Abstract

Surface plasmon resonance imaging (SPRI) is an optical near-field method used for mapping the spatial distribution of chemical/physical perturbations above a metal surface without exogenous labeling. Currently, the majority of SPRI systems are used in microarray biosensing, requiring only modest spatial resolution. There is increasing interest in applying SPRI for label-free near-field imaging of biological cells to study cell/surface interactions. However, the required resolution (sub-µm) greatly exceeds what current systems can deliver. Indeed, the attenuation length of surface plasmon polaritons (SPP) severely limits resolution along one axis, typically to tens of µm. Strategies to date for improving spatial resolution result in a commensurate deterioration in other imaging parameters. Unlike the smooth metal surfaces used in SPRI that support purely propagating surface modes, nanostructured metal surfaces support “hybrid” SPP modes that share attributes from both propagating and localized modes. We show that these hybrid modes are especially well-suited to high-resolution imaging and demonstrate how the nanostructure geometry can be designed to achieve sub-µm resolution while mitigating the imaging parameter trade-off according to an application-specific optimum.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Nanoimprinted plastic substrates for enhanced surface plasmon resonance imaging detection

Lidija Malic, Bo Cui, Maryam Tabrizian, and Teodor Veres
Opt. Express 17(22) 20386-20392 (2009)

Spatial resolution in prism-based surface plasmon resonance microscopy

Loïc Laplatine, Loïc Leroy, Roberto Calemczuk, Dieudonné Baganizi, Patrice N. Marche, Yoann Roupioz, and Thierry Livache
Opt. Express 22(19) 22771-22785 (2014)

References

  • View by:
  • |
  • |
  • |

  1. E. Kretschmann and H. Raether, “Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light,” Z. Für Naturforschung A. 23, 2135–2136 (1968).
  2. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Fr Phys. Hadrons Nucl. 216, 398–410 (1968).
  3. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
  4. J. Homola, S. S. Yee, and G. Gauglitz, “Surface Plasmon Resonance Based Sensors,” Sens. Actuat. B Chem. 54, 3–15 (1999).
  5. H. E. de Bruijn, R. P. H. Kooyman, and J. Greve, “Surface plasmon resonance microscopy: improvement of the resolution by rotation of the object,” Appl. Opt. 32(13), 2426–2430 (1993).
    [PubMed]
  6. C. E. H. Berger, R. P. H. Kooyman, and J. Greve, “Resolution in surface plasmon microscopy,” Rev. Sci. Instrum. 65, 2829–2836 (1994).
  7. K. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of Cell/Substrate Contacts of Living Cells with Surface Plasmon Resonance Microscopy,” Biophys. J. 76(1 Pt 1), 509–516 (1999).
    [PubMed]
  8. L. Laplatine, L. Leroy, R. Calemczuk, D. Baganizi, P. N. Marche, Y. Roupioz, and T. Livache, “Spatial resolution in prism-based surface plasmon resonance microscopy,” Opt. Express 22(19), 22771–22785 (2014).
    [PubMed]
  9. B. Huang, F. Yu, and R. N. Zare, “Surface Plasmon Resonance Imaging Using a High Numerical Aperture Microscope Objective,” Anal. Chem. 79(7), 2979–2983 (2007).
    [PubMed]
  10. T. Söllradl, F. A. Banville, V. Chabot, M. Canva, M. Grandbois, and P. G. Charette, “Metal clad waveguide (MCWG) based imaging using a high numerical aperture microscope objective,” Opt. Express 25(3), 1666–1679 (2017).
    [PubMed]
  11. E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron. 11, 635–649 (1996).
  12. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 2006), Vol. 111.
  13. F. A. Banville, T. Söllradl, P.-J. Zermatten, M. Grandbois, and P. G. Charette, “Improved resolution in SPR and MCWG microscopy by combining images acquired with distinct mode propagation directions,” Opt. Lett. 40(7), 1165–1168 (2015).
    [PubMed]
  14. S.-H. Kim, W. Chegal, J. Doh, H. M. Cho, and D. W. Moon, “Study of cell-matrix adhesion dynamics using surface plasmon resonance imaging ellipsometry,” Biophys. J. 100(7), 1819–1828 (2011).
    [PubMed]
  15. K. Watanabe, K. Matsuura, F. Kawata, K. Nagata, J. Ning, and H. Kano, “Scanning and non-scanning surface plasmon microscopy to observe cell adhesion sites,” Biomed. Opt. Express 3(2), 354–359 (2012).
    [PubMed]
  16. A. W. Peterson, M. Halter, A. Tona, and A. L. Plant, “High resolution surface plasmon resonance imaging for single cells,” BMC Cell Biol. 15, 35 (2014).
    [PubMed]
  17. K. Toma, H. Kano, and A. Offenhäusser, “Label-Free Measurement of Cell-Electrode Cleft Gap Distance with High Spatial Resolution Surface Plasmon Microscopy,” ACS Nano 8(12), 12612–12619 (2014).
    [PubMed]
  18. T. Söllradl, F. A. Banville, U. Fröhlich, M. Canva, P. G. Charette, and M. Grandbois, “Label-free visualization and quantification of single cell signaling activity using metal-clad waveguide (MCWG)-based microscopy,” Biosens. Bioelectron. 100, 429–436 (2018).
    [PubMed]
  19. P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
    [PubMed]
  20. M. G. Somekh, S. Liu, T. S. Velinov, and C. W. See, “High-resolution scanning surface-plasmon microscopy,” Appl. Opt. 39(34), 6279–6287 (2000).
    [PubMed]
  21. L. Berguiga, L. Streppa, E. Boyer-Provera, C. Martinez-Torres, L. Schaeffer, J. Elezgaray, A. Arneodo, and F. Argoul, “Time-lapse scanning surface plasmon microscopy of living adherent cells with a radially polarized beam,” Appl. Opt. 55(6), 1216–1227 (2016).
    [PubMed]
  22. K. Watanabe, R. Miyazaki, G. Terakado, T. Okazaki, K. Morigaki, and H. Kano, “High resolution imaging of patterned model biological membranes by localized surface plasmon microscopy,” Appl. Opt. 49(5), 887–891 (2010).
    [PubMed]
  23. S. Collin, “Nanostructure arrays in free-space: optical properties and applications,” Rep. Prog. Phys. 77(12), 126402 (2014).
    [PubMed]
  24. Y. Zeng, R. Hu, L. Wang, D. Gu, J. He, S.-Y. Wu, H.-P. Ho, X. Li, J. Qu, B. Z. Gao, and Y. Shao, “Recent advances in surface plasmon resonance imaging: detection speed, sensitivity, and portability,” Nanophotonics 6, 1017–1030 (2017).
  25. R. Gillibert, M. Sarkar, J.-F. Bryche, R. Yasukuni, J. Moreau, M. Besbes, G. Barbillon, B. Bartenlian, M. Canva, and M. L. de la Chapelle, “Directional surface enhanced Raman scattering on gold nano-gratings,” Nanotechnology 27(11), 115202 (2016).
    [PubMed]
  26. Y. Oh, T. Son, S. Y. Kim, W. Lee, H. Yang, J. R. Choi, J.-S. Shin, and D. Kim, “Surface plasmon-enhanced nanoscopy of intracellular cytoskeletal actin filaments using random nanodot arrays,” Opt. Express 22(22), 27695–27706 (2014).
    [PubMed]
  27. D. J. Kim and D. Kim, “Subwavelength grating-based nanoplasmonic modulation for surface plasmon resonance imaging with enhanced resolution,” J. Opt. Soc. Am. B 27, 1252–1259 (2010).
  28. M. Chamtouri, A. Dhawan, M. Besbes, J. Moreau, H. Ghalila, T. Vo-Dinh, and M. Canva, “Enhanced SPR Sensitivity with Nano-Micro-Ribbon Grating—an Exhaustive Simulation Mapping,” Plasmonics 9, 79–92 (2014).
  29. M. Chamtouri, M. Sarkar, J. Moreau, M. Besbes, H. Ghalila, and M. Canva, “Field enhancement and target localization impact on the biosensitivity of nanostructured plasmonic sensors,” J. Opt. Soc. Am. B 31, 1223–1231 (2014).
  30. M. Sarkar, M. Besbes, J. Moreau, J.-F. Bryche, A. Olivéro, G. Barbillon, A.-L. Coutrot, B. Bartenlian, and M. Canva, “Hybrid Plasmonic Mode by Resonant Coupling of Localized Plasmons to Propagating Plasmons in a Kretschmann Configuration,” ACS Photonics 2, 237–245 (2015).
  31. M. Sarkar, J.-F. Bryche, J. Moreau, M. Besbes, G. Barbillon, B. Bartenlian, and M. Canva, “Generalized analytical model based on harmonic coupling for hybrid plasmonic modes: comparison with numerical and experimental results,” Opt. Express 23(21), 27376–27390 (2015).
    [PubMed]
  32. M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. 2, 07022 (2007).
  33. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972).
  34. M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,” Appl. Opt. 46(18), 3811–3820 (2007).
    [PubMed]

