885 (2016).
[PubMed]

H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
[PubMed]

Ma, C.

C. Ma and Z. Liu, “A super resolution metalens with phase compensation mechanism,” Appl. Phys. Lett. 96(18), 183103 (2010).
[PubMed]

Ma, X.

M. Pu, X. Ma, X. Li, Y. Guo, and X. Luo, “Merging plasmonics and metamaterials by two-dimensional subwavelength structures,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(18), 4361–4378 (2017).

Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, and X. Luo, “Achromatic flat optical components via compensation between structure and material dispersions,” Sci. Rep. 6, 19885 (2016).
[PubMed]

Miret, J. J.

C. J. Zapata-Rodríguez, D. Pastor, V. Camps, M. T. Caballero, and J. J. Miret, “Three-dimensional point spread function of multilayered flat lenses and its application to extreme subwavelength resolution,” J. Nanophotonics 5(1), 51807 (2011).

Moradi, E.

F. Hu, M. G. Somekh, D. J. Albutt, K. Webb, E. Moradi, and C. W. See, “Sub-100 nm resolution microscopy based on proximity projection grating scheme,” Sci. Rep. 5, 8589 (2015).
[PubMed]

Narimanov, E.

Osten, W.

H. Li, L. Fu, K. Frenner, and W. Osten, “Nanofabrication results of a novel cascaded plasmonic superlens: lessons learned,” Proc. SPIE 10330, 103300Y (2017).

L. Fu, A. Berrier, H. Li, P. Schau, K. Frenner, M. Dressel, and W. Osten, “Depolarization of a randomly distributed plasmonic meander metasurface characterized by Mueller matrix spectroscopic ellipsometry,” Opt. Express 24(24), 28056–28064 (2016).
[PubMed]

L. Fu, P. Schau, K. Frenner, and W. Osten, “A cascaded plasmonic superlens for near field imaging with magnification,” Proc. SPIE 9526, 95260Z (2015).

H. Schweizer, L. Fu, M. Hentschel, T. Wess, C. Bauer, P. Schau, K. Frenner, W. Osten, and H. Giessen, “Resonant multimeander-metasurfaces: A model system for superlenses and communication devices,” Phys. Status Solidi, B Basic Res. 249(7), 1415–1421 (2012).

L. Fu, P. Schau, K. Frenner, W. Osten, T. Weiss, H. Schweizer, and H. Giessen, “Mode coupling and interaction in a plasmonic microcavity with resonant mirrors,” Phys. Rev. B 84(23), 235402 (2011).

P. Schau, K. Frenner, L. Fu, W. Osten, H. Schweizer, and H. Giessen, “Sub-wavelength imaging using stacks of metallic meander structures with different periodicities,” Proc. SPIE 8093, 80931K (2011).

P. Schau, K. Frenner, L. Fu, H. Schweizer, H. Giessen, and W. Osten, “Design of high-transmission metallic meander stacks with different grating periodicities for subwavelength-imaging applications,” Opt. Express 19(4), 3627–3636 (2011).
[PubMed]

Pastor, D.

C. J. Zapata-Rodríguez, D. Pastor, V. Camps, M. T. Caballero, and J. J. Miret, “Three-dimensional point spread function of multilayered flat lenses and its application to extreme subwavelength resolution,” J. Nanophotonics 5(1), 51807 (2011).

Pikus, Y.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[PubMed]

Pu, M.

M. Pu, X. Ma, X. Li, Y. Guo, and X. Luo, “Merging plasmonics and metamaterials by two-dimensional subwavelength structures,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(18), 4361–4378 (2017).

Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, and X. Luo, “Achromatic flat optical components via compensation between structure and material dispersions,” Sci. Rep. 6, 19885 (2016).
[PubMed]

Rho, J.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1(9), 143 (2010).
[PubMed]

Saxena, S.

S. Saxena, R. P. Chaudhary, A. Singh, S. Awasthi, and S. Shukla, “Plasmonic micro lens for extraordinary transmission of broadband light,” Sci. Rep. 4, 5586 (2014).
[PubMed]

Schau, P.

L. Fu, A. Berrier, H. Li, P. Schau, K. Frenner, M. Dressel, and W. Osten, “Depolarization of a randomly distributed plasmonic meander metasurface characterized by Mueller matrix spectroscopic ellipsometry,” Opt. Express 24(24), 28056–28064 (2016).
[PubMed]

L. Fu, P. Schau, K. Frenner, and W. Osten, “A cascaded plasmonic superlens for near field imaging with magnification,” Proc. SPIE 9526, 95260Z (2015).

