Abstract

States that are switchable from single soliton to pulse bunch in a compact semiconductor saturable absorber mirror (SESAM) mode-locked fiber laser with a fundamental repetition rate of 3.2 GHz are experimentally investigated and further studied via simulations. A composite filtering effect comprising an intracavity low-finesse Fabry-Perot (FP) filter, an artificial optical low-pass filter, and a gain filter implements the state switching to pulse bunch. A numerical model is proposed to clarify the mechanism underlying the switching. It reveals that, for pulse interval ∆T > τA (relaxation time of the SESAM) in a pulse bunch, the laser operates in pulse-bound build up. In an inverse mechanism the state returns to single soliton, in which the ∆T is obtained from the free spectral range Ωc of the intracavity FP filter by mechanically controlling the distance between the SESAM and gain fiber. This pulse bunch regime of operation ought to be amenable to a quasi-steady-state treatment. It represents an alternative emergence trait in the temporal domain between a main soliton with strong sidelobes in both sides and a bound soliton pair with weak sub-sidelobes. Another profile of the pulse bunch state is that the side peak amplitude in the autocorrelation trace is more than 50%, which is distinct and larger than that in the conventional bound state regime in fiber lasers. The optical spectra, radio frequency spectra, and frequency chirp are further analyzed. These numerical results agree well with the experimental ones within the variation range of the crucial values of Ωc and enable the explicit understanding of such behavior in SESAM mode-locked high-repetition-rate fiber lasers.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

Yi Zhou, Wei Lin, Huihui Cheng, Wenlong Wang, Tian Qiao, Qi Qian, Shanhui Xu, and Zhongmin Yang, "Composite filtering effect in a SESAM mode-locked fiber laser with a 3.2-GHz fundamental repetition rate: switchable states from single soliton to pulse bunch: erratum," Opt. Express 26, 17458-17458 (2018)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-26-13-17458

OSA Recommended Articles
Soliton mode-locked fiber laser based on topological insulator Bi2Te3 nanosheets at 2  μm

Ke Yin, Bin Zhang, Lei Li, Tian Jiang, Xuanfeng Zhou, and Jing Hou
Photon. Res. 3(3) 72-76 (2015)

Soliton collapse and bunched noise-like pulse generation in a passively mode-locked fiber ring laser

D. Y. Tang, L. M. Zhao, and B. Zhao
Opt. Express 13(7) 2289-2294 (2005)

References

  • View by:
  • |
  • |
  • |

  1. W. Lee, M. Choi, S. Ozharar, H. Izadpanah, P. Delfyett, S. Etemad, and S. Menendez, “Coherent optical communications & signal processing using optical frequency combs,” in LEOS Summer Topical Meetings, 2005 Digest of the (2005), pp. 213–214.
    [Crossref]
  2. L.-S. Ma, Z. Bi, A. Bartels, K. Kim, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Frequency uncertainty for optically referenced femtosecond laser frequency combs,” IEEE J. Quantum Electron. 43(2), 139–146 (2007).
    [Crossref]
  3. C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008).
    [Crossref] [PubMed]
  4. S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4(11), 760–766 (2010).
    [Crossref]
  5. W. He, M. Pang, C. R. Menyuk, and P. St. J. Russell, “Sub-100-fs 187 GHz mode-locked fiber laser using stretched-soliton effects,” Optica 3(12), 1366 (2016).
    [Crossref]
  6. H. Cheng, Y. Zhou, A. E. Mironov, W. Wang, T. Qiao, W. Lin, Q. Qian, S. Xu, Z. Yang, and J. G. Eden, “Mode suppression of 53 dB and pulse repetition rates of 2.87 and 36.4 GHz in a compact, mode-locked fiber laser comprising coupled Fabry-Perot cavities of low finesse (F = 2),” Opt. Express 25(20), 24400–24409 (2017).
    [Crossref] [PubMed]
  7. R. S. Fodil, F. Amrani, C. Yang, A. Kellou, and Ph. Grelu, “Adjustable high-repetition-rate pulse trains in a passively-mode-locked fiber laser,” Phys. Rev. A 94(1), 013813 (2016).
    [Crossref]
  8. T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2014).
    [Crossref]
  9. X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9(9), 594–600 (2015).
    [Crossref]
  10. U. Keller, K. Weingarten, F. Kartner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (sesam’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
    [Crossref]
  11. D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 16(1), 42–44 (1991).
    [Crossref] [PubMed]
  12. A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326(5953), 681 (2009).
    [Crossref] [PubMed]
  13. A. Klenner and U. Keller, “All-optical Q-switching limiter for high-power gigahertz modelocked diode-pumped solid-state lasers,” Opt. Express 23(7), 8532–8544 (2015).
    [Crossref] [PubMed]
  14. N. Jornod, K. Gürel, V. J. Wittwer, P. Brochard, S. Hakobyan, S. Schilt, D. Waldburger, U. Keller, and T. Südmeyer, “Carrier-envelope offset frequency stabilization of a gigahertz semiconductor disk laser,” Optica 4(12), 1482–1487 (2017).
    [Crossref]
  15. S. Hakobyan, V. J. Wittwer, P. Brochard, K. Gürel, S. Schilt, A. S. Mayer, U. Keller, and T. Südmeyer, “Full stabilization and characterization of an optical frequency comb from a diode-pumped solid-state laser with GHz repetition rate,” Opt. Express 25(17), 20437–20453 (2017).
    [Crossref] [PubMed]
  16. S. Hakobyan, V. J. Wittwer, K. Gürel, A. S. Mayer, S. Schilt, and T. Südmeyer, “Carrier-envelope offset stabilization of a GHz repetition rate femtosecond laser using opto-optical modulation of a SESAM,” Opt. Lett. 42(22), 4651–4654 (2017).
    [Crossref] [PubMed]
  17. S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, “400 mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser,” Opt. Lett. 36(18), 3708–3710 (2011).
    [Crossref] [PubMed]
  18. S. H. Xu, Z. M. Yang, T. Liu, W. N. Zhang, Z. M. Feng, Q. Y. Zhang, and Z. H. Jiang, “An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 microm,” Opt. Express 18(2), 1249–1254 (2010).
    [Crossref] [PubMed]
  19. G. W. Tang, X. Wen, K. M. Huang, G. Q. Qian, W. Lin, H. H. Cheng, L. C. Jiang, Q. Qian, and Z. M. Yang, “Tm3+-doped barium gallo-germanate glass single-mode fiber with high gain per unit length for ultracompact 1.95 µm laser,” Appl. Phys. Express 11(3), 032701 (2018).
    [Crossref]
  20. H. Cheng, W. Wang, Y. Zhou, T. Qiao, W. Lin, S. Xu, and Z. Yang, “5 GHz fundamental repetition rate, wavelength tunable, all-fiber passively mode-locked Yb-fiber laser,” Opt. Express 25(22), 27646–27651 (2017).
    [Crossref] [PubMed]
  21. A. Martinez and S. Yamashita, “Multi-Gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express 19(7), 6155–6163 (2011).
    [Crossref] [PubMed]
  22. H. Cheng, W. Lin, Z. Luo, and Z. Yang, “Passively mode-locked Tm3+-doped fiber laser with gigahertz fundamental repetition rate,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1100106 (2018).
    [Crossref]
  23. D. Brida, G. Krauss, A. Sell, and A. Leitenstorfer, “Ultrabroadband Er:fiber lasers,” Laser Photonics Rev. 8(3), 409–428 (2014).
    [Crossref]
  24. J. Kim and Y. Song, “Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications,” Adv. Opt. Photonics 8(3), 465–540 (2016).
    [Crossref]
  25. H. A. Haus, “Parameter ranges for CW passive mode locking,” IEEE J. Quantum Electron. 12(3), 169–176 (1976).
    [Crossref]
  26. F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. G. Calasso, and U. Keller, “Control of solid state laser dynamics by semiconductor devices,” Opt. Eng. 34(7), 2024–2036 (1995).
    [Crossref]
  27. T. R. Schibli, E. R. Thoen, F. X. Kärtner, and E. P. Ippen, “Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption,” Appl. Phys. B 70(S1), S41–S49 (2000).
    [Crossref]
  28. H. Cheng, W. Lin, T. Qiao, S. Xu, and Z. Yang, “Theoretical and experimental analysis of instability of continuous wave mode locking: Towards high fundamental repetition rate in Tm3+-doped fiber lasers,” Opt. Express 24(26), 29882–29895 (2016).
    [Crossref] [PubMed]
  29. C. Li, Y. Ma, X. Gao, F. Niu, T. Jiang, A. Wang, and Z. Zhang, “1 GHz repetition rate femtosecond Yb:fiber laser for direct generation of carrier-envelope offset frequency,” Appl. Opt. 54(28), 8350–8353 (2015).
    [Crossref] [PubMed]
  30. C. Li, G. Wang, T. Jiang, A. Wang, and Z. Zhang, “750 MHz fundamental repetition rate femtosecond Yb:fiber ring laser,” Opt. Lett. 38(3), 314–316 (2013).
    [Crossref] [PubMed]
  31. W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
    [Crossref]
  32. X. Wei, S. Xu, H. Huang, M. Peng, and Z. Yang, “Compact all-fiber ring femtosecond laser with high fundamental repetition rate,” Opt. Express 20(22), 24607–24613 (2012).
    [Crossref] [PubMed]
  33. A. Martinez and S. Yamashita, “10 GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett. 101(4), 041118 (2012).
    [Crossref]
  34. S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry–Pérot laser mode-locked using carbon nanotubes,” IEEE Photonics Technol. Lett. 17(4), 750–752 (2005).
    [Crossref]
  35. A. E. H. Oehler, T. Südmeyer, K. J. Weingarten, and U. Keller, “100 GHz passively mode-locked Er:Yb:glass laser at 1.5 µm with 1.6-ps pulses,” Opt. Express 16(26), 21930–21935 (2008).
    [Crossref] [PubMed]
  36. R. Thapa, D. Nguyen, J. Zong, and A. Chavez-Pirson, “All-fiber fundamentally mode-locked 12 GHz laser oscillator based on an Er/Yb-doped phosphate glass fiber,” Opt. Lett. 39(6), 1418–1421 (2014).
    [Crossref] [PubMed]
  37. H.-W. Chen, G. Chang, S. Xu, Z. Yang, and F. X. Kärtner, “3 GHz, fundamentally mode-locked, femtosecond Yb-fiber laser,” Opt. Lett. 37(17), 3522–3524 (2012).
    [Crossref] [PubMed]
  38. H.-W. Chen, Z. Haider, J. Lim, S. Xu, Z. Yang, F. X. Kärtner, and G. Chang, “3 GHz, Yb-fiber laser-based, few-cycle ultrafast source at the Ti:sapphire laser wavelength,” Opt. Lett. 38(22), 4927–4930 (2013).
    [Crossref] [PubMed]
  39. J. Lim, H.-W. Chen, S. Xu, Z. Yang, G. Chang, and F. X. Kärtner, “3 GHz, watt-level femtosecond Raman soliton source,” Opt. Lett. 39(7), 2060–2063 (2014).
    [Crossref] [PubMed]
  40. H. Cheng, W. Wang, Y. Zhou, T. Qiao, W. Lin, S. Xu, and Z. Yang, “Investigation of rectangular shaped wave packet dynamics in a high-repetition-rate ultrafast fiber laser,” Opt. Express 25(17), 20125–20132 (2017).
    [Crossref] [PubMed]
  41. C. J. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, and U. Keller, “SESAMs for High-Power Oscillators: Design Guidelines and Damage Thresholds,” IEEE J. Sel. Top. Quantum Electron. 18(1), 29–41 (2012).
    [Crossref]
  42. A. S. Mayer, C. R. Phillips, and U. Keller, “Watt-level 10-gigahertz solid-state laser enabled by self-defocusing nonlinearities in an aperiodically poled crystal,” Nat. Commun. 8(1), 1673 (2017).
    [Crossref] [PubMed]
  43. Y. Du, X. Shu, H. Cao, and P. Cheng, “Dynamics of dispersive wave and regimes of different kinds of sidebands generation in mode-locked soliton fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1101408 (2018).
    [Crossref]
  44. D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, “Observation of bound states of solitons in a passively mode-locked fiber laser,” Phys. Rev. A 64(3), 033814 (2001).
    [Crossref]
  45. U. Keller, D. A. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber,” Opt. Lett. 17(7), 505–507 (1992).
    [Crossref] [PubMed]
  46. A. Schlatter, S. C. Zeller, R. Grange, R. Paschotta, and U. Keller, “Pulse energy dynamics of passively mode-locked solid-state lasers above the Q-switching threshold,” J. Opt. Soc. Am. B 21(8), 1469–1478 (2004).
    [Crossref]
  47. P. Wang, C. Bao, B. Fu, X. Xiao, P. Grelu, and C. Yang, “Generation of wavelength-tunable soliton molecules in a 2-μm ultrafast all-fiber laser based on nonlinear polarization evolution,” Opt. Lett. 41(10), 2254–2257 (2016).
    [Crossref] [PubMed]
  48. K. Krupa, K. Nithyanandan, U. Andral, P. Tchofo-Dinda, and P. Grelu, “Real-Time Observation of Internal Motion within Ultrafast Dissipative Optical Soliton Molecules,” Phys. Rev. Lett. 118(24), 243901 (2017).
    [Crossref] [PubMed]
  49. G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356(6333), 50–54 (2017).
    [Crossref] [PubMed]
  50. M. Grapinet and P. Grelu, “Vibrating soliton pairs in a mode-locked laser cavity,” Opt. Lett. 31(14), 2115–2117 (2006).
    [Crossref] [PubMed]
  51. M. Moenster, U. Griebner, W. Richter, and G. Steinmeyer, “Resonant Saturable Absorber Mirrors for Dispersion Control in Ultrafast Lasers,” IEEE J. Quantum Electron. 43(2), 174–181 (2007).
    [Crossref]
  52. A. A. Lagatsky, C. G. Leburn, C. T. A. Brown, W. Sibbett, S. A. Zolotovskaya, and E. U. Rafailov, “Ultrashort-pulse lasers passively mode locked by quantum-dot-based saturable absorbers,” Prog. Quantum Electron. 34(1), 1–45 (2010).
    [Crossref]
  53. A. Zavyalov, R. Iliew, O. Egorov, and F. Lederer, “Discrete Family of Dissipative Soliton Pairs in Mode-Locked Fiber Lasers,” Phys. Rev. A 79(5), 053841 (2009).
    [Crossref]
  54. M. Chernysheva, A. Bednyakova, M. Al Araimi, R. C. Howe, G. Hu, T. Hasan, A. Gambetta, G. Galzerano, M. Rümmeli, and A. Rozhin, “Double-Wall Carbon Nanotube Hybrid Mode-Locker in Tm-doped Fibre Laser: A Novel Mechanism for Robust Bound-State Solitons Generation,” Sci. Rep. 7, 44314 (2017).
    [Crossref] [PubMed]
  55. J. M. Soto-Crespo and N. Akhmediev, “Composite solitons and two-pulse generation in passively mode-locked lasers modeled by the complex quintic Swift-Hohenberg equation,” Phys. Rev. E 66(6), 066610 (2002).
    [Crossref] [PubMed]
  56. A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11(6), 341–351 (2017).
    [Crossref]
  57. K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7(2), 102–112 (2013).
    [Crossref]
  58. F. Di Pasquale, “Modeling of highly-efficient grating-feedback and Fabry-Perot Er3+-Yb3+ co-doped fiber lasers,” IEEE J. Quantum Electron. 32(2), 326–332 (1996).
    [Crossref]
  59. C. Yang, X. Guan, W. Lin, Q. Zhao, G. Tang, J. Gan, Q. Qian, Z. Feng, Z. Yang, and S. Xu, “Efficient 1.6 μm linearly-polarized single-frequency phosphate glass fiber laser,” Opt. Express 25(23), 29078–29085 (2017).
    [Crossref]