2018 (1)

T. Söllradl, F. A. Banville, U. Fröhlich, M. Canva, P. G. Charette, and M. Grandbois, “Label-free visualization and quantification of single cell signaling activity using metal-clad waveguide (MCWG)-based microscopy,” Biosens. Bioelectron. 100, 429–436 (2018).
[PubMed]

2017 (2)

Y. Zeng, R. Hu, L. Wang, D. Gu, J. He, S.-Y. Wu, H.-P. Ho, X. Li, J. Qu, B. Z. Gao, and Y. Shao, “Recent advances in surface plasmon resonance imaging: detection speed, sensitivity, and portability,” Nanophotonics 6, 1017–1030 (2017).

T. Söllradl, F. A. Banville, V. Chabot, M. Canva, M. Grandbois, and P. G. Charette, “Metal clad waveguide (MCWG) based imaging using a high numerical aperture microscope objective,” Opt. Express 25(3), 1666–1679 (2017).
[PubMed]

2016 (3)

L. Berguiga, L. Streppa, E. Boyer-Provera, C. Martinez-Torres, L. Schaeffer, J. Elezgaray, A. Arneodo, and F. Argoul, “Time-lapse scanning surface plasmon microscopy of living adherent cells with a radially polarized beam,” Appl. Opt. 55(6), 1216–1227 (2016).
[PubMed]

R. Gillibert, M. Sarkar, J.-F. Bryche, R. Yasukuni, J. Moreau, M. Besbes, G. Barbillon, B. Bartenlian, M. Canva, and M. L. de la Chapelle, “Directional surface enhanced Raman scattering on gold nano-gratings,” Nanotechnology 27(11), 115202 (2016).
[PubMed]

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
[PubMed]

2015 (3)

2014 (7)

M. Chamtouri, M. Sarkar, J. Moreau, M. Besbes, H. Ghalila, and M. Canva, “Field enhancement and target localization impact on the biosensitivity of nanostructured plasmonic sensors,” J. Opt. Soc. Am. B 31, 1223–1231 (2014).