H. Schweizer, L. Fu, M. Hentschel, T. Wess, C. Bauer, P. Schau, K. Frenner, W. Osten, and H. Giessen, “Resonant multimeander-metasurfaces: A model system for superlenses and communication devices,” Phys. Status Solidi, B Basic Res. 249(7), 1415–1421 (2012).

P. Schau, K. Frenner, L. Fu, W. Osten, H. Schweizer, and H. Giessen, “Sub-wavelength imaging using stacks of metallic meander structures with different periodicities,” Proc. SPIE 8093, 80931K (2011).

L. Fu, P. Schau, K. Frenner, W. Osten, T. Weiss, H. Schweizer, and H. Giessen, “Mode coupling and interaction in a plasmonic microcavity with resonant mirrors,” Phys. Rev. B 84(23), 235402 (2011).

P. Schau, K. Frenner, L. Fu, H. Schweizer, H. Giessen, and W. Osten, “Design of high-transmission metallic meander stacks with different grating periodicities for subwavelength-imaging applications,” Opt. Express 19(4), 3627–3636 (2011).
[PubMed]

Schweizer, H.

H. Schweizer, L. Fu, M. Hentschel, T. Wess, C. Bauer, P. Schau, K. Frenner, W. Osten, and H. Giessen, “Resonant multimeander-metasurfaces: A model system for superlenses and communication devices,” Phys. Status Solidi, B Basic Res. 249(7), 1415–1421 (2012).

P. Schau, K. Frenner, L. Fu, W. Osten, H. Schweizer, and H. Giessen, “Sub-wavelength imaging using stacks of metallic meander structures with different periodicities,” Proc. SPIE 8093, 80931K (2011).

L. Fu, P. Schau, K. Frenner, W. Osten, T. Weiss, H. Schweizer, and H. Giessen, “Mode coupling and interaction in a plasmonic microcavity with resonant mirrors,” Phys. Rev. B 84(23), 235402 (2011).

P. Schau, K. Frenner, L. Fu, H. Schweizer, H. Giessen, and W. Osten, “Design of high-transmission metallic meander stacks with different grating periodicities for subwavelength-imaging applications,” Opt. Express 19(4), 3627–3636 (2011).
[PubMed]

L. Fu, H. Schweizer, T. Weiss, and H. Giessen, “Optical properties of metallic meanders,” J. Opt. Soc. Am. B 26(12), B111–B119 (2009).

See, C. W.

F. Hu, M. G. Somekh, D. J. Albutt, K. Webb, E. Moradi, and C. W. See, “Sub-100 nm resolution microscopy based on proximity projection grating scheme,” Sci. Rep. 5, 8589 (2015).
[PubMed]

Shalaev, V. M.

Shi, H.

Shukla, S.

S. Saxena, R. P. Chaudhary, A. Singh, S. Awasthi, and S. Shukla, “Plasmonic micro lens for extraordinary transmission of broadband light,” Sci. Rep. 4, 5586 (2014).
[PubMed]

Singh, A.

S. Saxena, R. P. Chaudhary, A. Singh, S. Awasthi, and S. Shukla, “Plasmonic micro lens for extraordinary transmission of broadband light,” Sci. Rep. 4, 5586 (2014).
[PubMed]

Somekh, M. G.

F. Hu, M. G. Somekh, D. J. Albutt, K. Webb, E. Moradi, and C. W. See, “Sub-100 nm resolution microscopy based on proximity projection grating scheme,” Sci. Rep. 5, 8589 (2015).
[PubMed]

Sun, C.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[PubMed]

Sundaresan, V.

K. A. Willets, A. J. Wilson, V. Sundaresan, and P. B. Joshi, “Super-resolution imaging and plasmonics,” Chem. Rev. 117(11), 7538–7582 (2017).
[PubMed]

Thoreson, M. D.

Totzeck, M.

M. Totzeck, “Numerical simulation of high-NA quantitative polarization microscopy and corresponding near-fields,” Optik Int. J. Light Electron Opt. 112(9), 399–406 (2001).

Trautman, J. K.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251(5000), 1468–1470 (1991).
[PubMed]

Verslegers, L.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[PubMed]

Wang, C.

K. Yan, L. Liu, N. Yao, K. Liu, W. Du, W. Zhang, W. Yan, C. Wang, and X. Luo, “Far-field super-resolution imaging of nano-transparent objects by hyperlens with plasmonic resonant cavity,” Plasmonics 11(2), 475–481 (2016).