2018 (3)

G. W. Tang, X. Wen, K. M. Huang, G. Q. Qian, W. Lin, H. H. Cheng, L. C. Jiang, Q. Qian, and Z. M. Yang, “Tm3+-doped barium gallo-germanate glass single-mode fiber with high gain per unit length for ultracompact 1.95 µm laser,” Appl. Phys. Express 11(3), 032701 (2018).
[Crossref]

H. Cheng, W. Lin, Z. Luo, and Z. Yang, “Passively mode-locked Tm3+-doped fiber laser with gigahertz fundamental repetition rate,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1100106 (2018).
[Crossref]

Y. Du, X. Shu, H. Cao, and P. Cheng, “Dynamics of dispersive wave and regimes of different kinds of sidebands generation in mode-locked soliton fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1101408 (2018).
[Crossref]

2017 (13)

K. Krupa, K. Nithyanandan, U. Andral, P. Tchofo-Dinda, and P. Grelu, “Real-Time Observation of Internal Motion within Ultrafast Dissipative Optical Soliton Molecules,” Phys. Rev. Lett. 118(24), 243901 (2017).
[Crossref] [PubMed]

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356(6333), 50–54 (2017).
[Crossref] [PubMed]

A. S. Mayer, C. R. Phillips, and U. Keller, “Watt-level 10-gigahertz solid-state laser enabled by self-defocusing nonlinearities in an aperiodically poled crystal,” Nat. Commun. 8(1), 1673 (2017).
[Crossref] [PubMed]

M. Chernysheva, A. Bednyakova, M. Al Araimi, R. C. Howe, G. Hu, T. Hasan, A. Gambetta, G. Galzerano, M. Rümmeli, and A. Rozhin, “Double-Wall Carbon Nanotube Hybrid Mode-Locker in Tm-doped Fibre Laser: A Novel Mechanism for Robust Bound-State Solitons Generation,” Sci. Rep. 7, 44314 (2017).
[Crossref] [PubMed]

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11(6), 341–351 (2017).
[Crossref]

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

H. Cheng, W. Wang, Y. Zhou, T. Qiao, W. Lin, S. Xu, and Z. Yang, “Investigation of rectangular shaped wave packet dynamics in a high-repetition-rate ultrafast fiber laser,” Opt. Express 25(17), 20125–20132 (2017).
[Crossref] [PubMed]

S. Hakobyan, V. J. Wittwer, P. Brochard, K. Gürel, S. Schilt, A. S. Mayer, U. Keller, and T. Südmeyer, “Full stabilization and characterization of an optical frequency comb from a diode-pumped solid-state laser with GHz repetition rate,” Opt. Express 25(17), 20437–20453 (2017).
[Crossref] [PubMed]

H. Cheng, Y. Zhou, A. E. Mironov, W. Wang, T. Qiao, W. Lin, Q. Qian, S. Xu, Z. Yang, and J. G. Eden, “Mode suppression of 53 dB and pulse repetition rates of 2.87 and 36.4 GHz in a compact, mode-locked fiber laser comprising coupled Fabry-Perot cavities of low finesse (F = 2),” Opt. Express 25(20), 24400–24409 (2017).
[Crossref] [PubMed]

H. Cheng, W. Wang, Y. Zhou, T. Qiao, W. Lin, S. Xu, and Z. Yang, “5 GHz fundamental repetition rate, wavelength tunable, all-fiber passively mode-locked Yb-fiber laser,” Opt. Express 25(22), 27646–27651 (2017).
[Crossref] [PubMed]

S. Hakobyan, V. J. Wittwer, K. Gürel, A. S. Mayer, S. Schilt, and T. Südmeyer, “Carrier-envelope offset stabilization of a GHz repetition rate femtosecond laser using opto-optical modulation of a SESAM,” Opt. Lett. 42(22), 4651–4654 (2017).
[Crossref] [PubMed]

C. Yang, X. Guan, W. Lin, Q. Zhao, G. Tang, J. Gan, Q. Qian, Z. Feng, Z. Yang, and S. Xu, “Efficient 1.6 μm linearly-polarized single-frequency phosphate glass fiber laser,” Opt. Express 25(23), 29078–29085 (2017).
[Crossref]

N. Jornod, K. Gürel, V. J. Wittwer, P. Brochard, S. Hakobyan, S. Schilt, D. Waldburger, U. Keller, and T. Südmeyer, “Carrier-envelope offset frequency stabilization of a gigahertz semiconductor disk laser,” Optica 4(12), 1482–1487 (2017).
[Crossref]

2016 (5)

2015 (3)

2014 (4)

R. Thapa, D. Nguyen, J. Zong, and A. Chavez-Pirson, “All-fiber fundamentally mode-locked 12 GHz laser oscillator based on an Er/Yb-doped phosphate glass fiber,” Opt. Lett. 39(6), 1418–1421 (2014).
[Crossref] [PubMed]

J. Lim, H.-W. Chen, S. Xu, Z. Yang, G. Chang, and F. X. Kärtner, “3 GHz, watt-level femtosecond Raman soliton source,” Opt. Lett. 39(7), 2060–2063 (2014).
[Crossref] [PubMed]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2014).
[Crossref]

D. Brida, G. Krauss, A. Sell, and A. Leitenstorfer, “Ultrabroadband Er:fiber lasers,” Laser Photonics Rev. 8(3), 409–428 (2014).
[Crossref]

2013 (3)

2012 (4)

H.-W. Chen, G. Chang, S. Xu, Z. Yang, and F. X. Kärtner, “3 GHz, fundamentally mode-locked, femtosecond Yb-fiber laser,” Opt. Lett. 37(17), 3522–3524 (2012).
[Crossref] [PubMed]

X. Wei, S. Xu, H. Huang, M. Peng, and Z. Yang, “Compact all-fiber ring femtosecond laser with high fundamental repetition rate,” Opt. Express 20(22), 24607–24613 (2012).
[Crossref] [PubMed]

C. J. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, and U. Keller, “SESAMs for High-Power Oscillators: Design Guidelines and Damage Thresholds,” IEEE J. Sel. Top. Quantum Electron. 18(1), 29–41 (2012).
[Crossref]