L. Laplatine, L. Leroy, R. Calemczuk, D. Baganizi, P. N. Marche, Y. Roupioz, and T. Livache, “Spatial resolution in prism-based surface plasmon resonance microscopy,” Opt. Express 22(19), 22771–22785 (2014).
[PubMed]

Y. Oh, T. Son, S. Y. Kim, W. Lee, H. Yang, J. R. Choi, J.-S. Shin, and D. Kim, “Surface plasmon-enhanced nanoscopy of intracellular cytoskeletal actin filaments using random nanodot arrays,” Opt. Express 22(22), 27695–27706 (2014).
[PubMed]

M. Chamtouri, A. Dhawan, M. Besbes, J. Moreau, H. Ghalila, T. Vo-Dinh, and M. Canva, “Enhanced SPR Sensitivity with Nano-Micro-Ribbon Grating—an Exhaustive Simulation Mapping,” Plasmonics 9, 79–92 (2014).

S. Collin, “Nanostructure arrays in free-space: optical properties and applications,” Rep. Prog. Phys. 77(12), 126402 (2014).
[PubMed]

A. W. Peterson, M. Halter, A. Tona, and A. L. Plant, “High resolution surface plasmon resonance imaging for single cells,” BMC Cell Biol. 15, 35 (2014).
[PubMed]

K. Toma, H. Kano, and A. Offenhäusser, “Label-Free Measurement of Cell-Electrode Cleft Gap Distance with High Spatial Resolution Surface Plasmon Microscopy,” ACS Nano 8(12), 12612–12619 (2014).
[PubMed]

2012 (1)

2011 (1)

S.-H. Kim, W. Chegal, J. Doh, H. M. Cho, and D. W. Moon, “Study of cell-matrix adhesion dynamics using surface plasmon resonance imaging ellipsometry,” Biophys. J. 100(7), 1819–1828 (2011).
[PubMed]

2010 (2)

2007 (4)

M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,” Appl. Opt. 46(18), 3811–3820 (2007).
[PubMed]

B. Huang, F. Yu, and R. N. Zare, “Surface Plasmon Resonance Imaging Using a High Numerical Aperture Microscope Objective,” Anal. Chem. 79(7), 2979–2983 (2007).
[PubMed]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. 2, 07022 (2007).

2000 (1)

1999 (2)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface Plasmon Resonance Based Sensors,” Sens. Actuat. B Chem. 54, 3–15 (1999).

K. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of Cell/Substrate Contacts of Living Cells with Surface Plasmon Resonance Microscopy,” Biophys. J. 76(1 Pt 1), 509–516 (1999).
[PubMed]

1996 (1)

E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron. 11, 635–649 (1996).

1994 (1)

C. E. H. Berger, R. P. H. Kooyman, and J. Greve, “Resolution in surface plasmon microscopy,” Rev. Sci. Instrum. 65, 2829–2836 (1994).

1993 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972).

1968 (2)

E. Kretschmann and H. Raether, “Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light,” Z. Für Naturforschung A. 23, 2135–2136 (1968).

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Fr Phys. Hadrons Nucl. 216, 398–410 (1968).

Argoul, F.

Arneodo, A.

Ayi, T. C.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
[PubMed]

Baganizi, D.

Baida, F. I.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. 2, 07022 (2007).

Banville, F. A.

Barbillon, G.

R. Gillibert, M. Sarkar, J.-F. Bryche, R. Yasukuni, J. Moreau, M. Besbes, G. Barbillon, B. Bartenlian, M. Canva, and M. L. de la Chapelle, “Directional surface enhanced Raman scattering on gold nano-gratings,” Nanotechnology 27(11), 115202 (2016).
[PubMed]

M. Sarkar, M. Besbes, J. Moreau, J.-F. Bryche, A. Olivéro, G. Barbillon, A.-L. Coutrot, B. Bartenlian, and M. Canva, “Hybrid Plasmonic Mode by Resonant Coupling of Localized Plasmons to Propagating Plasmons in a Kretschmann Configuration,” ACS Photonics 2, 237–245 (2015).

M. Sarkar, J.-F. Bryche, J. Moreau, M. Besbes, G. Barbillon, B. Bartenlian, and M. Canva, “Generalized analytical model based on harmonic coupling for hybrid plasmonic modes: comparison with numerical and experimental results,” Opt. Express 23(21), 27376–27390 (2015).
[PubMed]

Bartenlian, B.

R. Gillibert, M. Sarkar, J.-F. Bryche, R. Yasukuni, J. Moreau, M. Besbes, G. Barbillon, B. Bartenlian, M. Canva, and M. L. de la Chapelle, “Directional surface enhanced Raman scattering on gold nano-gratings,” Nanotechnology 27(11), 115202 (2016).
[PubMed]

M. Sarkar, M. Besbes, J. Moreau, J.-F. Bryche, A. Olivéro, G. Barbillon, A.-L. Coutrot, B. Bartenlian, and M. Canva, “Hybrid Plasmonic Mode by Resonant Coupling of Localized Plasmons to Propagating Plasmons in a Kretschmann Configuration,” ACS Photonics 2, 237–245 (2015).

M. Sarkar, J.-F. Bryche, J. Moreau, M. Besbes, G. Barbillon, B. Bartenlian, and M. Canva, “Generalized analytical model based on harmonic coupling for hybrid plasmonic modes: comparison with numerical and experimental results,” Opt. Express 23(21), 27376–27390 (2015).
[PubMed]

Bastmeyer, M.

K. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of Cell/Substrate Contacts of Living Cells with Surface Plasmon Resonance Microscopy,” Biophys. J. 76(1 Pt 1), 509–516 (1999).
[PubMed]

Bechinger, C.

K. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of Cell/Substrate Contacts of Living Cells with Surface Plasmon Resonance Microscopy,” Biophys. J. 76(1 Pt 1), 509–516 (1999).
[PubMed]

Berger, C. E. H.

C. E. H. Berger, R. P. H. Kooyman, and J. Greve, “Resolution in surface plasmon microscopy,” Rev. Sci. Instrum. 65, 2829–2836 (1994).

Berguiga, L.

Besbes, M.

R. Gillibert, M. Sarkar, J.-F. Bryche, R. Yasukuni, J. Moreau, M. Besbes, G. Barbillon, B. Bartenlian, M. Canva, and M. L. de la Chapelle, “Directional surface enhanced Raman scattering on gold nano-gratings,” Nanotechnology 27(11), 115202 (2016).
[PubMed]

M. Sarkar, M. Besbes, J. Moreau, J.-F. Bryche, A. Olivéro, G. Barbillon, A.-L. Coutrot, B. Bartenlian, and M. Canva, “Hybrid Plasmonic Mode by Resonant Coupling of Localized Plasmons to Propagating Plasmons in a Kretschmann Configuration,” ACS Photonics 2, 237–245 (2015).

M. Sarkar, J.-F. Bryche, J. Moreau, M. Besbes, G. Barbillon, B. Bartenlian, and M. Canva, “Generalized analytical model based on harmonic coupling for hybrid plasmonic modes: comparison with numerical and experimental results,” Opt. Express 23(21), 27376–27390 (2015).
[PubMed]

M. Chamtouri, A. Dhawan, M. Besbes, J. Moreau, H. Ghalila, T. Vo-Dinh, and M. Canva, “Enhanced SPR Sensitivity with Nano-Micro-Ribbon Grating—an Exhaustive Simulation Mapping,” Plasmonics 9, 79–92 (2014).

M. Chamtouri, M. Sarkar, J. Moreau, M. Besbes, H. Ghalila, and M. Canva, “Field enhancement and target localization impact on the biosensitivity of nanostructured plasmonic sensors,” J. Opt. Soc. Am. B 31, 1223–1231 (2014).

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. 2, 07022 (2007).

Bienstman, P.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. 2, 07022 (2007).

Bourouina, T.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
[PubMed]

Boyer-Provera, E.

Bryche, J.-F.

R. Gillibert, M. Sarkar, J.-F. Bryche, R. Yasukuni, J. Moreau, M. Besbes, G. Barbillon, B. Bartenlian, M. Canva, and M. L. de la Chapelle, “Directional surface enhanced Raman scattering on gold nano-gratings,” Nanotechnology 27(11), 115202 (2016).
[PubMed]

M. Sarkar, M. Besbes, J. Moreau, J.-F. Bryche, A. Olivéro, G. Barbillon, A.-L. Coutrot, B. Bartenlian, and M. Canva, “Hybrid Plasmonic Mode by Resonant Coupling of Localized Plasmons to Propagating Plasmons in a Kretschmann Configuration,” ACS Photonics 2, 237–245 (2015).

M. Sarkar, J.-F. Bryche, J. Moreau, M. Besbes, G. Barbillon, B. Bartenlian, and M. Canva, “Generalized analytical model based on harmonic coupling for hybrid plasmonic modes: comparison with numerical and experimental results,” Opt. Express 23(21), 27376–27390 (2015).
[PubMed]

Calemczuk, R.

Canva, M.

T. Söllradl, F. A. Banville, U. Fröhlich, M. Canva, P. G. Charette, and M. Grandbois, “Label-free visualization and quantification of single cell signaling activity using metal-clad waveguide (MCWG)-based microscopy,” Biosens. Bioelectron. 100, 429–436 (2018).
[PubMed]

T. Söllradl, F. A. Banville, V. Chabot, M. Canva, M. Grandbois, and P. G. Charette, “Metal clad waveguide (MCWG) based imaging using a high numerical aperture microscope objective,” Opt. Express 25(3), 1666–1679 (2017).
[PubMed]

R. Gillibert, M. Sarkar, J.-F. Bryche, R. Yasukuni, J. Moreau, M. Besbes, G. Barbillon, B. Bartenlian, M. Canva, and M. L. de la Chapelle, “Directional surface enhanced Raman scattering on gold nano-gratings,” Nanotechnology 27(11), 115202 (2016).
[PubMed]

M. Sarkar, M. Besbes, J. Moreau, J.-F. Bryche, A. Olivéro, G. Barbillon, A.-L. Coutrot, B. Bartenlian, and M. Canva, “Hybrid Plasmonic Mode by Resonant Coupling of Localized Plasmons to Propagating Plasmons in a Kretschmann Configuration,” ACS Photonics 2, 237–245 (2015).

M. Sarkar, J.-F. Bryche, J. Moreau, M. Besbes, G. Barbillon, B. Bartenlian, and M. Canva, “Generalized analytical model based on harmonic coupling for hybrid plasmonic modes: comparison with numerical and experimental results,” Opt. Express 23(21), 27376–27390 (2015).
[PubMed]

M. Chamtouri, M. Sarkar, J. Moreau, M. Besbes, H. Ghalila, and M. Canva, “Field enhancement and target localization impact on the biosensitivity of nanostructured plasmonic sensors,” J. Opt. Soc. Am. B 31, 1223–1231 (2014).

M. Chamtouri, A. Dhawan, M. Besbes, J. Moreau, H. Ghalila, T. Vo-Dinh, and M. Canva, “Enhanced SPR Sensitivity with Nano-Micro-Ribbon Grating—an Exhaustive Simulation Mapping,” Plasmonics 9, 79–92 (2014).

Chabot, V.

Chamtouri, M.

M. Chamtouri, M. Sarkar, J. Moreau, M. Besbes, H. Ghalila, and M. Canva, “Field enhancement and target localization impact on the biosensitivity of nanostructured plasmonic sensors,” J. Opt. Soc. Am. B 31, 1223–1231 (2014).

M. Chamtouri, A. Dhawan, M. Besbes, J. Moreau, H. Ghalila, T. Vo-Dinh, and M. Canva, “Enhanced SPR Sensitivity with Nano-Micro-Ribbon Grating—an Exhaustive Simulation Mapping,” Plasmonics 9, 79–92 (2014).

Charette, P. G.

Chegal, W.

S.-H. Kim, W. Chegal, J. Doh, H. M. Cho, and D. W. Moon, “Study of cell-matrix adhesion dynamics using surface plasmon resonance imaging ellipsometry,” Biophys. J. 100(7), 1819–1828 (2011).
[PubMed]

Chen, H. F.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
[PubMed]

Chin, L. K.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
[PubMed]

Cho, H. M.

S.-H. Kim, W. Chegal, J. Doh, H. M. Cho, and D. W. Moon, “Study of cell-matrix adhesion dynamics using surface plasmon resonance imaging ellipsometry,” Biophys. J. 100(7), 1819–1828 (2011).
[PubMed]

Choi, J. R.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972).

Collin, S.

S. Collin, “Nanostructure arrays in free-space: optical properties and applications,” Rep. Prog. Phys. 77(12), 126402 (2014).
[PubMed]

Coutrot, A.-L.

M. Sarkar, M. Besbes, J. Moreau, J.-F. Bryche, A. Olivéro, G. Barbillon, A.-L. Coutrot, B. Bartenlian, and M. Canva, “Hybrid Plasmonic Mode by Resonant Coupling of Localized Plasmons to Propagating Plasmons in a Kretschmann Configuration,” ACS Photonics 2, 237–245 (2015).

Daimon, M.

de Bruijn, H. E.

de la Chapelle, M. L.

R. Gillibert, M. Sarkar, J.-F. Bryche, R. Yasukuni, J. Moreau, M. Besbes, G. Barbillon, B. Bartenlian, M. Canva, and M. L. de la Chapelle, “Directional surface enhanced Raman scattering on gold nano-gratings,” Nanotechnology 27(11), 115202 (2016).
[PubMed]

Dhawan, A.

M. Chamtouri, A. Dhawan, M. Besbes, J. Moreau, H. Ghalila, T. Vo-Dinh, and M. Canva, “Enhanced SPR Sensitivity with Nano-Micro-Ribbon Grating—an Exhaustive Simulation Mapping,” Plasmonics 9, 79–92 (2014).

Doh, J.

S.-H. Kim, W. Chegal, J. Doh, H. M. Cho, and D. W. Moon, “Study of cell-matrix adhesion dynamics using surface plasmon resonance imaging ellipsometry,” Biophys. J. 100(7), 1819–1828 (2011).
[PubMed]

Elezgaray, J.

Fröhlich, U.

T. Söllradl, F. A. Banville, U. Fröhlich, M. Canva, P. G. Charette, and M. Grandbois, “Label-free visualization and quantification of single cell signaling activity using metal-clad waveguide (MCWG)-based microscopy,” Biosens. Bioelectron. 100, 429–436 (2018).
[PubMed]

Gao, B. Z.

Y. Zeng, R. Hu, L. Wang, D. Gu, J. He, S.-Y. Wu, H.-P. Ho, X. Li, J. Qu, B. Z. Gao, and Y. Shao, “Recent advances in surface plasmon resonance imaging: detection speed, sensitivity, and portability,” Nanophotonics 6, 1017–1030 (2017).

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface Plasmon Resonance Based Sensors,” Sens. Actuat. B Chem. 54, 3–15 (1999).

Ghalila, H.

M. Chamtouri, A. Dhawan, M. Besbes, J. Moreau, H. Ghalila, T. Vo-Dinh, and M. Canva, “Enhanced SPR Sensitivity with Nano-Micro-Ribbon Grating—an Exhaustive Simulation Mapping,” Plasmonics 9, 79–92 (2014).

M. Chamtouri, M. Sarkar, J. Moreau, M. Besbes, H. Ghalila, and M. Canva, “Field enhancement and target localization impact on the biosensitivity of nanostructured plasmonic sensors,” J. Opt. Soc. Am. B 31, 1223–1231 (2014).

Giebel, K.

K. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of Cell/Substrate Contacts of Living Cells with Surface Plasmon Resonance Microscopy,” Biophys. J. 76(1 Pt 1), 509–516 (1999).
[PubMed]

Gillibert, R.

R. Gillibert, M. Sarkar, J.-F. Bryche, R. Yasukuni, J. Moreau, M. Besbes, G. Barbillon, B. Bartenlian, M. Canva, and M. L. de la Chapelle, “Directional surface enhanced Raman scattering on gold nano-gratings,” Nanotechnology 27(11), 115202 (2016).
[PubMed]

Grandbois, M.

Granet, G.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. 2, 07022 (2007).

Greve, J.

C. E. H. Berger, R. P. H. Kooyman, and J. Greve, “Resolution in surface plasmon microscopy,” Rev. Sci. Instrum. 65, 2829–2836 (1994).

H. E. de Bruijn, R. P. H. Kooyman, and J. Greve, “Surface plasmon resonance microscopy: improvement of the resolution by rotation of the object,” Appl. Opt. 32(13), 2426–2430 (1993).
[PubMed]

Gu, D.

Y. Zeng, R. Hu, L. Wang, D. Gu, J. He, S.-Y. Wu, H.-P. Ho, X. Li, J. Qu, B. Z. Gao, and Y. Shao, “Recent advances in surface plasmon resonance imaging: detection speed, sensitivity, and portability,” Nanophotonics 6, 1017–1030 (2017).

Guizal, B.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. 2, 07022 (2007).

Halas, N. J.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).

Halter, M.

A. W. Peterson, M. Halter, A. Tona, and A. L. Plant, “High resolution surface plasmon resonance imaging for single cells,” BMC Cell Biol. 15, 35 (2014).
[PubMed]

He, J.

Y. Zeng, R. Hu, L. Wang, D. Gu, J. He, S.-Y. Wu, H.-P. Ho, X. Li, J. Qu, B. Z. Gao, and Y. Shao, “Recent advances in surface plasmon resonance imaging: detection speed, sensitivity, and portability,” Nanophotonics 6, 1017–1030 (2017).

Helfert, S.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. 2, 07022 (2007).

Herminghaus, S.

K. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of Cell/Substrate Contacts of Living Cells with Surface Plasmon Resonance Microscopy,” Biophys. J. 76(1 Pt 1), 509–516 (1999).
[PubMed]

Ho, H.-P.

Y. Zeng, R. Hu, L. Wang, D. Gu, J. He, S.-Y. Wu, H.-P. Ho, X. Li, J. Qu, B. Z. Gao, and Y. Shao, “Recent advances in surface plasmon resonance imaging: detection speed, sensitivity, and portability,” Nanophotonics 6, 1017–1030 (2017).

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface Plasmon Resonance Based Sensors,” Sens. Actuat. B Chem. 54, 3–15 (1999).

Hsieh, C.-M.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
[PubMed]

Hu, R.

Y. Zeng, R. Hu, L. Wang, D. Gu, J. He, S.-Y. Wu, H.-P. Ho, X. Li, J. Qu, B. Z. Gao, and Y. Shao, “Recent advances in surface plasmon resonance imaging: detection speed, sensitivity, and portability,” Nanophotonics 6, 1017–1030 (2017).

Huang, B.

B. Huang, F. Yu, and R. N. Zare, “Surface Plasmon Resonance Imaging Using a High Numerical Aperture Microscope Objective,” Anal. Chem. 79(7), 2979–2983 (2007).
[PubMed]

Hugonin, J. P.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. 2, 07022 (2007).

Janssen, O. T. A.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. 2, 07022 (2007).

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972).

Kano, H.

Kawata, F.

Kim, D.

Kim, D. J.

Kim, S. Y.

Kim, S.-H.

S.-H. Kim, W. Chegal, J. Doh, H. M. Cho, and D. W. Moon, “Study of cell-matrix adhesion dynamics using surface plasmon resonance imaging ellipsometry,” Biophys. J. 100(7), 1819–1828 (2011).
[PubMed]

Kooyman, R. P. H.

C. E. H. Berger, R. P. H. Kooyman, and J. Greve, “Resolution in surface plasmon microscopy,” Rev. Sci. Instrum. 65, 2829–2836 (1994).

H. E. de Bruijn, R. P. H. Kooyman, and J. Greve, “Surface plasmon resonance microscopy: improvement of the resolution by rotation of the object,” Appl. Opt. 32(13), 2426–2430 (1993).
[PubMed]

Kretschmann, E.

E. Kretschmann and H. Raether, “Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light,” Z. Für Naturforschung A. 23, 2135–2136 (1968).

Lal, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).

Lalanne, P.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. 2, 07022 (2007).

Laplatine, L.

Lee, C.-H.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
[PubMed]

Lee, W.

Leiderer, P.

K. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of Cell/Substrate Contacts of Living Cells with Surface Plasmon Resonance Microscopy,” Biophys. J. 76(1 Pt 1), 509–516 (1999).
[PubMed]

Leprince-Wang, Y.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
[PubMed]

Leroy, L.

Li, X.

Y. Zeng, R. Hu, L. Wang, D. Gu, J. He, S.-Y. Wu, H.-P. Ho, X. Li, J. Qu, B. Z. Gao, and Y. Shao, “Recent advances in surface plasmon resonance imaging: detection speed, sensitivity, and portability,” Nanophotonics 6, 1017–1030 (2017).

Liedberg, B.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
[PubMed]

Link, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).

Liu, P. Y.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
[PubMed]

Liu, S.

Livache, T.

Marche, P. N.

Martinez-Torres, C.

Masumura, A.

Matsuura, K.

Miyazaki, R.

Moon, D. W.

S.-H. Kim, W. Chegal, J. Doh, H. M. Cho, and D. W. Moon, “Study of cell-matrix adhesion dynamics using surface plasmon resonance imaging ellipsometry,” Biophys. J. 100(7), 1819–1828 (2011).
[PubMed]

Moreau, A.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. 2, 07022 (2007).

Moreau, J.

R. Gillibert, M. Sarkar, J.-F. Bryche, R. Yasukuni, J. Moreau, M. Besbes, G. Barbillon, B. Bartenlian, M. Canva, and M. L. de la Chapelle, “Directional surface enhanced Raman scattering on gold nano-gratings,” Nanotechnology 27(11), 115202 (2016).
[PubMed]

M. Sarkar, M. Besbes, J. Moreau, J.-F. Bryche, A. Olivéro, G. Barbillon, A.-L. Coutrot, B. Bartenlian, and M. Canva, “Hybrid Plasmonic Mode by Resonant Coupling of Localized Plasmons to Propagating Plasmons in a Kretschmann Configuration,” ACS Photonics 2, 237–245 (2015).

M. Sarkar, J.-F. Bryche, J. Moreau, M. Besbes, G. Barbillon, B. Bartenlian, and M. Canva, “Generalized analytical model based on harmonic coupling for hybrid plasmonic modes: comparison with numerical and experimental results,” Opt. Express 23(21), 27376–27390 (2015).
[PubMed]

M. Chamtouri, A. Dhawan, M. Besbes, J. Moreau, H. Ghalila, T. Vo-Dinh, and M. Canva, “Enhanced SPR Sensitivity with Nano-Micro-Ribbon Grating—an Exhaustive Simulation Mapping,” Plasmonics 9, 79–92 (2014).

M. Chamtouri, M. Sarkar, J. Moreau, M. Besbes, H. Ghalila, and M. Canva, “Field enhancement and target localization impact on the biosensitivity of nanostructured plasmonic sensors,” J. Opt. Soc. Am. B 31, 1223–1231 (2014).

Morigaki, K.

Nagata, K.

Ning, J.

Nugrowati, A. M.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. 2, 07022 (2007).

Offenhäusser, A.

K. Toma, H. Kano, and A. Offenhäusser, “Label-Free Measurement of Cell-Electrode Cleft Gap Distance with High Spatial Resolution Surface Plasmon Microscopy,” ACS Nano 8(12), 12612–12619 (2014).
[PubMed]

Oh, Y.

Okazaki, T.

Olivéro, A.

M. Sarkar, M. Besbes, J. Moreau, J.-F. Bryche, A. Olivéro, G. Barbillon, A.-L. Coutrot, B. Bartenlian, and M. Canva, “Hybrid Plasmonic Mode by Resonant Coupling of Localized Plasmons to Propagating Plasmons in a Kretschmann Configuration,” ACS Photonics 2, 237–245 (2015).

Otto, A.

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Fr Phys. Hadrons Nucl. 216, 398–410 (1968).

Pereira, S. F.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. 2, 07022 (2007).

Peterson, A. W.

A. W. Peterson, M. Halter, A. Tona, and A. L. Plant, “High resolution surface plasmon resonance imaging for single cells,” BMC Cell Biol. 15, 35 (2014).
[PubMed]

Plant, A. L.

A. W. Peterson, M. Halter, A. Tona, and A. L. Plant, “High resolution surface plasmon resonance imaging for single cells,” BMC Cell Biol. 15, 35 (2014).
[PubMed]

Qu, J.

Y. Zeng, R. Hu, L. Wang, D. Gu, J. He, S.-Y. Wu, H.-P. Ho, X. Li, J. Qu, B. Z. Gao, and Y. Shao, “Recent advances in surface plasmon resonance imaging: detection speed, sensitivity, and portability,” Nanophotonics 6, 1017–1030 (2017).

Raether, H.

E. Kretschmann and H. Raether, “Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light,” Z. Für Naturforschung A. 23, 2135–2136 (1968).

Riedel, M.

K. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of Cell/Substrate Contacts of Living Cells with Surface Plasmon Resonance Microscopy,” Biophys. J. 76(1 Pt 1), 509–516 (1999).
[PubMed]

Roupioz, Y.

Sarkar, M.

R. Gillibert, M. Sarkar, J.-F. Bryche, R. Yasukuni, J. Moreau, M. Besbes, G. Barbillon, B. Bartenlian, M. Canva, and M. L. de la Chapelle, “Directional surface enhanced Raman scattering on gold nano-gratings,” Nanotechnology 27(11), 115202 (2016).
[PubMed]

M. Sarkar, M. Besbes, J. Moreau, J.-F. Bryche, A. Olivéro, G. Barbillon, A.-L. Coutrot, B. Bartenlian, and M. Canva, “Hybrid Plasmonic Mode by Resonant Coupling of Localized Plasmons to Propagating Plasmons in a Kretschmann Configuration,” ACS Photonics 2, 237–245 (2015).

M. Sarkar, J.-F. Bryche, J. Moreau, M. Besbes, G. Barbillon, B. Bartenlian, and M. Canva, “Generalized analytical model based on harmonic coupling for hybrid plasmonic modes: comparison with numerical and experimental results,” Opt. Express 23(21), 27376–27390 (2015).
[PubMed]

M. Chamtouri, M. Sarkar, J. Moreau, M. Besbes, H. Ghalila, and M. Canva, “Field enhancement and target localization impact on the biosensitivity of nanostructured plasmonic sensors,” J. Opt. Soc. Am. B 31, 1223–1231 (2014).

Schaeffer, L.

See, C. W.

Seideman, T.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. 2, 07022 (2007).

Ser, W.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
[PubMed]

Shao, Y.

Y. Zeng, R. Hu, L. Wang, D. Gu, J. He, S.-Y. Wu, H.-P. Ho, X. Li, J. Qu, B. Z. Gao, and Y. Shao, “Recent advances in surface plasmon resonance imaging: detection speed, sensitivity, and portability,” Nanophotonics 6, 1017–1030 (2017).

Shin, J.-S.

Söllradl, T.

Somekh, M. G.

Son, T.

Streppa, L.

Sukharev, M.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. 2, 07022 (2007).

Sung, K.-B.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
[PubMed]

Terakado, G.

Toma, K.

K. Toma, H. Kano, and A. Offenhäusser, “Label-Free Measurement of Cell-Electrode Cleft Gap Distance with High Spatial Resolution Surface Plasmon Microscopy,” ACS Nano 8(12), 12612–12619 (2014).
[PubMed]

Tona, A.

A. W. Peterson, M. Halter, A. Tona, and A. L. Plant, “High resolution surface plasmon resonance imaging for single cells,” BMC Cell Biol. 15, 35 (2014).
[PubMed]

Urbach, H. P.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. 2, 07022 (2007).

van de Nes, A. S.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. 2, 07022 (2007).

van Haver, S.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. 2, 07022 (2007).

Van Labeke, D.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. 2, 07022 (2007).

Velinov, T. S.

Vo-Dinh, T.

M. Chamtouri, A. Dhawan, M. Besbes, J. Moreau, H. Ghalila, T. Vo-Dinh, and M. Canva, “Enhanced SPR Sensitivity with Nano-Micro-Ribbon Grating—an Exhaustive Simulation Mapping,” Plasmonics 9, 79–92 (2014).

Wang, K.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
[PubMed]

Wang, L.

Y. Zeng, R. Hu, L. Wang, D. Gu, J. He, S.-Y. Wu, H.-P. Ho, X. Li, J. Qu, B. Z. Gao, and Y. Shao, “Recent advances in surface plasmon resonance imaging: detection speed, sensitivity, and portability,” Nanophotonics 6, 1017–1030 (2017).

Watanabe, K.

Weiland, U.

K. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of Cell/Substrate Contacts of Living Cells with Surface Plasmon Resonance Microscopy,” Biophys. J. 76(1 Pt 1), 509–516 (1999).
[PubMed]

Wu, S.-Y.

Y. Zeng, R. Hu, L. Wang, D. Gu, J. He, S.-Y. Wu, H.-P. Ho, X. Li, J. Qu, B. Z. Gao, and Y. Shao, “Recent advances in surface plasmon resonance imaging: detection speed, sensitivity, and portability,” Nanophotonics 6, 1017–1030 (2017).

Xu, M.

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. 2, 07022 (2007).

Yang, H.

Yap, P. H.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
[PubMed]

Yasukuni, R.

R. Gillibert, M. Sarkar, J.-F. Bryche, R. Yasukuni, J. Moreau, M. Besbes, G. Barbillon, B. Bartenlian, M. Canva, and M. L. de la Chapelle, “Directional surface enhanced Raman scattering on gold nano-gratings,” Nanotechnology 27(11), 115202 (2016).
[PubMed]

Yeatman, E. M.

E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron. 11, 635–649 (1996).

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface Plasmon Resonance Based Sensors,” Sens. Actuat. B Chem. 54, 3–15 (1999).

Yu, F.

B. Huang, F. Yu, and R. N. Zare, “Surface Plasmon Resonance Imaging Using a High Numerical Aperture Microscope Objective,” Anal. Chem. 79(7), 2979–2983 (2007).
[PubMed]

Zare, R. N.

B. Huang, F. Yu, and R. N. Zare, “Surface Plasmon Resonance Imaging Using a High Numerical Aperture Microscope Objective,” Anal. Chem. 79(7), 2979–2983 (2007).
[PubMed]

Zeng, Y.

Y. Zeng, R. Hu, L. Wang, D. Gu, J. He, S.-Y. Wu, H.-P. Ho, X. Li, J. Qu, B. Z. Gao, and Y. Shao, “Recent advances in surface plasmon resonance imaging: detection speed, sensitivity, and portability,” Nanophotonics 6, 1017–1030 (2017).

Zermatten, P.-J.

ACS Nano (1)

K. Toma, H. Kano, and A. Offenhäusser, “Label-Free Measurement of Cell-Electrode Cleft Gap Distance with High Spatial Resolution Surface Plasmon Microscopy,” ACS Nano 8(12), 12612–12619 (2014).
[PubMed]

ACS Photonics (1)

M. Sarkar, M. Besbes, J. Moreau, J.-F. Bryche, A. Olivéro, G. Barbillon, A.-L. Coutrot, B. Bartenlian, and M. Canva, “Hybrid Plasmonic Mode by Resonant Coupling of Localized Plasmons to Propagating Plasmons in a Kretschmann Configuration,” ACS Photonics 2, 237–245 (2015).

Anal. Chem. (1)

B. Huang, F. Yu, and R. N. Zare, “Surface Plasmon Resonance Imaging Using a High Numerical Aperture Microscope Objective,” Anal. Chem. 79(7), 2979–2983 (2007).
[PubMed]

Appl. Opt. (5)

Biomed. Opt. Express (1)

Biophys. J. (2)

K. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of Cell/Substrate Contacts of Living Cells with Surface Plasmon Resonance Microscopy,” Biophys. J. 76(1 Pt 1), 509–516 (1999).
[PubMed]

S.-H. Kim, W. Chegal, J. Doh, H. M. Cho, and D. W. Moon, “Study of cell-matrix adhesion dynamics using surface plasmon resonance imaging ellipsometry,” Biophys. J. 100(7), 1819–1828 (2011).
[PubMed]

Biosens. Bioelectron. (2)

T. Söllradl, F. A. Banville, U. Fröhlich, M. Canva, P. G. Charette, and M. Grandbois, “Label-free visualization and quantification of single cell signaling activity using metal-clad waveguide (MCWG)-based microscopy,” Biosens. Bioelectron. 100, 429–436 (2018).
[PubMed]

E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron. 11, 635–649 (1996).

BMC Cell Biol. (1)

A. W. Peterson, M. Halter, A. Tona, and A. L. Plant, “High resolution surface plasmon resonance imaging for single cells,” BMC Cell Biol. 15, 35 (2014).
[PubMed]

J. Eur. Opt. