Abstract

Continuous-wave (cw) optical parametric oscillators (OPOs) are ideally suited for applications, for example high-resolution spectroscopy, that need coherent sources combining narrow-linewidth emission with good wavelength tunability. Here, we demonstrate for the first time cw OPOs based on a millimeter-sized whispering gallery resonator (WGR) made of cadmium silicon phosphide (CdSiP2). By employing a compact laser diode at 1.57-μm wavelength for pumping, a cw OPO with wavelength tunability from 2.3 μm to 5.1 μm is realized based on such a resonator. The oscillation thresholds are in the milliwatt range. The maximum total power conversion efficiency reaches more than 15%. The intrinsic quality factor at 1.57 μm is determined to be 3.5 × 106. This work suggests that CdSiP2 is a very promising alternative for constructing mid-infrared parametric devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Continuous-wave optical parametric oscillation tunable up to an 8 μm wavelength

Sarah-Katharina Meisenheimer, Josef Urban Fürst, Karsten Buse, and Ingo Breunig
Optica 4(2) 189-192 (2017)

Quasi-phase-matched self-pumped optical parametric oscillation in a micro-resonator

Simon J. Herr, Christoph S. Werner, Karsten Buse, and Ingo Breunig
Opt. Express 26(8) 10813-10819 (2018)

Continuous-wave whispering-gallery optical parametric oscillator for high-resolution spectroscopy

Christoph S. Werner, Karsten Buse, and Ingo Breunig
Opt. Lett. 40(5) 772-775 (2015)