A. Martinez and S. Yamashita, “10 GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett. 101(4), 041118 (2012).
[Crossref]

2011 (2)

2010 (3)

S. H. Xu, Z. M. Yang, T. Liu, W. N. Zhang, Z. M. Feng, Q. Y. Zhang, and Z. H. Jiang, “An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 microm,” Opt. Express 18(2), 1249–1254 (2010).
[Crossref] [PubMed]

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4(11), 760–766 (2010).
[Crossref]

A. A. Lagatsky, C. G. Leburn, C. T. A. Brown, W. Sibbett, S. A. Zolotovskaya, and E. U. Rafailov, “Ultrashort-pulse lasers passively mode locked by quantum-dot-based saturable absorbers,” Prog. Quantum Electron. 34(1), 1–45 (2010).
[Crossref]

2009 (2)

A. Zavyalov, R. Iliew, O. Egorov, and F. Lederer, “Discrete Family of Dissipative Soliton Pairs in Mode-Locked Fiber Lasers,” Phys. Rev. A 79(5), 053841 (2009).
[Crossref]

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326(5953), 681 (2009).
[Crossref] [PubMed]

2008 (2)

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

A. E. H. Oehler, T. Südmeyer, K. J. Weingarten, and U. Keller, “100 GHz passively mode-locked Er:Yb:glass laser at 1.5 µm with 1.6-ps pulses,” Opt. Express 16(26), 21930–21935 (2008).
[Crossref] [PubMed]

2007 (2)

L.-S. Ma, Z. Bi, A. Bartels, K. Kim, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Frequency uncertainty for optically referenced femtosecond laser frequency combs,” IEEE J. Quantum Electron. 43(2), 139–146 (2007).
[Crossref]

M. Moenster, U. Griebner, W. Richter, and G. Steinmeyer, “Resonant Saturable Absorber Mirrors for Dispersion Control in Ultrafast Lasers,” IEEE J. Quantum Electron. 43(2), 174–181 (2007).
[Crossref]

2006 (1)

2005 (1)

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry–Pérot laser mode-locked using carbon nanotubes,” IEEE Photonics Technol. Lett. 17(4), 750–752 (2005).
[Crossref]

2004 (1)

2002 (1)

J. M. Soto-Crespo and N. Akhmediev, “Composite solitons and two-pulse generation in passively mode-locked lasers modeled by the complex quintic Swift-Hohenberg equation,” Phys. Rev. E 66(6), 066610 (2002).
[Crossref] [PubMed]

2001 (1)

D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, “Observation of bound states of solitons in a passively mode-locked fiber laser,” Phys. Rev. A 64(3), 033814 (2001).
[Crossref]

2000 (1)

T. R. Schibli, E. R. Thoen, F. X. Kärtner, and E. P. Ippen, “Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption,” Appl. Phys. B 70(S1), S41–S49 (2000).
[Crossref]

1996 (2)

U. Keller, K. Weingarten, F. Kartner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (sesam’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

F. Di Pasquale, “Modeling of highly-efficient grating-feedback and Fabry-Perot Er3+-Yb3+ co-doped fiber lasers,” IEEE J. Quantum Electron. 32(2), 326–332 (1996).
[Crossref]

1995 (1)

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. G. Calasso, and U. Keller, “Control of solid state laser dynamics by semiconductor devices,” Opt. Eng. 34(7), 2024–2036 (1995).
[Crossref]

1992 (1)

1991 (1)

1976 (1)

H. A. Haus, “Parameter ranges for CW passive mode locking,” IEEE J. Quantum Electron. 12(3), 169–176 (1976).
[Crossref]

Akhmediev, N.

J. M. Soto-Crespo and N. Akhmediev, “Composite solitons and two-pulse generation in passively mode-locked lasers modeled by the complex quintic Swift-Hohenberg equation,” Phys. Rev. E 66(6), 066610 (2002).
[Crossref] [PubMed]

Al Araimi, M.

M. Chernysheva, A. Bednyakova, M. Al Araimi, R. C. Howe, G. Hu, T. Hasan, A. Gambetta, G. Galzerano, M. Rümmeli, and A. Rozhin, “Double-Wall Carbon Nanotube Hybrid Mode-Locker in Tm-doped Fibre Laser: A Novel Mechanism for Robust Bound-State Solitons Generation,” Sci. Rep. 7, 44314 (2017).
[Crossref] [PubMed]

Amrani, F.

R. S. Fodil, F. Amrani, C. Yang, A. Kellou, and Ph. Grelu, “Adjustable high-repetition-rate pulse trains in a passively-mode-locked fiber laser,” Phys. Rev. A 94(1), 013813 (2016).
[Crossref]

Andral, U.

K. Krupa, K. Nithyanandan, U. Andral, P. Tchofo-Dinda, and P. Grelu, “Real-Time Observation of Internal Motion within Ultrafast Dissipative Optical Soliton Molecules,” Phys. Rev. Lett. 118(24), 243901 (2017).
[Crossref] [PubMed]

Asom, M. T.

Aus der Au, J.

U. Keller, K. Weingarten, F. Kartner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (sesam’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Baer, C. R. E.

C. J. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, and U. Keller, “SESAMs for High-Power Oscillators: Design Guidelines and Damage Thresholds,” IEEE J. Sel. Top. Quantum Electron. 18(1), 29–41 (2012).
[Crossref]

Bao, C.

Barland, S.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11(6), 341–351 (2017).
[Crossref]

Bartels, A.

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326(5953), 681 (2009).
[Crossref] [PubMed]

L.-S. Ma, Z. Bi, A. Bartels, K. Kim, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Frequency uncertainty for optically referenced femtosecond laser frequency combs,” IEEE J. Quantum Electron. 43(2), 139–146 (2007).
[Crossref]

Bednyakova, A.

M. Chernysheva, A. Bednyakova, M. Al Araimi, R. C. Howe, G. Hu, T. Hasan, A. Gambetta, G. Galzerano, M. Rümmeli, and A. Rozhin, “Double-Wall Carbon Nanotube Hybrid Mode-Locker in Tm-doped Fibre Laser: A Novel Mechanism for Robust Bound-State Solitons Generation,” Sci. Rep. 7, 44314 (2017).
[Crossref] [PubMed]

Benedick, A. J.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Bi, Z.

L.-S. Ma, Z. Bi, A. Bartels, K. Kim, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Frequency uncertainty for optically referenced femtosecond laser frequency combs,” IEEE J. Quantum Electron. 43(2), 139–146 (2007).
[Crossref]

Boyd, G. D.

Brasch, V.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2014).
[Crossref]

Braun, B.

U. Keller, K. Weingarten, F. Kartner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (sesam’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Brida, D.

D. Brida, G. Krauss, A. Sell, and A. Leitenstorfer, “Ultrabroadband Er:fiber lasers,” Laser Photonics Rev. 8(3), 409–428 (2014).
[Crossref]

Brochard, P.

Broderick, N.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11(6), 341–351 (2017).
[Crossref]

Brovelli, L. R.

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. G. Calasso, and U. Keller, “Control of solid state laser dynamics by semiconductor devices,” Opt. Eng. 34(7), 2024–2036 (1995).
[Crossref]

Brown, C. T. A.

A. A. Lagatsky, C. G. Leburn, C. T. A. Brown, W. Sibbett, S. A. Zolotovskaya, and E. U. Rafailov, “Ultrashort-pulse lasers passively mode locked by quantum-dot-based saturable absorbers,” Prog. Quantum Electron. 34(1), 1–45 (2010).
[Crossref]

Calasso, I. G.

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. G. Calasso, and U. Keller, “Control of solid state laser dynamics by semiconductor devices,” Opt. Eng. 34(7), 2024–2036 (1995).
[Crossref]

Cao, H.

Y. Du, X. Shu, H. Cao, and P. Cheng, “Dynamics of dispersive wave and regimes of different kinds of sidebands generation in mode-locked soliton fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1101408 (2018).
[Crossref]

Chang, G.

Chavez-Pirson, A.

Chen, D.

Chen, H.-W.

Chen, S.

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9(9), 594–600 (2015).
[Crossref]

Cheng, H.

Cheng, H. H.

G. W. Tang, X. Wen, K. M. Huang, G. Q. Qian, W. Lin, H. H. Cheng, L. C. Jiang, Q. Qian, and Z. M. Yang, “Tm3+-doped barium gallo-germanate glass single-mode fiber with high gain per unit length for ultracompact 1.95 µm laser,” Appl. Phys. Express 11(3), 032701 (2018).
[Crossref]

Cheng, P.

Y. Du, X. Shu, H. Cao, and P. Cheng, “Dynamics of dispersive wave and regimes of different kinds of sidebands generation in mode-locked soliton fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1101408 (2018).
[Crossref]

Chernysheva, M.

M. Chernysheva, A. Bednyakova, M. Al Araimi, R. C. Howe, G. Hu, T. Hasan, A. Gambetta, G. Galzerano, M. Rümmeli, and A. Rozhin, “Double-Wall Carbon Nanotube Hybrid Mode-Locker in Tm-doped Fibre Laser: A Novel Mechanism for Robust Bound-State Solitons Generation,” Sci. Rep. 7, 44314 (2017).
[Crossref] [PubMed]

Chiu, T. H.

Churkin, D. V.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11(6), 341–351 (2017).
[Crossref]

Cleff, C.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Cundiff, S. T.

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4(11), 760–766 (2010).
[Crossref]

Di Pasquale, F.

F. Di Pasquale, “Modeling of highly-efficient grating-feedback and Fabry-Perot Er3+-Yb3+ co-doped fiber lasers,” IEEE J. Quantum Electron. 32(2), 326–332 (1996).
[Crossref]

Diddams, S. A.

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326(5953), 681 (2009).
[Crossref] [PubMed]

L.-S. Ma, Z. Bi, A. Bartels, K. Kim, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Frequency uncertainty for optically referenced femtosecond laser frequency combs,” IEEE J. Quantum Electron. 43(2), 139–146 (2007).
[Crossref]

Dobner, S.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Doubek, R.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Drummond, P. D.

D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, “Observation of bound states of solitons in a passively mode-locked fiber laser,” Phys. Rev. A 64(3), 033814 (2001).
[Crossref]

Du, Y.

Y. Du, X. Shu, H. Cao, and P. Cheng, “Dynamics of dispersive wave and regimes of different kinds of sidebands generation in mode-locked soliton fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1101408 (2018).
[Crossref]

Eden, J. G.

Egorov, O.

A. Zavyalov, R. Iliew, O. Egorov, and F. Lederer, “Discrete Family of Dissipative Soliton Pairs in Mode-Locked Fiber Lasers,” Phys. Rev. A 79(5), 053841 (2009).
[Crossref]

Fendel, P.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Feng, Z.

Feng, Z. M.

Ferguson, J. F.

Fischer, M.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Fluck, R.

U. Keller, K. Weingarten, F. Kartner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (sesam’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Fodil, R. S.

R. S. Fodil, F. Amrani, C. Yang, A. Kellou, and Ph. Grelu, “Adjustable high-repetition-rate pulse trains in a passively-mode-locked fiber laser,” Phys. Rev. A 94(1), 013813 (2016).
[Crossref]

Fu, B.

Galzerano, G.

M. Chernysheva, A. Bednyakova, M. Al Araimi, R. C. Howe, G. Hu, T. Hasan, A. Gambetta, G. Galzerano, M. Rümmeli, and A. Rozhin, “Double-Wall Carbon Nanotube Hybrid Mode-Locker in Tm-doped Fibre Laser: A Novel Mechanism for Robust Bound-State Solitons Generation,” Sci. Rep. 7, 44314 (2017).
[Crossref] [PubMed]

Gambetta, A.

M. Chernysheva, A. Bednyakova, M. Al Araimi, R. C. Howe, G. Hu, T. Hasan, A. Gambetta, G. Galzerano, M. Rümmeli, and A. Rozhin, “Double-Wall Carbon Nanotube Hybrid Mode-Locker in Tm-doped Fibre Laser: A Novel Mechanism for Robust Bound-State Solitons Generation,” Sci. Rep. 7, 44314 (2017).
[Crossref] [PubMed]

Gan, J.

Gao, X.

Giunta, M.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Glenday, A. G.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Goda, K.

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7(2), 102–112 (2013).
[Crossref]

Golling, M.

C. J. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, and U. Keller, “SESAMs for High-Power Oscillators: Design Guidelines and Damage Thresholds,” IEEE J. Sel. Top. Quantum Electron. 18(1), 29–41 (2012).
[Crossref]

Gorodetsky, M. L.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2014).
[Crossref]

Grange, R.

Grapinet, M.

Grelu, P.

Grelu, Ph.

R. S. Fodil, F. Amrani, C. Yang, A. Kellou, and Ph. Grelu, “Adjustable high-repetition-rate pulse trains in a passively-mode-locked fiber laser,” Phys. Rev. A 94(1), 013813 (2016).
[Crossref]

Griebner, U.

M. Moenster, U. Griebner, W. Richter, and G. Steinmeyer, “Resonant Saturable Absorber Mirrors for Dispersion Control in Ultrafast Lasers,” IEEE J. Quantum Electron. 43(2), 174–181 (2007).
[Crossref]

Guan, X.

Gürel, K.

Haider, Z.

Hakobyan, S.

Hänsel, W.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Hasan, T.

M. Chernysheva, A. Bednyakova, M. Al Araimi, R. C. Howe, G. Hu, T. Hasan, A. Gambetta, G. Galzerano, M. Rümmeli, and A. Rozhin, “Double-Wall Carbon Nanotube Hybrid Mode-Locker in Tm-doped Fibre Laser: A Novel Mechanism for Robust Bound-State Solitons Generation,” Sci. Rep. 7, 44314 (2017).
[Crossref] [PubMed]

Haus, H. A.

H. A. Haus, “Parameter ranges for CW passive mode locking,” IEEE J. Quantum Electron. 12(3), 169–176 (1976).
[Crossref]

He, W.

Heckl, O. H.

C. J. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, and U. Keller, “SESAMs for High-Power Oscillators: Design Guidelines and Damage Thresholds,” IEEE J. Sel. Top. Quantum Electron. 18(1), 29–41 (2012).
[Crossref]

Heinecke, D.

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326(5953), 681 (2009).
[Crossref] [PubMed]

Herink, G.

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356(6333), 50–54 (2017).
[Crossref] [PubMed]

Herr, T.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2014).
[Crossref]

Hoffmann, M.

C. J. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, and U. Keller, “SESAMs for High-Power Oscillators: Design Guidelines and Damage Thresholds,” IEEE J. Sel. Top. Quantum Electron. 18(1), 29–41 (2012).
[Crossref]

Hollberg, L.

L.-S. Ma, Z. Bi, A. Bartels, K. Kim, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Frequency uncertainty for optically referenced femtosecond laser frequency combs,” IEEE J. Quantum Electron. 43(2), 139–146 (2007).
[Crossref]

Holzwarth, R.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Honninger, C.

U. Keller, K. Weingarten, F. Kartner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (sesam’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Hoogland, H.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Howe, R. C.

M. Chernysheva, A. Bednyakova, M. Al Araimi, R. C. Howe, G. Hu, T. Hasan, A. Gambetta, G. Galzerano, M. Rümmeli, and A. Rozhin, “Double-Wall Carbon Nanotube Hybrid Mode-Locker in Tm-doped Fibre Laser: A Novel Mechanism for Robust Bound-State Solitons Generation,” Sci. Rep. 7, 44314 (2017).
[Crossref] [PubMed]

Hsu, K.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry–Pérot laser mode-locked using carbon nanotubes,” IEEE Photonics Technol. Lett. 17(4), 750–752 (2005).
[Crossref]

Hu, G.

M. Chernysheva, A. Bednyakova, M. Al Araimi, R. C. Howe, G. Hu, T. Hasan, A. Gambetta, G. Galzerano, M. Rümmeli, and A. Rozhin, “Double-Wall Carbon Nanotube Hybrid Mode-Locker in Tm-doped Fibre Laser: A Novel Mechanism for Robust Bound-State Solitons Generation,” Sci. Rep. 7, 44314 (2017).
[Crossref] [PubMed]

Huang, H.

Huang, K. M.

G. W. Tang, X. Wen, K. M. Huang, G. Q. Qian, W. Lin, H. H. Cheng, L. C. Jiang, Q. Qian, and Z. M. Yang, “Tm3+-doped barium gallo-germanate glass single-mode fiber with high gain per unit length for ultracompact 1.95 µm laser,” Appl. Phys. Express 11(3), 032701 (2018).
[Crossref]

Iliew, R.

A. Zavyalov, R. Iliew, O. Egorov, and F. Lederer, “Discrete Family of Dissipative Soliton Pairs in Mode-Locked Fiber Lasers,” Phys. Rev. A 79(5), 053841 (2009).
[Crossref]

Inoue, Y.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry–Pérot laser mode-locked using carbon nanotubes,” IEEE Photonics Technol. Lett. 17(4), 750–752 (2005).
[Crossref]

Ippen, E. P.

T. R. Schibli, E. R. Thoen, F. X. Kärtner, and E. P. Ippen, “Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption,” Appl. Phys. B 70(S1), S41–S49 (2000).
[Crossref]

Jablonski, M.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry–Pérot laser mode-locked using carbon nanotubes,” IEEE Photonics Technol. Lett. 17(4), 750–752 (2005).
[Crossref]

Jalali, B.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11(6), 341–351 (2017).
[Crossref]

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356(6333), 50–54 (2017).
[Crossref] [PubMed]

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7(2), 102–112 (2013).
[Crossref]

Jiang, L. C.

G. W. Tang, X. Wen, K. M. Huang, G. Q. Qian, W. Lin, H. H. Cheng, L. C. Jiang, Q. Qian, and Z. M. Yang, “Tm3+-doped barium gallo-germanate glass single-mode fiber with high gain per unit length for ultracompact 1.95 µm laser,” Appl. Phys. Express 11(3), 032701 (2018).
[Crossref]

Jiang, T.

Jiang, Z. H.

Jornod, N.

Jost, J. D.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2014).
[Crossref]

Jung, I.

U. Keller, K. Weingarten, F. Kartner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (sesam’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Kamp, M.

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. G. Calasso, and U. Keller, “Control of solid state laser dynamics by semiconductor devices,” Opt. Eng. 34(7), 2024–2036 (1995).
[Crossref]

Kartner, F.

U. Keller, K. Weingarten, F. Kartner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (sesam’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Kärtner, F. X.

J. Lim, H.-W. Chen, S. Xu, Z. Yang, G. Chang, and F. X. Kärtner, “3 GHz, watt-level femtosecond Raman soliton source,” Opt. Lett. 39(7), 2060–2063 (2014).
[Crossref] [PubMed]

H.-W. Chen, Z. Haider, J. Lim, S. Xu, Z. Yang, F. X. Kärtner, and G. Chang, “3 GHz, Yb-fiber laser-based, few-cycle ultrafast source at the Ti:sapphire laser wavelength,” Opt. Lett. 38(22), 4927–4930 (2013).
[Crossref] [PubMed]

H.-W. Chen, G. Chang, S. Xu, Z. Yang, and F. X. Kärtner, “3 GHz, fundamentally mode-locked, femtosecond Yb-fiber laser,” Opt. Lett. 37(17), 3522–3524 (2012).
[Crossref] [PubMed]

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

T. R. Schibli, E. R. Thoen, F. X. Kärtner, and E. P. Ippen, “Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption,” Appl. Phys. B 70(S1), S41–S49 (2000).
[Crossref]

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. G. Calasso, and U. Keller, “Control of solid state laser dynamics by semiconductor devices,” Opt. Eng. 34(7), 2024–2036 (1995).
[Crossref]

Kean, P. N.

Keller, U.

S. Hakobyan, V. J. Wittwer, P. Brochard, K. Gürel, S. Schilt, A. S. Mayer, U. Keller, and T. Südmeyer, “Full stabilization and characterization of an optical frequency comb from a diode-pumped solid-state laser with GHz repetition rate,” Opt. Express 25(17), 20437–20453 (2017).
[Crossref] [PubMed]

A. S. Mayer, C. R. Phillips, and U. Keller, “Watt-level 10-gigahertz solid-state laser enabled by self-defocusing nonlinearities in an aperiodically poled crystal,” Nat. Commun. 8(1), 1673 (2017).
[Crossref] [PubMed]

N. Jornod, K. Gürel, V. J. Wittwer, P. Brochard, S. Hakobyan, S. Schilt, D. Waldburger, U. Keller, and T. Südmeyer, “Carrier-envelope offset frequency stabilization of a gigahertz semiconductor disk laser,” Optica 4(12), 1482–1487 (2017).
[Crossref]

A. Klenner and U. Keller, “All-optical Q-switching limiter for high-power gigahertz modelocked diode-pumped solid-state lasers,” Opt. Express 23(7), 8532–8544 (2015).
[Crossref] [PubMed]

C. J. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, and U. Keller, “SESAMs for High-Power Oscillators: Design Guidelines and Damage Thresholds,” IEEE J. Sel. Top. Quantum Electron. 18(1), 29–41 (2012).
[Crossref]

A. E. H. Oehler, T. Südmeyer, K. J. Weingarten, and U. Keller, “100 GHz passively mode-locked Er:Yb:glass laser at 1.5 µm with 1.6-ps pulses,” Opt. Express 16(26), 21930–21935 (2008).
[Crossref] [PubMed]

A. Schlatter, S. C. Zeller, R. Grange, R. Paschotta, and U. Keller, “Pulse energy dynamics of passively mode-locked solid-state lasers above the Q-switching threshold,” J. Opt. Soc. Am. B 21(8), 1469–1478 (2004).
[Crossref]

U. Keller, K. Weingarten, F. Kartner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (sesam’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. G. Calasso, and U. Keller, “Control of solid state laser dynamics by semiconductor devices,” Opt. Eng. 34(7), 2024–2036 (1995).
[Crossref]

U. Keller, D. A. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber,” Opt. Lett. 17(7), 505–507 (1992).
[Crossref] [PubMed]

Kellou, A.

R. S. Fodil, F. Amrani, C. Yang, A. Kellou, and Ph. Grelu, “Adjustable high-repetition-rate pulse trains in a passively-mode-locked fiber laser,” Phys. Rev. A 94(1), 013813 (2016).
[Crossref]

Kim, J.

J. Kim and Y. Song, “Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications,” Adv. Opt. Photonics 8(3), 465–540 (2016).
[Crossref]

Kim, K.

L.-S. Ma, Z. Bi, A. Bartels, K. Kim, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Frequency uncertainty for optically referenced femtosecond laser frequency combs,” IEEE J. Quantum Electron. 43(2), 139–146 (2007).
[Crossref]

Kippenberg, T. J.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2014).
[Crossref]

Klenner, A.

Kondratiev, N. M.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2014).
[Crossref]

Kopf, D.

U. Keller, K. Weingarten, F. Kartner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (sesam’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. G. Calasso, and U. Keller, “Control of solid state laser dynamics by semiconductor devices,” Opt. Eng. 34(7), 2024–2036 (1995).
[Crossref]

Kotake, T.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry–Pérot laser mode-locked using carbon nanotubes,” IEEE Photonics Technol. Lett. 17(4), 750–752 (2005).
[Crossref]

Krauss, G.

D. Brida, G. Krauss, A. Sell, and A. Leitenstorfer, “Ultrabroadband Er:fiber lasers,” Laser Photonics Rev. 8(3), 409–428 (2014).
[Crossref]

Krupa, K.

K. Krupa, K. Nithyanandan, U. Andral, P. Tchofo-Dinda, and P. Grelu, “Real-Time Observation of Internal Motion within Ultrafast Dissipative Optical Soliton Molecules,” Phys. Rev. Lett. 118(24), 243901 (2017).
[Crossref] [PubMed]

Kurtz, F.

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356(6333), 50–54 (2017).
[Crossref] [PubMed]

Lagatsky, A. A.

A. A. Lagatsky, C. G. Leburn, C. T. A. Brown, W. Sibbett, S. A. Zolotovskaya, and E. U. Rafailov, “Ultrashort-pulse lasers passively mode locked by quantum-dot-based saturable absorbers,” Prog. Quantum Electron. 34(1), 1–45 (2010).
[Crossref]

Leaird, D. E.

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9(9), 594–600 (2015).
[Crossref]

Leburn, C. G.

A. A. Lagatsky, C. G. Leburn, C. T. A. Brown, W. Sibbett, S. A. Zolotovskaya, and E. U. Rafailov, “Ultrashort-pulse lasers passively mode locked by quantum-dot-based saturable absorbers,” Prog. Quantum Electron. 34(1), 1–45 (2010).
[Crossref]

Lederer, F.

A. Zavyalov, R. Iliew, O. Egorov, and F. Lederer, “Discrete Family of Dissipative Soliton Pairs in Mode-Locked Fiber Lasers,” Phys. Rev. A 79(5), 053841 (2009).
[Crossref]

Leitenstorfer, A.

D. Brida, G. Krauss, A. Sell, and A. Leitenstorfer, “Ultrabroadband Er:fiber lasers,” Laser Photonics Rev. 8(3), 409–428 (2014).
[Crossref]

Li, C.

Li, C.-H.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Lim, J.

Lin, W.

H. Cheng, W. Lin, Z. Luo, and Z. Yang, “Passively mode-locked Tm3+-doped fiber laser with gigahertz fundamental repetition rate,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1100106 (2018).
[Crossref]

G. W. Tang, X. Wen, K. M. Huang, G. Q. Qian, W. Lin, H. H. Cheng, L. C. Jiang, Q. Qian, and Z. M. Yang, “Tm3+-doped barium gallo-germanate glass single-mode fiber with high gain per unit length for ultracompact 1.95 µm laser,” Appl. Phys. Express 11(3), 032701 (2018).
[Crossref]

H. Cheng, Y. Zhou, A. E. Mironov, W. Wang, T. Qiao, W. Lin, Q. Qian, S. Xu, Z. Yang, and J. G. Eden, “Mode suppression of 53 dB and pulse repetition rates of 2.87 and 36.4 GHz in a compact, mode-locked fiber laser comprising coupled Fabry-Perot cavities of low finesse (F = 2),” Opt. Express 25(20), 24400–24409 (2017).
[Crossref] [PubMed]

H. Cheng, W. Wang, Y. Zhou, T. Qiao, W. Lin, S. Xu, and Z. Yang, “5 GHz fundamental repetition rate, wavelength tunable, all-fiber passively mode-locked Yb-fiber laser,” Opt. Express 25(22), 27646–27651 (2017).
[Crossref] [PubMed]

H. Cheng, W. Wang, Y. Zhou, T. Qiao, W. Lin, S. Xu, and Z. Yang, “Investigation of rectangular shaped wave packet dynamics in a high-repetition-rate ultrafast fiber laser,” Opt. Express 25(17), 20125–20132 (2017).
[Crossref] [PubMed]

C. Yang, X. Guan, W. Lin, Q. Zhao, G. Tang, J. Gan, Q. Qian, Z. Feng, Z. Yang, and S. Xu, “Efficient 1.6 μm linearly-polarized single-frequency phosphate glass fiber laser,” Opt. Express 25(23), 29078–29085 (2017).
[Crossref]

H. Cheng, W. Lin, T. Qiao, S. Xu, and Z. Yang, “Theoretical and experimental analysis of instability of continuous wave mode locking: Towards high fundamental repetition rate in Tm3+-doped fiber lasers,” Opt. Express 24(26), 29882–29895 (2016).
[Crossref] [PubMed]

Liu, T.

Liu, Y.

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9(9), 594–600 (2015).
[Crossref]

Luo, Z.

H. Cheng, W. Lin, Z. Luo, and Z. Yang, “Passively mode-locked Tm3+-doped fiber laser with gigahertz fundamental repetition rate,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1100106 (2018).
[Crossref]

Ma, L.-S.

L.-S. Ma, Z. Bi, A. Bartels, K. Kim, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Frequency uncertainty for optically referenced femtosecond laser frequency combs,” IEEE J. Quantum Electron. 43(2), 139–146 (2007).
[Crossref]

Ma, Y.

Mahjoubfar, A.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11(6), 341–351 (2017).
[Crossref]

Man, W. S.

D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, “Observation of bound states of solitons in a passively mode-locked fiber laser,” Phys. Rev. A 64(3), 033814 (2001).
[Crossref]

Mangold, M.

C. J. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, and U. Keller, “SESAMs for High-Power Oscillators: Design Guidelines and Damage Thresholds,” IEEE J. Sel. Top. Quantum Electron. 18(1), 29–41 (2012).
[Crossref]

Martinez, A.

A. Martinez and S. Yamashita, “10 GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett. 101(4), 041118 (2012).
[Crossref]

A. Martinez and S. Yamashita, “Multi-Gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express 19(7), 6155–6163 (2011).
[Crossref] [PubMed]

Matuschek, N.

U. Keller, K. Weingarten, F. Kartner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (sesam’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Mayer, A. S.

Mayer, P.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Menyuk, C. R.

Miller, D. A.

Mironov, A. E.

Moenster, M.

M. Moenster, U. Griebner, W. Richter, and G. Steinmeyer, “Resonant Saturable Absorber Mirrors for Dispersion Control in Ultrafast Lasers,” IEEE J. Quantum Electron. 43(2), 174–181 (2007).
[Crossref]

Nguyen, D.

Nithyanandan, K.

K. Krupa, K. Nithyanandan, U. Andral, P. Tchofo-Dinda, and P. Grelu, “Real-Time Observation of Internal Motion within Ultrafast Dissipative Optical Soliton Molecules,” Phys. Rev. Lett. 118(24), 243901 (2017).
[Crossref] [PubMed]

Niu, F.

Oates, C.

L.-S. Ma, Z. Bi, A. Bartels, K. Kim, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Frequency uncertainty for optically referenced femtosecond laser frequency combs,” IEEE J. Quantum Electron. 43(2), 139–146 (2007).
[Crossref]

Oehler, A. E. H.

Pang, M.

Paschotta, R.

Peng, M.

Phillips, C. R.

A. S. Mayer, C. R. Phillips, and U. Keller, “Watt-level 10-gigahertz solid-state laser enabled by self-defocusing nonlinearities in an aperiodically poled crystal,” Nat. Commun. 8(1), 1673 (2017).
[Crossref] [PubMed]

Phillips, D. F.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Qi, M.

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9(9), 594–600 (2015).
[Crossref]

Qian, G. Q.

G. W. Tang, X. Wen, K. M. Huang, G. Q. Qian, W. Lin, H. H. Cheng, L. C. Jiang, Q. Qian, and Z. M. Yang, “Tm3+-doped barium gallo-germanate glass single-mode fiber with high gain per unit length for ultracompact 1.95 µm laser,” Appl. Phys. Express 11(3), 032701 (2018).
[Crossref]

Qian, Q.

Qiao, T.

Qiu, J.

Rafailov, E. U.

A. A. Lagatsky, C. G. Leburn, C. T. A. Brown, W. Sibbett, S. A. Zolotovskaya, and E. U. Rafailov, “Ultrashort-pulse lasers passively mode locked by quantum-dot-based saturable absorbers,” Prog. Quantum Electron. 34(1), 1–45 (2010).
[Crossref]

Richter, W.

M. Moenster, U. Griebner, W. Richter, and G. Steinmeyer, “Resonant Saturable Absorber Mirrors for Dispersion Control in Ultrafast Lasers,” IEEE J. Quantum Electron. 43(2), 174–181 (2007).
[Crossref]

Robertsson, L.

L.-S. Ma, Z. Bi, A. Bartels, K. Kim, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Frequency uncertainty for optically referenced femtosecond laser frequency combs,” IEEE J. Quantum Electron. 43(2), 139–146 (2007).
[Crossref]

Ropers, C.

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356(6333), 50–54 (2017).
[Crossref] [PubMed]

Rozhin, A.

M. Chernysheva, A. Bednyakova, M. Al Araimi, R. C. Howe, G. Hu, T. Hasan, A. Gambetta, G. Galzerano, M. Rümmeli, and A. Rozhin, “Double-Wall Carbon Nanotube Hybrid Mode-Locker in Tm-doped Fibre Laser: A Novel Mechanism for Robust Bound-State Solitons Generation,” Sci. Rep. 7, 44314 (2017).
[Crossref] [PubMed]

Rümmeli, M.

M. Chernysheva, A. Bednyakova, M. Al Araimi, R. C. Howe, G. Hu, T. Hasan, A. Gambetta, G. Galzerano, M. Rümmeli, and A. Rozhin, “Double-Wall Carbon Nanotube Hybrid Mode-Locker in Tm-doped Fibre Laser: A Novel Mechanism for Robust Bound-State Solitons Generation,” Sci. Rep. 7, 44314 (2017).
[Crossref] [PubMed]

Saraceno, C. J.

C. J. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, and U. Keller, “SESAMs for High-Power Oscillators: Design Guidelines and Damage Thresholds,” IEEE J. Sel. Top. Quantum Electron. 18(1), 29–41 (2012).
[Crossref]

Sasselov, D.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Schibli, T. R.

T. R. Schibli, E. R. Thoen, F. X. Kärtner, and E. P. Ippen, “Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption,” Appl. Phys. B 70(S1), S41–S49 (2000).
[Crossref]

Schilt, S.

Schlatter, A.

Schmid, S.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Schriber, C.

C. J. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, and U. Keller, “SESAMs for High-Power Oscillators: Design Guidelines and Damage Thresholds,” IEEE J. Sel. Top. Quantum Electron. 18(1), 29–41 (2012).
[Crossref]

Sell, A.

D. Brida, G. Krauss, A. Sell, and A. Leitenstorfer, “Ultrabroadband Er:fiber lasers,” Laser Photonics Rev. 8(3), 409–428 (2014).
[Crossref]

Set, S. Y.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry–Pérot laser mode-locked using carbon nanotubes,” IEEE Photonics Technol. Lett. 17(4), 750–752 (2005).
[Crossref]

Shen, S.

Shu, X.

Y. Du, X. Shu, H. Cao, and P. Cheng, “Dynamics of dispersive wave and regimes of different kinds of sidebands generation in mode-locked soliton fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1101408 (2018).
[Crossref]

Sibbett, W.

A. A. Lagatsky, C. G. Leburn, C. T. A. Brown, W. Sibbett, S. A. Zolotovskaya, and E. U. Rafailov, “Ultrashort-pulse lasers passively mode locked by quantum-dot-based saturable absorbers,” Prog. Quantum Electron. 34(1), 1–45 (2010).
[Crossref]

D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 16(1), 42–44 (1991).
[Crossref] [PubMed]

Solli, D. R.

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356(6333), 50–54 (2017).
[Crossref] [PubMed]

Song, Y.

J. Kim and Y. Song, “Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications,” Adv. Opt. Photonics 8(3), 465–540 (2016).
[Crossref]

Soto-Crespo, J. M.

J. M. Soto-Crespo and N. Akhmediev, “Composite solitons and two-pulse generation in passively mode-locked lasers modeled by the complex quintic Swift-Hohenberg equation,” Phys. Rev. E 66(6), 066610 (2002).
[Crossref] [PubMed]

Spence, D. E.

St. J. Russell, P.

Steinmetz, T.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Steinmeyer, G.

M. Moenster, U. Griebner, W. Richter, and G. Steinmeyer, “Resonant Saturable Absorber Mirrors for Dispersion Control in Ultrafast Lasers,” IEEE J. Quantum Electron. 43(2), 174–181 (2007).
[Crossref]

Südmeyer, T.

Szentgyorgyi, A.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Tam, H. Y.

D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, “Observation of bound states of solitons in a passively mode-locked fiber laser,” Phys. Rev. A 64(3), 033814 (2001).
[Crossref]

Tanaka, D.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry–Pérot laser mode-locked using carbon nanotubes,” IEEE Photonics Technol. Lett. 17(4), 750–752 (2005).
[Crossref]

Tang, D. Y.

D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, “Observation of bound states of solitons in a passively mode-locked fiber laser,” Phys. Rev. A 64(3), 033814 (2001).
[Crossref]

Tang, G.

Tang, G. W.

G. W. Tang, X. Wen, K. M. Huang, G. Q. Qian, W. Lin, H. H. Cheng, L. C. Jiang, Q. Qian, and Z. M. Yang, “Tm3+-doped barium gallo-germanate glass single-mode fiber with high gain per unit length for ultracompact 1.95 µm laser,” Appl. Phys. Express 11(3), 032701 (2018).
[Crossref]

Tchofo-Dinda, P.

K. Krupa, K. Nithyanandan, U. Andral, P. Tchofo-Dinda, and P. Grelu, “Real-Time Observation of Internal Motion within Ultrafast Dissipative Optical Soliton Molecules,” Phys. Rev. Lett. 118(24), 243901 (2017).
[Crossref] [PubMed]

Thapa, R.

Thoen, E. R.

T. R. Schibli, E. R. Thoen, F. X. Kärtner, and E. P. Ippen, “Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption,” Appl. Phys. B 70(S1), S41–S49 (2000).
[Crossref]

Turitsyn, S. K.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11(6), 341–351 (2017).
[Crossref]

Waldburger, D.

Walsworth, R. L.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Wang, A.

Wang, C. Y.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2014).
[Crossref]

Wang, G.

Wang, J.

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9(9), 594–600 (2015).
[Crossref]

Wang, P.

Wang, P.-H.

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9(9), 594–600 (2015).
[Crossref]

Wang, W.

Wei, X.

Weiner, A. M.

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9(9), 594–600 (2015).
[Crossref]

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4(11), 760–766 (2010).
[Crossref]

Weingarten, K.

U. Keller, K. Weingarten, F. Kartner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (sesam’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Weingarten, K. J.

Wen, X.

G. W. Tang, X. Wen, K. M. Huang, G. Q. Qian, W. Lin, H. H. Cheng, L. C. Jiang, Q. Qian, and Z. M. Yang, “Tm3+-doped barium gallo-germanate glass single-mode fiber with high gain per unit length for ultracompact 1.95 µm laser,” Appl. Phys. Express 11(3), 032701 (2018).
[Crossref]

Wilpers, G.

L.-S. Ma, Z. Bi, A. Bartels, K. Kim, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Frequency uncertainty for optically referenced femtosecond laser frequency combs,” IEEE J. Quantum Electron. 43(2), 139–146 (2007).
[Crossref]

Windeler, R. S.

L.-S. Ma, Z. Bi, A. Bartels, K. Kim, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Frequency uncertainty for optically referenced femtosecond laser frequency combs,” IEEE J. Quantum Electron. 43(2), 139–146 (2007).
[Crossref]

Wittwer, V. J.

Xiao, X.

Xu, S.

H. Cheng, W. Wang, Y. Zhou, T. Qiao, W. Lin, S. Xu, and Z. Yang, “Investigation of rectangular shaped wave packet dynamics in a high-repetition-rate ultrafast fiber laser,” Opt. Express 25(17), 20125–20132 (2017).
[Crossref] [PubMed]

H. Cheng, W. Wang, Y. Zhou, T. Qiao, W. Lin, S. Xu, and Z. Yang, “5 GHz fundamental repetition rate, wavelength tunable, all-fiber passively mode-locked Yb-fiber laser,” Opt. Express 25(22), 27646–27651 (2017).
[Crossref] [PubMed]

H. Cheng, Y. Zhou, A. E. Mironov, W. Wang, T. Qiao, W. Lin, Q. Qian, S. Xu, Z. Yang, and J. G. Eden, “Mode suppression of 53 dB and pulse repetition rates of 2.87 and 36.4 GHz in a compact, mode-locked fiber laser comprising coupled Fabry-Perot cavities of low finesse (F = 2),” Opt. Express 25(20), 24400–24409 (2017).
[Crossref] [PubMed]

C. Yang, X. Guan, W. Lin, Q. Zhao, G. Tang, J. Gan, Q. Qian, Z. Feng, Z. Yang, and S. Xu, “Efficient 1.6 μm linearly-polarized single-frequency phosphate glass fiber laser,” Opt. Express 25(23), 29078–29085 (2017).
[Crossref]

H. Cheng, W. Lin, T. Qiao, S. Xu, and Z. Yang, “Theoretical and experimental analysis of instability of continuous wave mode locking: Towards high fundamental repetition rate in Tm3+-doped fiber lasers,” Opt. Express 24(26), 29882–29895 (2016).
[Crossref] [PubMed]

J. Lim, H.-W. Chen, S. Xu, Z. Yang, G. Chang, and F. X. Kärtner, “3 GHz, watt-level femtosecond Raman soliton source,” Opt. Lett. 39(7), 2060–2063 (2014).
[Crossref] [PubMed]

H.-W. Chen, Z. Haider, J. Lim, S. Xu, Z. Yang, F. X. Kärtner, and G. Chang, “3 GHz, Yb-fiber laser-based, few-cycle ultrafast source at the Ti:sapphire laser wavelength,” Opt. Lett. 38(22), 4927–4930 (2013).
[Crossref] [PubMed]

X. Wei, S. Xu, H. Huang, M. Peng, and Z. Yang, “Compact all-fiber ring femtosecond laser with high fundamental repetition rate,” Opt. Express 20(22), 24607–24613 (2012).
[Crossref] [PubMed]

H.-W. Chen, G. Chang, S. Xu, Z. Yang, and F. X. Kärtner, “3 GHz, fundamentally mode-locked, femtosecond Yb-fiber laser,” Opt. Lett. 37(17), 3522–3524 (2012).
[Crossref] [PubMed]

S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, “400 mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser,” Opt. Lett. 36(18), 3708–3710 (2011).
[Crossref] [PubMed]

Xu, S. H.

Xuan, Y.

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9(9), 594–600 (2015).
[Crossref]

Xue, X.

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9(9), 594–600 (2015).
[Crossref]

Yaguchi, H.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry–Pérot laser mode-locked using carbon nanotubes,” IEEE Photonics Technol. Lett. 17(4), 750–752 (2005).
[Crossref]

Yamashita, S.

A. Martinez and S. Yamashita, “10 GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett. 101(4), 041118 (2012).
[Crossref]

A. Martinez and S. Yamashita, “Multi-Gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express 19(7), 6155–6163 (2011).
[Crossref] [PubMed]

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry–Pérot laser mode-locked using carbon nanotubes,” IEEE Photonics Technol. Lett. 17(4), 750–752 (2005).
[Crossref]

Yang, C.

Yang, Z.

H. Cheng, W. Lin, Z. Luo, and Z. Yang, “Passively mode-locked Tm3+-doped fiber laser with gigahertz fundamental repetition rate,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1100106 (2018).
[Crossref]

H. Cheng, W. Wang, Y. Zhou, T. Qiao, W. Lin, S. Xu, and Z. Yang, “Investigation of rectangular shaped wave packet dynamics in a high-repetition-rate ultrafast fiber laser,” Opt. Express 25(17), 20125–20132 (2017).
[Crossref] [PubMed]

H. Cheng, Y. Zhou, A. E. Mironov, W. Wang, T. Qiao, W. Lin, Q. Qian, S. Xu, Z. Yang, and J. G. Eden, “Mode suppression of 53 dB and pulse repetition rates of 2.87 and 36.4 GHz in a compact, mode-locked fiber laser comprising coupled Fabry-Perot cavities of low finesse (F = 2),” Opt. Express 25(20), 24400–24409 (2017).
[Crossref] [PubMed]

H. Cheng, W. Wang, Y. Zhou, T. Qiao, W. Lin, S. Xu, and Z. Yang, “5 GHz fundamental repetition rate, wavelength tunable, all-fiber passively mode-locked Yb-fiber laser,” Opt. Express 25(22), 27646–27651 (2017).
[Crossref] [PubMed]

C. Yang, X. Guan, W. Lin, Q. Zhao, G. Tang, J. Gan, Q. Qian, Z. Feng, Z. Yang, and S. Xu, “Efficient 1.6 μm linearly-polarized single-frequency phosphate glass fiber laser,” Opt. Express 25(23), 29078–29085 (2017).
[Crossref]

H. Cheng, W. Lin, T. Qiao, S. Xu, and Z. Yang, “Theoretical and experimental analysis of instability of continuous wave mode locking: Towards high fundamental repetition rate in Tm3+-doped fiber lasers,” Opt. Express 24(26), 29882–29895 (2016).
[Crossref] [PubMed]

J. Lim, H.-W. Chen, S. Xu, Z. Yang, G. Chang, and F. X. Kärtner, “3 GHz, watt-level femtosecond Raman soliton source,” Opt. Lett. 39(7), 2060–2063 (2014).
[Crossref] [PubMed]

H.-W. Chen, Z. Haider, J. Lim, S. Xu, Z. Yang, F. X. Kärtner, and G. Chang, “3 GHz, Yb-fiber laser-based, few-cycle ultrafast source at the Ti:sapphire laser wavelength,” Opt. Lett. 38(22), 4927–4930 (2013).
[Crossref] [PubMed]

H.-W. Chen, G. Chang, S. Xu, Z. Yang, and F. X. Kärtner, “3 GHz, fundamentally mode-locked, femtosecond Yb-fiber laser,” Opt. Lett. 37(17), 3522–3524 (2012).
[Crossref] [PubMed]

X. Wei, S. Xu, H. Huang, M. Peng, and Z. Yang, “Compact all-fiber ring femtosecond laser with high fundamental repetition rate,” Opt. Express 20(22), 24607–24613 (2012).
[Crossref] [PubMed]

S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, “400 mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser,” Opt. Lett. 36(18), 3708–3710 (2011).
[Crossref] [PubMed]

Yang, Z. M.

G. W. Tang, X. Wen, K. M. Huang, G. Q. Qian, W. Lin, H. H. Cheng, L. C. Jiang, Q. Qian, and Z. M. Yang, “Tm3+-doped barium gallo-germanate glass single-mode fiber with high gain per unit length for ultracompact 1.95 µm laser,” Appl. Phys. Express 11(3), 032701 (2018).
[Crossref]

S. H. Xu, Z. M. Yang, T. Liu, W. N. Zhang, Z. M. Feng, Q. Y. Zhang, and Z. H. Jiang, “An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 microm,” Opt. Express 18(2), 1249–1254 (2010).
[Crossref] [PubMed]

Zavyalov, A.

A. Zavyalov, R. Iliew, O. Egorov, and F. Lederer, “Discrete Family of Dissipative Soliton Pairs in Mode-Locked Fiber Lasers,” Phys. Rev. A 79(5), 053841 (2009).
[Crossref]

Zeller, S. C.

Zhang, Q.

Zhang, Q. Y.

Zhang, W.

Zhang, W. N.

Zhang, Z.

Zhao, Q.

Zhou, Y.

Zolotovskaya, S. A.

A. A. Lagatsky, C. G. Leburn, C. T. A. Brown, W. Sibbett, S. A. Zolotovskaya, and E. U. Rafailov, “Ultrashort-pulse lasers passively mode locked by quantum-dot-based saturable absorbers,” Prog. Quantum Electron. 34(1), 1–45 (2010).
[Crossref]

Zong, J.

Zucco, M.

L.-S. Ma, Z. Bi, A. Bartels, K. Kim, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Frequency uncertainty for optically referenced femtosecond laser frequency combs,” IEEE J. Quantum Electron. 43(2), 139–146 (2007).
[Crossref]

Adv. Opt. Photonics (1)

J. Kim and Y. Song, “Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications,” Adv. Opt. Photonics 8(3), 465–540 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (2)

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

T. R. Schibli, E. R. Thoen, F. X. Kärtner, and E. P. Ippen, “Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption,” Appl. Phys. B 70(S1), S41–S49 (2000).
[Crossref]

Appl. Phys. Express (1)

G. W. Tang, X. Wen, K. M. Huang, G. Q. Qian, W. Lin, H. H. Cheng, L. C. Jiang, Q. Qian, and Z. M. Yang, “Tm3+-doped barium gallo-germanate glass single-mode fiber with high gain per unit length for ultracompact 1.95 µm laser,” Appl. Phys. Express 11(3), 032701 (2018).
[Crossref]

Appl. Phys. Lett. (1)

A. Martinez and S. Yamashita, “10 GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett. 101(4), 041118 (2012).
[Crossref]

IEEE J. Quantum Electron. (4)

H. A. Haus, “Parameter ranges for CW passive mode locking,” IEEE J. Quantum Electron. 12(3), 169–176 (1976).
[Crossref]

L.-S. Ma, Z. Bi, A. Bartels, K. Kim, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Frequency uncertainty for optically referenced femtosecond laser frequency combs,” IEEE J. Quantum Electron. 43(2), 139–146 (2007).
[Crossref]

M. Moenster, U. Griebner, W. Richter, and G. Steinmeyer, “Resonant Saturable Absorber Mirrors for Dispersion Control in Ultrafast Lasers,” IEEE J. Quantum Electron. 43(2), 174–181 (2007).
[Crossref]

F. Di Pasquale, “Modeling of highly-efficient grating-feedback and Fabry-Perot Er3+-Yb3+ co-doped fiber lasers,” IEEE J. Quantum Electron. 32(2), 326–332 (1996).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (4)

C. J. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, and U. Keller, “SESAMs for High-Power Oscillators: Design Guidelines and Damage Thresholds,” IEEE J. Sel. Top. Quantum Electron. 18(1), 29–41 (2012).
[Crossref]

Y. Du, X. Shu, H. Cao, and P. Cheng, “Dynamics of dispersive wave and regimes of different kinds of sidebands generation in mode-locked soliton fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1101408 (2018).
[Crossref]

U. Keller, K. Weingarten, F. Kartner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (sesam’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

H. Cheng, W. Lin, Z. Luo, and Z. Yang, “Passively mode-locked Tm3+-doped fiber laser with gigahertz fundamental repetition rate,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1100106 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry–Pérot laser mode-locked using carbon nanotubes,” IEEE Photonics Technol. Lett. 17(4), 750–752 (2005).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

D. Brida, G. Krauss, A. Sell, and A. Leitenstorfer, “Ultrabroadband Er:fiber lasers,” Laser Photonics Rev. 8(3), 409–428 (2014).
[Crossref]

Nat. Commun. (1)

A. S. Mayer, C. R. Phillips, and U. Keller, “Watt-level 10-gigahertz solid-state laser enabled by self-defocusing nonlinearities in an aperiodically poled crystal,” Nat. Commun. 8(1), 1673 (2017).
[Crossref] [PubMed]

Nat. Photonics (5)

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11(6), 341–351 (2017).
[Crossref]

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7(2), 102–112 (2013).
[Crossref]

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4(11), 760–766 (2010).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8(2), 145–152 (2014).
[Crossref]

X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse Kerr combs in normal-dispersion microresonators,” Nat. Photonics 9(9), 594–600 (2015).
[Crossref]

Nature (1)

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature 452(7187), 610–612 (2008).
[Crossref] [PubMed]

Opt. Eng. (1)

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. G. Calasso, and U. Keller, “Control of solid state laser dynamics by semiconductor devices,” Opt. Eng. 34(7), 2024–2036 (1995).
[Crossref]

Opt. Express (11)

H. Cheng, W. Lin, T. Qiao, S. Xu, and Z. Yang, “Theoretical and experimental analysis of instability of continuous wave mode locking: Towards high fundamental repetition rate in Tm3+-doped fiber lasers,” Opt. Express 24(26), 29882–29895 (2016).
[Crossref] [PubMed]

H. Cheng, W. Wang, Y. Zhou, T. Qiao, W. Lin, S. Xu, and Z. Yang, “5 GHz fundamental repetition rate, wavelength tunable, all-fiber passively mode-locked Yb-fiber laser,” Opt. Express 25(22), 27646–27651 (2017).
[Crossref] [PubMed]

A. Martinez and S. Yamashita, “Multi-Gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express 19(7), 6155–6163 (2011).
[Crossref] [PubMed]

A. E. H. Oehler, T. Südmeyer, K. J. Weingarten, and U. Keller, “100 GHz passively mode-locked Er:Yb:glass laser at 1.5 µm with 1.6-ps pulses,” Opt. Express 16(26), 21930–21935 (2008).
[Crossref] [PubMed]

X. Wei, S. Xu, H. Huang, M. Peng, and Z. Yang, “Compact all-fiber ring femtosecond laser with high fundamental repetition rate,” Opt. Express 20(22), 24607–24613 (2012).
[Crossref] [PubMed]

H. Cheng, Y. Zhou, A. E. Mironov, W. Wang, T. Qiao, W. Lin, Q. Qian, S. Xu, Z. Yang, and J. G. Eden, “Mode suppression of 53 dB and pulse repetition rates of 2.87 and 36.4 GHz in a compact, mode-locked fiber laser comprising coupled Fabry-Perot cavities of low finesse (F = 2),” Opt. Express 25(20), 24400–24409 (2017).
[Crossref] [PubMed]

A. Klenner and U. Keller, “All-optical Q-switching limiter for high-power gigahertz modelocked diode-pumped solid-state lasers,” Opt. Express 23(7), 8532–8544 (2015).
[Crossref] [PubMed]

S. Hakobyan, V. J. Wittwer, P. Brochard, K. Gürel, S. Schilt, A. S. Mayer, U. Keller, and T. Südmeyer, “Full stabilization and characterization of an optical frequency comb from a diode-pumped solid-state laser with GHz repetition rate,” Opt. Express 25(17), 20437–20453 (2017).
[Crossref] [PubMed]

S. H. Xu, Z. M. Yang, T. Liu, W. N. Zhang, Z. M. Feng, Q. Y. Zhang, and Z. H. Jiang, “An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 microm,” Opt. Express 18(2), 1249–1254 (2010).
[Crossref] [PubMed]

C. Yang, X. Guan, W. Lin, Q. Zhao, G. Tang, J. Gan, Q. Qian, Z. Feng, Z. Yang, and S. Xu, “Efficient 1.6 μm linearly-polarized single-frequency phosphate glass fiber laser,” Opt. Express 25(23), 29078–29085 (2017).
[Crossref]

H. Cheng, W. Wang, Y. Zhou, T. Qiao, W. Lin, S. Xu, and Z. Yang, “Investigation of rectangular shaped wave packet dynamics in a high-repetition-rate ultrafast fiber laser,” Opt. Express 25(17), 20125–20132 (2017).
[Crossref] [PubMed]

Opt. Lett. (11)

U. Keller, D. A. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber,” Opt. Lett. 17(7), 505–507 (1992).
[Crossref] [PubMed]

M. Grapinet and P. Grelu, “Vibrating soliton pairs in a mode-locked laser cavity,” Opt. Lett. 31(14), 2115–2117 (2006).
[Crossref] [PubMed]

P. Wang, C. Bao, B. Fu, X. Xiao, P. Grelu, and C. Yang, “Generation of wavelength-tunable soliton molecules in a 2-μm ultrafast all-fiber laser based on nonlinear polarization evolution,” Opt. Lett. 41(10), 2254–2257 (2016).
[Crossref] [PubMed]

S. Hakobyan, V. J. Wittwer, K. Gürel, A. S. Mayer, S. Schilt, and T. Südmeyer, “Carrier-envelope offset stabilization of a GHz repetition rate femtosecond laser using opto-optical modulation of a SESAM,” Opt. Lett. 42(22), 4651–4654 (2017).
[Crossref] [PubMed]

S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, “400 mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser,” Opt. Lett. 36(18), 3708–3710 (2011).
[Crossref] [PubMed]

D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 16(1), 42–44 (1991).
[Crossref] [PubMed]

C. Li, G. Wang, T. Jiang, A. Wang, and Z. Zhang, “750 MHz fundamental repetition rate femtosecond Yb:fiber ring laser,” Opt. Lett. 38(3), 314–316 (2013).
[Crossref] [PubMed]

R. Thapa, D. Nguyen, J. Zong, and A. Chavez-Pirson, “All-fiber fundamentally mode-locked 12 GHz laser oscillator based on an Er/Yb-doped phosphate glass fiber,” Opt. Lett. 39(6), 1418–1421 (2014).
[Crossref] [PubMed]

H.-W. Chen, G. Chang, S. Xu, Z. Yang, and F. X. Kärtner, “3 GHz, fundamentally mode-locked, femtosecond Yb-fiber laser,” Opt. Lett. 37(17), 3522–3524 (2012).
[Crossref] [PubMed]

H.-W. Chen, Z. Haider, J. Lim, S. Xu, Z. Yang, F. X. Kärtner, and G. Chang, “3 GHz, Yb-fiber laser-based, few-cycle ultrafast source at the Ti:sapphire laser wavelength,” Opt. Lett. 38(22), 4927–4930 (2013).
[Crossref] [PubMed]

J. Lim, H.-W. Chen, S. Xu, Z. Yang, G. Chang, and F. X. Kärtner, “3 GHz, watt-level femtosecond Raman soliton source,” Opt. Lett. 39(7), 2060–2063 (2014).
[Crossref] [PubMed]

Optica (2)

Phys. Rev. A (3)

R. S. Fodil, F. Amrani, C. Yang, A. Kellou, and Ph. Grelu, “Adjustable high-repetition-rate pulse trains in a passively-mode-locked fiber laser,” Phys. Rev. A 94(1), 013813 (2016).
[Crossref]

D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, “Observation of bound states of solitons in a passively mode-locked fiber laser,” Phys. Rev. A 64(3), 033814 (2001).
[Crossref]

A. Zavyalov, R. Iliew, O. Egorov, and F. Lederer, “Discrete Family of Dissipative Soliton Pairs in Mode-Locked Fiber Lasers,” Phys. Rev. A 79(5), 053841 (2009).
[Crossref]

Phys. Rev. E (1)

J. M. Soto-Crespo and N. Akhmediev, “Composite solitons and two-pulse generation in passively mode-locked lasers modeled by the complex quintic Swift-Hohenberg equation,” Phys. Rev. E 66(6), 066610 (2002).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

K. Krupa, K. Nithyanandan, U. Andral, P. Tchofo-Dinda, and P. Grelu, “Real-Time Observation of Internal Motion within Ultrafast Dissipative Optical Soliton Molecules,” Phys. Rev. Lett. 118(24), 243901 (2017).
[Crossref] [PubMed]

Prog. Quantum Electron. (1)

A. A. Lagatsky, C. G. Leburn, C. T. A. Brown, W. Sibbett, S. A. Zolotovskaya, and E. U. Rafailov, “Ultrashort-pulse lasers passively mode locked by quantum-dot-based saturable absorbers,” Prog. Quantum Electron. 34(1), 1–45 (2010).
[Crossref]

Sci. Rep. (1)

M. Chernysheva, A. Bednyakova, M. Al Araimi, R. C. Howe, G. Hu, T. Hasan, A. Gambetta, G. Galzerano, M. Rümmeli, and A. Rozhin, “Double-Wall Carbon Nanotube Hybrid Mode-Locker in Tm-doped Fibre Laser: A Novel Mechanism for Robust Bound-State Solitons Generation,” Sci. Rep. 7, 44314 (2017).
[Crossref] [PubMed]

Science (2)

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356(6333), 50–54 (2017).
[Crossref] [PubMed]

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326(5953), 681 (2009).
[Crossref] [PubMed]

Other (1)

W. Lee, M. Choi, S. Ozharar, H. Izadpanah, P. Delfyett, S. Etemad, and S. Menendez, “Coherent optical communications & signal processing using optical frequency combs,” in LEOS Summer Topical Meetings, 2005 Digest of the (2005), pp. 213–214.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Relative critical gain values versus different unsaturable losses and modulation depths. Values of the adopted parameters can be found in Ref [28].
Fig. 2
Fig. 2 (a) Schematic of the 3.2-GHz Er3+/Yb3+ co-doped ultrafast fiber oscillator operated in pulse bunch state. (b) Photograph of the experimental setup.
Fig. 3
Fig. 3 Schematic of the laser resonantor and magnification of the gap-related configuration.
Fig. 4
Fig. 4 Schematic of the principle of the CFE. (a) Net gain window (in purple) created by GF (in red) and HPF (in blue). (b) Experimental demonstration of the tunable mode-locked spectra (in color) stemmed from the versatile gain window, the grey curve represents the simulated power distribution of the resonant modes. (c) Reflectivity curve of the FP subcavity. (d) Plot of the phenomenological filtering function Tcom for the parameter set (αc, Ωc) = (0.0435, 3.11), the dashed line corresponds to the FP reflectivity in (c).
Fig. 5
Fig. 5 Experimental results of the single soliton operation. (a) Optical spectrum. (b) Autocorrelation trace. (c) Oscilloscope trace. (d) RF spectrum. The inset of (a) is a magnification of the top peak of the optical spectrum.
Fig. 6
Fig. 6 Experimental results of the multi-pulsing state. (a) Optical spectrum. (b) Autocorrelation trace. (c) Oscilloscope trace. (d) RF spectrum. The inset of (a) is a magnification of the top peak of the optical spectrum, the curve in grey represents the spectrum of single soliton; the red dashed curve is the reconstructed autocorrelation trace via a tightly bound soliton pair.
Fig. 7
Fig. 7 Numerical simulation of the pulse bunch. (a) Optical spectrum, and the right inset in (a) shows the optical spectral evolution of the pulse bunch. (b) Autocorrelation traces, the blue line represents the averaged trace calculated from an ensemble of 6000 simulations, the red and green curves are related to the single-solitonshape (labelled 1) and bound state structure (labelled 2), respectively. (c) Temporal evolution of the pulse, with pulse profiles relevant to 1 and 2 are demonstrated in time domain. (d, e) Plot of a vector of pulse energy in (d) and the corresponding function achieved from the Fourier transformation.
Fig. 8
Fig. 8 Numerical simulation of the single soliton. (a) Optical spectrum, the blue and grey curves accounts for the solutions of the soliton and pulse bunch, respectively. The inset depicts the transition from the pulse bunch to soliton. (b) Autocorrelation trace. (c) Temporal profile (in grey) and the frequency chirp (in blue), the Gaussian and sech2 fit to the pulse are represented by the red and blue dots, respectively. (d) Temporal evolution of the pulse.
Fig. 9
Fig. 9 Transition from pulse bunch to single soliton. (a) Transient process as to the transition. The curves of the Tcom’ relevant to case I and II are also shown. (b,c) Pulse shape and the corresponding absorption profile in case (c) I and (b) II. (d) Change in energy as a function of round trip number for different Ωc values.
Fig. 10
Fig. 10 Simulation result of the stable pulse bunch. (a) Optical spectra. The blue and grey curves represent the stable and vibrating pulse bunch, respectively. (b) Temporal shape and relevant phase profile of the pulse. (c) Temporal evolution of the stable pulse bunch.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

g cri 1 4 L c ( q ns + χ A E sat,G )( 1+ T G T R χ A E sat,G ), χ A = q 0 E sat,A ,
R FP = | R F ( 1 R F ) R 2sat e 2iw l gap /c 1 R F R 2sat e 2iw l gap /c | 2
d x 1 dw = n 2 dtan2θ ( n 2 2 sin 2 θ ) 3/2 n 2 .
T com ( w )=max( R FP )exp( α c + 8 α c Ω c 2 w 2 16 α c Ω c 4 w 4 ). where max( R FP )= ( R F +( 1 R F ) R 2sat 1+ R F R 2sat ) 2
u i ( z,t ) z =i β 2 2 2 u i ( z,t ) t 2 +iγ | u i ( z,t ) | 2 u i ( z,t )+ g 2 u i ( z,t )+ g 2 Ω g 2 2 u i ( z,t ) t 2 . u i,SESAM = F 1 { F( u i ( L c ,t ) ) e i β 2,sat w 2 /2 T com ( w ) } R 2sat q u i+1 ( 0,t )= u i ( 2 L c ,t ) R 1 where q t = q q 0 τ A q u 2 E sat,A , T com ( w )= T com ( w )/ R 2sat
P p ( z ) z = Γ p [ σ 65 ( λ p ) N 6 σ 56 ( λ p ) N 5 σ 13 ( λ p ) N 1 ] P p ( z ) ± P s ± ( z, λ k ) z = Γ s [ σ 21 ( λ k ) N 2 σ 12 ( λ k ) N 1 ] P s ± ( z, λ k )α P s ± ( z, λ k )±2 σ 21 ( λ k ) N 2 h c 2 λ k 3 Δλ
W 12 n 1 ( A 21 + W 21 ) n 2 + A 32 n 3 2 C up N Er n 2 2 =0 ( W 13 A 43 ) n 1 A 43 n 2 ( A 32 + A 43 ) n 3 + A 43 + C cr N Yb n 1 n 6 =0 C up N Er n 2 2 A 43 ( 1 n 1 n 2 n 3 )=0 W 56 +( W 65 + W 56 + A 65 ) n 6 + C cr N Er n 1 n 6 =0 where N i=1,2,3 = n i=1,2,3 N Er , N 6 = n 6 N Yb W 12 = k=1 91 Γ s σ 12 ( λ k )( P s + ( z, λ k )+ P s ( z, λ k ) ) λ k hc A core , W 21 = k=1 91 Γ s σ 21 ( λ k )( P s + ( z, λ k )+ P s ( z, λ k ) ) λ k hc A core W 13 = Γ p σ 13 ( λ p ) P p ( z ) λ p hc A core , W 56 = Γ p σ 56 ( λ p ) P p ( z ) λ p hc A core , W 65 = Γ p σ 65 ( λ p ) P p ( z ) λ p hc A core ,
P p ( 0 )= P p0 P s + ( 0, λ k )= R 1 ( λ k ) P s ( 0, λ k ) P s ( L c , λ k )= R 2 ( λ k ) P s + ( L c , λ k ),

Metrics