H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
[PubMed]

Wang, P.

Y. Zhu, W. Yuan, Y. Yu, and P. Wang, “Robustly efficient superfocusing of immersion plasmonic lenses based on coupled nanoslits,” Plasmonics 11(6), 1543–1548 (2016).

Wang, Y.

Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, and X. Luo, “Achromatic flat optical components via compensation between structure and material dispersions,” Sci. Rep. 6, 19885 (2016).
[PubMed]

Webb, K.

F. Hu, M. G. Somekh, D. J. Albutt, K. Webb, E. Moradi, and C. W. See, “Sub-100 nm resolution microscopy based on proximity projection grating scheme,” Sci. Rep. 5, 8589 (2015).
[PubMed]

Weiner, J. S.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251(5000), 1468–1470 (1991).
[PubMed]

Weiss, T.

L. Fu, P. Schau, K. Frenner, W. Osten, T. Weiss, H. Schweizer, and H. Giessen, “Mode coupling and interaction in a plasmonic microcavity with resonant mirrors,” Phys. Rev. B 84(23), 235402 (2011).

L. Fu, H. Schweizer, T. Weiss, and H. Giessen, “Optical properties of metallic meanders,” J. Opt. Soc. Am. B 26(12), B111–B119 (2009).

Wess, T.

H. Schweizer, L. Fu, M. Hentschel, T. Wess, C. Bauer, P. Schau, K. Frenner, W. Osten, and H. Giessen, “Resonant multimeander-metasurfaces: A model system for superlenses and communication devices,” Phys. Status Solidi, B Basic Res. 249(7), 1415–1421 (2012).

White, J. S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[PubMed]

Wichmann, J.

Willets, K. A.

K. A. Willets, A. J. Wilson, V. Sundaresan, and P. B. Joshi, “Super-resolution imaging and plasmonics,” Chem. Rev. 117(11), 7538–7582 (2017).
[PubMed]

Wilson, A. J.

K. A. Willets, A. J. Wilson, V. Sundaresan, and P. B. Joshi, “Super-resolution imaging and plasmonics,” Chem. Rev. 117(11), 7538–7582 (2017).
[PubMed]

Xiong, Y.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1(9), 143 (2010).
[PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[PubMed]

Yan, K.

K. Yan, L. Liu, N. Yao, K. Liu, W. Du, W. Zhang, W. Yan, C. Wang, and X. Luo, “Far-field super-resolution imaging of nano-transparent objects by hyperlens with plasmonic resonant cavity,” Plasmonics 11(2), 475–481 (2016).

Yan, W.

K. Yan, L. Liu, N. Yao, K. Liu, W. Du, W. Zhang, W. Yan, C. Wang, and X. Luo, “Far-field super-resolution imaging of nano-transparent objects by hyperlens with plasmonic resonant cavity,” Plasmonics 11(2), 475–481 (2016).

Yao, N.

K. Yan, L. Liu, N. Yao, K. Liu, W. Du, W. Zhang, W. Yan, C. Wang, and X. Luo, “Far-field super-resolution imaging of nano-transparent objects by hyperlens with plasmonic resonant cavity,” Plasmonics 11(2), 475–481 (2016).

Ye, Z.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1(9), 143 (2010).
[PubMed]

Yin, X.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1(9), 143 (2010).
[PubMed]

Yu, Y.

Y. Zhu, W. Yuan, Y. Yu, and P. Wang, “Robustly efficient superfocusing of immersion plasmonic lenses based on coupled nanoslits,” Plasmonics 11(6), 1543–1548 (2016).

Yu, Z.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[PubMed]

Yuan, W.

Y. Zhu, W. Yuan, Y. Yu, and P. Wang, “Robustly efficient superfocusing of immersion plasmonic lenses based on coupled nanoslits,” Plasmonics 11(6), 1543–1548 (2016).

Zapata-Rodríguez, C. J.

C. J. Zapata-Rodríguez, D. Pastor, V. Camps, M. T. Caballero, and J. J. Miret, “Three-dimensional point spread function of multilayered flat lenses and its application to extreme subwavelength resolution,” J. Nanophotonics 5(1), 51807 (2011).

Zhang, W.

K. Yan, L. Liu, N. Yao, K. Liu, W. Du, W. Zhang, W. Yan, C. Wang, and X. Luo, “Far-field super-resolution imaging of nano-transparent objects by hyperlens with plasmonic resonant cavity,” Plasmonics 11(2), 475–481 (2016).

Zhang, X.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1(9), 143 (2010).
[PubMed]

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[PubMed]

Zhao, Z.

Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, and X. Luo, “Achromatic flat optical components via compensation between structure and material dispersions,” Sci. Rep. 6, 19885 (2016).
[PubMed]

Zhu, Y.

Y. Zhu, W. Yuan, Y. Yu, and P. Wang, “Robustly efficient superfocusing of immersion plasmonic lenses based on coupled nanoslits,” Plasmonics 11(6), 1543–1548 (2016).

Annu. Rev. Mater. Res. (1)

A. Jost and R. Heintzmann, “Superresolution multidimensional imaging with structured illumination microscopy,” Annu. Rev. Mater. Res. 43(1), 261–282 (2013).

Appl. Phys. Lett. (1)

C. Ma and Z. Liu, “A super resolution metalens with phase compensation mechanism,” Appl. Phys. Lett. 96(18), 183103 (2010).
[PubMed]

Chem. Rev. (1)

K. A. Willets, A. J. Wilson, V. Sundaresan, and P. B. Joshi, “Super-resolution imaging and plasmonics,” Chem. Rev. 117(11), 7538–7582 (2017).
[PubMed]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

M. Pu, X. Ma, X. Li, Y. Guo, and X. Luo, “Merging plasmonics and metamaterials by two-dimensional subwavelength structures,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(18), 4361–4378 (2017).

J. Microsc. (1)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(Pt 2), 82–87 (2000).
[PubMed]

J. Nanophotonics (1)

C. J. Zapata-Rodríguez, D. Pastor, V. Camps, M. T. Caballero, and J. J. Miret, “Three-dimensional point spread function of multilayered flat lenses and its application to extreme subwavelength resolution,” J. Nanophotonics 5(1), 51807 (2011).

J. Opt. Soc. Am. B (1)

Nano Lett. (2)

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[PubMed]

Nat. Commun. (1)

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1(9), 143 (2010).
[PubMed]

Nat. Mater. (1)

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[PubMed]

Opt. Commun. (1)

L. E. Helseth, “The almost perfect lens and focusing of evanescent waves,” Opt. Commun. 281(8), 1981–1985 (2008).

Opt. Express (5)

Opt. Lett. (1)

Optica (1)

Optik Int. J. Light Electron Opt. (1)

M. Totzeck, “Numerical simulation of high-NA quantitative polarization microscopy and corresponding near-fields,” Optik Int. J. Light Electron Opt. 112(9), 399–406 (2001).

Phys. Rev. B (2)

L. Fu, P. Schau, K. Frenner, W. Osten, T. Weiss, H. Schweizer, and H. Giessen, “Mode coupling and interaction in a plasmonic microcavity with resonant mirrors,” Phys. Rev. B 84(23), 235402 (2011).

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).

Phys. Status Solidi, B Basic Res. (1)

H. Schweizer, L. Fu, M. Hentschel, T. Wess, C. Bauer, P. Schau, K. Frenner, W. Osten, and H. Giessen, “Resonant multimeander-metasurfaces: A model system for superlenses and communication devices,” Phys. Status Solidi, B Basic Res. 249(7), 1415–1421 (2012).

Plasmonics (2)

Y. Zhu, W. Yuan, Y. Yu, and P. Wang, “Robustly efficient superfocusing of immersion plasmonic lenses based on coupled nanoslits,” Plasmonics 11(6), 1543–1548 (2016).

K. Yan, L. Liu, N. Yao, K. Liu, W. Du, W. Zhang, W. Yan, C. Wang, and X. Luo, “Far-field super-resolution imaging of nano-transparent objects by hyperlens with plasmonic resonant cavity,” Plasmonics 11(2), 475–481 (2016).

Proc. SPIE (4)

L. Fu, P. Schau, K. Frenner, and W. Osten, “A cascaded plasmonic superlens for near field imaging with magnification,” Proc. SPIE 9526, 95260Z (2015).

H. Li, L. Fu, K. Frenner, and W. Osten, “Nanofabrication results of a novel cascaded plasmonic superlens: lessons learned,” Proc. SPIE 10330, 103300Y (2017).

R. Heintzmann and C. G. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE 3569, 185–196 (1999).

P. Schau, K. Frenner, L. Fu, W. Osten, H. Schweizer, and H. Giessen, “Sub-wavelength imaging using stacks of metallic meander structures with different periodicities,” Proc. SPIE 8093, 80931K (2011).

Sci. Rep. (3)

S. Saxena, R. P. Chaudhary, A. Singh, S. Awasthi, and S. Shukla, “Plasmonic micro lens for extraordinary transmission of broadband light,” Sci. Rep. 4, 5586 (2014).
[PubMed]

Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, and X. Luo, “Achromatic flat optical components via compensation between structure and material dispersions,” Sci. Rep. 6, 19885 (2016).
[PubMed]

F. Hu, M. G. Somekh, D. J. Albutt, K. Webb, E. Moradi, and C. W. See, “Sub-100 nm resolution microscopy based on proximity projection grating scheme,” Sci. Rep. 5, 8589 (2015).
[PubMed]

Science (2)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[PubMed]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251(5000), 1468–1470 (1991).
[PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Cross-section schematic of the cascaded plasmonic superlens with DPL = 400 nm, DC = 50 nm, DOM = 70 nm, DO = 100 nm, Dspa = 70 nm, Px = 400 nm, Wr = 170 nm, d = 30 nm, and t = 50 nm. The grating in the y-direction is infinite. (b) Calculated far-field image intensity in the xz-plane from a double-slit object with XD = 200 nm and a slit width of 100 nm from the lens shown in (a). (c) Image profiles along the x-axis of the field shown in (b) for two slit distances with the superlens. Also a calculated image profile for an object with XD = 360 nm in the absence of the superlens (SL) is shown for comparison.
Fig. 2
Fig. 2 Near field transmission dispersion of the sub-components and the cascaded superlens. (a) Configuration for the calculation at λ = 640 nm and (b) near-field transmission curves of different elements as a function of kx/k0.
Fig. 3
Fig. 3 Illustration of the fabrication process for the MCS slab.
Fig. 4
Fig. 4 Measured (red curves) and simulated (blue curves) transmittance spectra (a) for a single layer and (b) double layer Ag meander structures (with a distance of 70 nm) fabricated on glass substrates. The periodicity of the grating is 400 nm, the grating height is 50 nm, and the thickness of the Ag films is 30 nm. Inlets show the corresponding SEM cross-sectional images of the two structures.
Fig. 5
Fig. 5 (a) SEM cross-sectional image (tilted view at an angle of 52°) of a fabricated PPL structure milled into a 400 nm-thick Ag layer. Slit widths measured under SEM are also labeled. (b) Field distribution along the xz-plane behind a fabricated PPL illuminated by a plane wave and measured by an aerial image scanning microscope. (c) Calculated field distribution of the PPL with designed slit widths of 88, 64, 57.5, 47.5, 42, 34, 42, 47.5, 57.5, 64, and 88 in nanometer with a pitch of 200 nm.
Fig. 6
Fig. 6 (a) SEM cross-sectional image of a fabricated cascaded superlens with a two-slit object, which has a slit width of 400 nm and a slit distance of 800 nm. (b) Field distribution in the xz-plane of the lens shown in (a) illuminated by a plane wave from the substrate side at λ = 640 nm. The dashed lines z1-z3 designate the positions where the calculated fields will be compared with the measured ones.
Fig. 7
Fig. 7 The top row shows images measured in the xy-plane at different z-positions using a CCD camera and the bottom row shows the field plots along the red dashed lines designated in the top row. They are compared with the calculated field intensities along the dashed lines in Fig. 6(b) at (a) z1 = 1.5 µm, (b) z2 = 1.0 µm and (c) z3 = 0.5 µm, respectively.
Fig. 8
Fig. 8 (a) SEM image of a double-slit object with a slit width of 100 nm and a slit distance of 180 nm. (b) Cross section of the superlens fabricated on the object shown in (a). (c) Image in the xy-plane from the object shown in (a) captured by a CCD camera. (d) CCD camera image from a double-slit object with XD = 300 nm in the absence of the superlens.
Fig. 9
Fig. 9 (a) Comparison of the measured image field (bar plot) along the red dashed line shown in Fig. 8(c) with the calculated field profile (red curve). (b) Measured and calculated peak distance (image size) as a function of slit distance (object size) from the lens shown in Fig. 8(b).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

tanh( β 2 k 0 2 w 2 )= β 2 k 0 2 ε m ε m β 2 k 0 2 ,
φ(x)=2nπ+ 2πf λ 2π f 2 + x 2 λ ,

Metrics