References

  • View by:
  • |
  • |
  • |

  1. I. T. Sorokina and K. L. Vodopyanov, Solid-state mid-infrared laser sources (Springer, Heidelberg, 2003).
  2. M. Ebrahim-Zadeh and I. T. Sorokina, Mid-infrared coherent sources and applications (Springer, Dordrecht 2008).
  3. A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
  4. M. De Marchi, V. Toffanin, M. Cassandro, and M. Penasa, “Invited review: Mid-infrared spectroscopy as phenotyping tool for milk traits,” J. Dairy Sci. 97(3), 1171–1186 (2014).
    [PubMed]
  5. M. H. Dunn and M. Ebrahimzadeh, “Parametric Generation of Tunable Light from Continuous-Wave to Femtosecond Pulses,” Science 286(5444), 1513–1518 (1999).
    [PubMed]
  6. M. Ebrahim-Zadeh, “Continuous-wave optical parametric oscillators,” in Handbook of Optics Vol. 4, M. Bass, ed. (McGraw-Hill, New York, 2010).
  7. I. Breunig, D. Haertle, and K. Buse, “Continuous-wave optical parametric oscillators: recent developments and prospects,” Appl. Phys. B 105, 99–111 (2011).
  8. J. Kiessling, R. Sowade, I. Breunig, K. Buse, and V. Dierolf, “Cascaded optical parametric oscillations generating tunable terahertz waves in periodically poled lithium niobate crystals,” Opt. Express 17(1), 87–91 (2009).
    [PubMed]
  9. V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
  10. P. G. Schunemann, K. T. Zawilski, L. A. Pomeranz, D. J. Creeden, and P. A. Budni, “Advances in nonlinear optical crystals for mid-infrared coherent sources,” J. Opt. Soc. Am. B 33, D36–D43 (2016).
  11. A. Douillet and J.-J. Zondy, “Low-threshold, self-frequency-stabilized AgGaS2 continuous-wave subharmonic optical parametric oscillator,” Opt. Lett. 23(16), 1259–1261 (1998).
    [PubMed]
  12. L. A. Pomeranz, P. G. Schunemann, S. D. Setzler, C. Jones, and P. A. Budni, “Continuous-wave optical parametric oscillator based on orientation patterned gallium arsenide (OP-GaAs),” in Conference on Lasers and Electro-Optics (Optical Society of America, 2012), paper JTh1I.4.
  13. V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92(4), 043903 (2004).
    [PubMed]
  14. J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, Ch. Marquardt, and G. Leuchs, “Low-threshold optical parametric oscillations in a whispering gallery mode resonator,” Phys. Rev. Lett. 105(26), 263904 (2010).
    [PubMed]
  15. I. Breunig, “Three-wave mixing in whispering gallery resonators,” Laser Photonics Rev. 10, 569–587 (2016).
  16. D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. Schwefel, and G. Leuchs, “Nonlinear and quantum optics with whispering gallery resonators,” J. Opt. 18, 123002 (2016).
  17. G. Schunk, U. Vogl, D. V. Strekalov, M. Förtsch, F. Sedlmeir, H. G. Schwefel, M. Göbelt, M. S. Christiansen, G. Leuchs, and C. Marquardt, “Interfacing transitions of different alkali atoms and telecom bands using one narrowband photon pair source,” Optica 2, 773–778 (2015).
  18. S. K. Meisenheimer, J. U. Fürst, A. Schiller, F. Holderied, K. Buse, and I. Breunig, “Pseudo-type-II tuning behavior and mode identification in whispering gallery optical parametric oscillators,” Opt. Express 24(13), 15137–15142 (2016).
    [PubMed]
  19. S. K. Meisenheimer, J. U. Fürst, K. Buse, and I. Breunig, “Continuous-wave optical parametric oscillation tunable up to an 8 μm wavelength,” Optica 4, 189–192 (2017).
  20. Y. Jia, K. Hanka, I. Breunig, K. T. Zawilski, P. G. Schunemann, and K. Buse, “Mid-infrared whispering gallery resonators based on non-oxide nonlinear optical crystals,” Proc. SPIE 10518, 105180X (2018).
  21. S. C. Kumar, P. G. Schunemann, K. T. Zawilski, and M. Ebrahim-Zadeh, “Advances in ultrafast optical parametric sources for the mid-infrared based on CdSiP2,” J. Opt. Soc. Am. B 33, D44–D56 (2016).
  22. P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using 4-quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).
    [PubMed]
  23. K. T. Zawilski, P. G. Schunemann, T. C. Pollak, D. E. Zelmon, N. C. Fernelius, and F. K. Hopkins, “Growth and characterization of large CdSiP2 single crystals,” J. Cryst. Growth 312, 1127–1132 (2010).
  24. M. L. Gorodetsky and A. E. Fomin, “Geometrical theory of whispering-gallery modes,” IEEE J. Sel. Top. Quantum Electron. 12, 33–39 (2006).
  25. T. Beckmann, K. Buse, and I. Breunig, “Optimizing pump threshold and conversion efficiency of whispering gallery optical parametric oscillators by controlled coupling,” Opt. Lett. 37(24), 5250–5252 (2012).
    [PubMed]
  26. D. V. Strekalov, A. A. Savchenkov, A. B. Matsko, and N. Yu, “Efficient upconversion of subterahertz radiation in a high-Q whispering gallery resonator,” Opt. Lett. 34(6), 713–715 (2009).
    [PubMed]
  27. H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561–658 (1980).
  28. E. M. Scherrer, B. E. Kananen, E. M. Golden, F. K. Hopkins, K. T. Zawilski, P. G. Schunemann, L. E. Halliburton, and N. C. Giles, “Defect-related optical absorption bands in CdSiP2 crystals,” Opt. Mater. Express 7, 658–664 (2017).
  29. C. S. Werner, W. Yoshiki, S. J. Herr, I. Breunig, and K. Buse, “Geometric tuning: spectroscopy using whispering-gallery resonator frequency-synthesizers,” Optica 4, 1205–1208 (2017).
  30. Q. Mo, S. Li, Y. Liu, X. Jiang, G. Zhao, Z. Xie, X. Lv, and S. Zhu, “Widely tunable optical parametric oscillator in periodically poled congruently grown lithium tantalite whispering gallery mode resonators,” Chin. Opt. Lett. 14, 091902 (2016).

2018 (1)

Y. Jia, K. Hanka, I. Breunig, K. T. Zawilski, P. G. Schunemann, and K. Buse, “Mid-infrared whispering gallery resonators based on non-oxide nonlinear optical crystals,” Proc. SPIE 10518, 105180X (2018).

2017 (3)

2016 (6)

2015 (2)

V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).

G. Schunk, U. Vogl, D. V. Strekalov, M. Förtsch, F. Sedlmeir, H. G. Schwefel, M. Göbelt, M. S. Christiansen, G. Leuchs, and C. Marquardt, “Interfacing transitions of different alkali atoms and telecom bands using one narrowband photon pair source,” Optica 2, 773–778 (2015).

2014 (2)

M. De Marchi, V. Toffanin, M. Cassandro, and M. Penasa, “Invited review: Mid-infrared spectroscopy as phenotyping tool for milk traits,” J. Dairy Sci. 97(3), 1171–1186 (2014).
[PubMed]

P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using 4-quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).
[PubMed]

2012 (2)

2011 (1)

I. Breunig, D. Haertle, and K. Buse, “Continuous-wave optical parametric oscillators: recent developments and prospects,” Appl. Phys. B 105, 99–111 (2011).

2010 (2)

J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, Ch. Marquardt, and G. Leuchs, “Low-threshold optical parametric oscillations in a whispering gallery mode resonator,” Phys. Rev. Lett. 105(26), 263904 (2010).
[PubMed]

K. T. Zawilski, P. G. Schunemann, T. C. Pollak, D. E. Zelmon, N. C. Fernelius, and F. K. Hopkins, “Growth and characterization of large CdSiP2 single crystals,” J. Cryst. Growth 312, 1127–1132 (2010).

2009 (2)

2006 (1)

M. L. Gorodetsky and A. E. Fomin, “Geometrical theory of whispering-gallery modes,” IEEE J. Sel. Top. Quantum Electron. 12, 33–39 (2006).

2004 (1)

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92(4), 043903 (2004).
[PubMed]

1999 (1)

M. H. Dunn and M. Ebrahimzadeh, “Parametric Generation of Tunable Light from Continuous-Wave to Femtosecond Pulses,” Science 286(5444), 1513–1518 (1999).
[PubMed]

1998 (1)

1980 (1)

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561–658 (1980).

Aiello, A.

J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, Ch. Marquardt, and G. Leuchs, “Low-threshold optical parametric oscillations in a whispering gallery mode resonator,” Phys. Rev. Lett. 105(26), 263904 (2010).
[PubMed]

Andersen, U. L.

J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, Ch. Marquardt, and G. Leuchs, “Low-threshold optical parametric oscillations in a whispering gallery mode resonator,” Phys. Rev. Lett. 105(26), 263904 (2010).
[PubMed]

Beckmann, T.

Bravo-Abad, J.

P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using 4-quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).
[PubMed]

Breunig, I.

Y. Jia, K. Hanka, I. Breunig, K. T. Zawilski, P. G. Schunemann, and K. Buse, “Mid-infrared whispering gallery resonators based on non-oxide nonlinear optical crystals,” Proc. SPIE 10518, 105180X (2018).

S. K. Meisenheimer, J. U. Fürst, K. Buse, and I. Breunig, “Continuous-wave optical parametric oscillation tunable up to an 8 μm wavelength,” Optica 4, 189–192 (2017).

C. S. Werner, W. Yoshiki, S. J. Herr, I. Breunig, and K. Buse, “Geometric tuning: spectroscopy using whispering-gallery resonator frequency-synthesizers,” Optica 4, 1205–1208 (2017).

S. K. Meisenheimer, J. U. Fürst, A. Schiller, F. Holderied, K. Buse, and I. Breunig, “Pseudo-type-II tuning behavior and mode identification in whispering gallery optical parametric oscillators,” Opt. Express 24(13), 15137–15142 (2016).
[PubMed]

I. Breunig, “Three-wave mixing in whispering gallery resonators,” Laser Photonics Rev. 10, 569–587 (2016).

T. Beckmann, K. Buse, and I. Breunig, “Optimizing pump threshold and conversion efficiency of whispering gallery optical parametric oscillators by controlled coupling,” Opt. Lett. 37(24), 5250–5252 (2012).
[PubMed]

I. Breunig, D. Haertle, and K. Buse, “Continuous-wave optical parametric oscillators: recent developments and prospects,” Appl. Phys. B 105, 99–111 (2011).

J. Kiessling, R. Sowade, I. Breunig, K. Buse, and V. Dierolf, “Cascaded optical parametric oscillations generating tunable terahertz waves in periodically poled lithium niobate crystals,” Opt. Express 17(1), 87–91 (2009).
[PubMed]

Budni, P. A.

Buse, K.

Cassandro, M.

M. De Marchi, V. Toffanin, M. Cassandro, and M. Penasa, “Invited review: Mid-infrared spectroscopy as phenotyping tool for milk traits,” J. Dairy Sci. 97(3), 1171–1186 (2014).
[PubMed]

Christiansen, M. S.

Creeden, D. J.

De Marchi, M.

M. De Marchi, V. Toffanin, M. Cassandro, and M. Penasa, “Invited review: Mid-infrared spectroscopy as phenotyping tool for milk traits,” J. Dairy Sci. 97(3), 1171–1186 (2014).
[PubMed]

Dierolf, V.

Douillet, A.

Dunn, M. H.

M. H. Dunn and M. Ebrahimzadeh, “Parametric Generation of Tunable Light from Continuous-Wave to Femtosecond Pulses,” Science 286(5444), 1513–1518 (1999).
[PubMed]

Ebrahimzadeh, M.

M. H. Dunn and M. Ebrahimzadeh, “Parametric Generation of Tunable Light from Continuous-Wave to Femtosecond Pulses,” Science 286(5444), 1513–1518 (1999).
[PubMed]

Ebrahim-Zadeh, M.

Elser, D.

J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, Ch. Marquardt, and G. Leuchs, “Low-threshold optical parametric oscillations in a whispering gallery mode resonator,” Phys. Rev. Lett. 105(26), 263904 (2010).
[PubMed]

Fernelius, N. C.

K. T. Zawilski, P. G. Schunemann, T. C. Pollak, D. E. Zelmon, N. C. Fernelius, and F. K. Hopkins, “Growth and characterization of large CdSiP2 single crystals,” J. Cryst. Growth 312, 1127–1132 (2010).

Fomin, A. E.

M. L. Gorodetsky and A. E. Fomin, “Geometrical theory of whispering-gallery modes,” IEEE J. Sel. Top. Quantum Electron. 12, 33–39 (2006).

Förtsch, M.

Fürst, J. U.

Giles, N. C.

Göbelt, M.

Golden, E. M.

Gorodetsky, M. L.

M. L. Gorodetsky and A. E. Fomin, “Geometrical theory of whispering-gallery modes,” IEEE J. Sel. Top. Quantum Electron. 12, 33–39 (2006).

Haertle, D.

I. Breunig, D. Haertle, and K. Buse, “Continuous-wave optical parametric oscillators: recent developments and prospects,” Appl. Phys. B 105, 99–111 (2011).

Halliburton, L. E.

Hanka, K.

Y. Jia, K. Hanka, I. Breunig, K. T. Zawilski, P. G. Schunemann, and K. Buse, “Mid-infrared whispering gallery resonators based on non-oxide nonlinear optical crystals,” Proc. SPIE 10518, 105180X (2018).

Hänsch, T. W.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).

Herr, S. J.

Holderied, F.

Hopkins, F. K.

E. M. Scherrer, B. E. Kananen, E. M. Golden, F. K. Hopkins, K. T. Zawilski, P. G. Schunemann, L. E. Halliburton, and N. C. Giles, “Defect-related optical absorption bands in CdSiP2 crystals,” Opt. Mater. Express 7, 658–664 (2017).

K. T. Zawilski, P. G. Schunemann, T. C. Pollak, D. E. Zelmon, N. C. Fernelius, and F. K. Hopkins, “Growth and characterization of large CdSiP2 single crystals,” J. Cryst. Growth 312, 1127–1132 (2010).

Ilchenko, V. S.

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92(4), 043903 (2004).
[PubMed]

Jia, Y.

Y. Jia, K. Hanka, I. Breunig, K. T. Zawilski, P. G. Schunemann, and K. Buse, “Mid-infrared whispering gallery resonators based on non-oxide nonlinear optical crystals,” Proc. SPIE 10518, 105180X (2018).

Jiang, X.

Kananen, B. E.

Kiessling, J.

Kumar, S. C.

Kuo, P. S.

P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using 4-quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).
[PubMed]

Leuchs, G.

D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. Schwefel, and G. Leuchs, “Nonlinear and quantum optics with whispering gallery resonators,” J. Opt. 18, 123002 (2016).

G. Schunk, U. Vogl, D. V. Strekalov, M. Förtsch, F. Sedlmeir, H. G. Schwefel, M. Göbelt, M. S. Christiansen, G. Leuchs, and C. Marquardt, “Interfacing transitions of different alkali atoms and telecom bands using one narrowband photon pair source,” Optica 2, 773–778 (2015).

J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, Ch. Marquardt, and G. Leuchs, “Low-threshold optical parametric oscillations in a whispering gallery mode resonator,” Phys. Rev. Lett. 105(26), 263904 (2010).
[PubMed]

Li, H. H.

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561–658 (1980).

Li, S.

Liu, Y.

Lv, X.

Maleki, L.

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92(4), 043903 (2004).
[PubMed]

Marquardt, C.

Marquardt, Ch.

J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, Ch. Marquardt, and G. Leuchs, “Low-threshold optical parametric oscillations in a whispering gallery mode resonator,” Phys. Rev. Lett. 105(26), 263904 (2010).
[PubMed]

Matsko, A. B.

D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. Schwefel, and G. Leuchs, “Nonlinear and quantum optics with whispering gallery resonators,” J. Opt. 18, 123002 (2016).

D. V. Strekalov, A. A. Savchenkov, A. B. Matsko, and N. Yu, “Efficient upconversion of subterahertz radiation in a high-Q whispering gallery resonator,” Opt. Lett. 34(6), 713–715 (2009).
[PubMed]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92(4), 043903 (2004).
[PubMed]

Meisenheimer, S. K.

Mo, Q.

Penasa, M.

M. De Marchi, V. Toffanin, M. Cassandro, and M. Penasa, “Invited review: Mid-infrared spectroscopy as phenotyping tool for milk traits,” J. Dairy Sci. 97(3), 1171–1186 (2014).
[PubMed]

Petrov, V.

V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).

Picqué, N.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).

Pollak, T. C.

K. T. Zawilski, P. G. Schunemann, T. C. Pollak, D. E. Zelmon, N. C. Fernelius, and F. K. Hopkins, “Growth and characterization of large CdSiP2 single crystals,” J. Cryst. Growth 312, 1127–1132 (2010).

Pomeranz, L. A.

Savchenkov, A. A.

D. V. Strekalov, A. A. Savchenkov, A. B. Matsko, and N. Yu, “Efficient upconversion of subterahertz radiation in a high-Q whispering gallery resonator,” Opt. Lett. 34(6), 713–715 (2009).
[PubMed]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92(4), 043903 (2004).
[PubMed]

Scherrer, E. M.

Schiller, A.

Schliesser, A.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).

Schunemann, P. G.

Schunk, G.

Schwefel, H. G.

Sedlmeir, F.

Solomon, G. S.

P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using 4-quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).
[PubMed]

Sowade, R.

Strekalov, D. V.

D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. Schwefel, and G. Leuchs, “Nonlinear and quantum optics with whispering gallery resonators,” J. Opt. 18, 123002 (2016).

G. Schunk, U. Vogl, D. V. Strekalov, M. Förtsch, F. Sedlmeir, H. G. Schwefel, M. Göbelt, M. S. Christiansen, G. Leuchs, and C. Marquardt, “Interfacing transitions of different alkali atoms and telecom bands using one narrowband photon pair source,” Optica 2, 773–778 (2015).

J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, Ch. Marquardt, and G. Leuchs, “Low-threshold optical parametric oscillations in a whispering gallery mode resonator,” Phys. Rev. Lett. 105(26), 263904 (2010).
[PubMed]

D. V. Strekalov, A. A. Savchenkov, A. B. Matsko, and N. Yu, “Efficient upconversion of subterahertz radiation in a high-Q whispering gallery resonator,” Opt. Lett. 34(6), 713–715 (2009).
[PubMed]

Toffanin, V.

M. De Marchi, V. Toffanin, M. Cassandro, and M. Penasa, “Invited review: Mid-infrared spectroscopy as phenotyping tool for milk traits,” J. Dairy Sci. 97(3), 1171–1186 (2014).
[PubMed]

Vogl, U.

Werner, C. S.

Xie, Z.

Yoshiki, W.

Yu, N.

Zawilski, K. T.

Zelmon, D. E.

K. T. Zawilski, P. G. Schunemann, T. C. Pollak, D. E. Zelmon, N. C. Fernelius, and F. K. Hopkins, “Growth and characterization of large CdSiP2 single crystals,” J. Cryst. Growth 312, 1127–1132 (2010).

Zhao, G.

Zhu, S.

Zondy, J.-J.

Appl. Phys. B (1)

I. Breunig, D. Haertle, and K. Buse, “Continuous-wave optical parametric oscillators: recent developments and prospects,” Appl. Phys. B 105, 99–111 (2011).

Chin. Opt. Lett. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

M. L. Gorodetsky and A. E. Fomin, “Geometrical theory of whispering-gallery modes,” IEEE J. Sel. Top. Quantum Electron. 12, 33–39 (2006).

J. Cryst. Growth (1)

K. T. Zawilski, P. G. Schunemann, T. C. Pollak, D. E. Zelmon, N. C. Fernelius, and F. K. Hopkins, “Growth and characterization of large CdSiP2 single crystals,” J. Cryst. Growth 312, 1127–1132 (2010).

J. Dairy Sci. (1)

M. De Marchi, V. Toffanin, M. Cassandro, and M. Penasa, “Invited review: Mid-infrared spectroscopy as phenotyping tool for milk traits,” J. Dairy Sci. 97(3), 1171–1186 (2014).
[PubMed]

J. Opt. (1)

D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. Schwefel, and G. Leuchs, “Nonlinear and quantum optics with whispering gallery resonators,” J. Opt. 18, 123002 (2016).

J. Opt. Soc. Am. B (2)

J. Phys. Chem. Ref. Data (1)

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561–658 (1980).

Laser Photonics Rev. (1)

I. Breunig, “Three-wave mixing in whispering gallery resonators,” Laser Photonics Rev. 10, 569–587 (2016).

Nat. Commun. (1)

P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using 4-quasi-phasematching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).
[PubMed]

Nat. Photonics (1)

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).

Opt. Express (2)

Opt. Lett. (3)

Opt. Mater. Express (1)

Optica (3)

Phys. Rev. Lett. (2)

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92(4), 043903 (2004).
[PubMed]

J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, Ch. Marquardt, and G. Leuchs, “Low-threshold optical parametric oscillations in a whispering gallery mode resonator,” Phys. Rev. Lett. 105(26), 263904 (2010).
[PubMed]

Proc. SPIE (1)

Y. Jia, K. Hanka, I. Breunig, K. T. Zawilski, P. G. Schunemann, and K. Buse, “Mid-infrared whispering gallery resonators based on non-oxide nonlinear optical crystals,” Proc. SPIE 10518, 105180X (2018).

Prog. Quantum Electron. (1)

V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).

Science (1)

M. H. Dunn and M. Ebrahimzadeh, “Parametric Generation of Tunable Light from Continuous-Wave to Femtosecond Pulses,” Science 286(5444), 1513–1518 (1999).
[PubMed]

Other (4)

M. Ebrahim-Zadeh, “Continuous-wave optical parametric oscillators,” in Handbook of Optics Vol. 4, M. Bass, ed. (McGraw-Hill, New York, 2010).

I. T. Sorokina and K. L. Vodopyanov, Solid-state mid-infrared laser sources (Springer, Heidelberg, 2003).

M. Ebrahim-Zadeh and I. T. Sorokina, Mid-infrared coherent sources and applications (Springer, Dordrecht 2008).

L. A. Pomeranz, P. G. Schunemann, S. D. Setzler, C. Jones, and P. A. Budni, “Continuous-wave optical parametric oscillator based on orientation patterned gallium arsenide (OP-GaAs),” in Conference on Lasers and Electro-Optics (Optical Society of America, 2012), paper JTh1I.4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic diagram of a WGR-based cw OPO. Cw pump light with power Pp is coupled into the resonator. The generated signal and idler waves are coupled out of the resonator with the powers Ps,i together with the residual pump light having the power P p * . (b) Simulation of different wavelength-tuning branches of a WGR-based cw OPO made of CdSiP2. The disk and rim radii of the resonator are set as 0.75 and 0.17 mm, respectively. The pump (e-polarized) wavelength is fixed to 1.57 μm. Tunable output wavelengths of signal (○, o-polarized) and idler (●, o-polarized) waves from 2 μm to 6 μm are obtained for different mode combinations of (qp, qs, qi, M).
Fig. 2
Fig. 2 Schematic drawing of the experimental setup employed for characterizations of CdSiP2 WGR OPOs. The 1.57-μm pump light is coupled into the CdSiP2 WGR via a silicon prism. A CaF2 collimator is used to collimate the output light beams, including the residual pump light and the generated signal and idler waves. A FTIR spectrometer and three individual photodetectors are used to analyze the output light (λp,s,i, P p * , Ps, and Pi). The optic axis (o.a.) of the WGR material matches the symmetry axis of the resonator. The inset is a photograph of the CdSiP2 WGR used in this work.
Fig. 3
Fig. 3 (a) Conversion efficiencies of output signal (λs = 2.29 μm) and idler (λi = 4.99 μm) light versus the in-coupled pump power. Experimentally determined results (●) and theoretically plotted curves are in fairly good agreement. (b) Output optical spectra measured by using a FTIR spectrometer.
Fig. 4
Fig. 4 (a) Experimentally determined signal (●) and idler (○) wavelengths as a function of the WGR temperature by employing a FTIR spectrometer. (b) The enlarged figure of a small area in (a) indicated there by a dashed box, illustrating the measured signal wavelengths (● with error bars) versus WGR temperature by employing a high-resolution optical spectrum analyzer. Two data points (○) from (a) are inserted. The data error bars indicate the resolution of applied spectrometer.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

1/ λ p = 1/ λ s +1/ λ i .
m p =  m s + m i +M,
  P th 1 Q int,p Q int,s Q int,i (1+ r p ) 2 (1+ r s )(1+ r i ) r p
  η s,i = P s,i P p =4 λ p λ s,i r s,i 1+ r s,i r p 1+ r p   N 1 N
  η s,i max = λ p λ s,i r s,i 1+ r s,i r p 1+ r p

Metrics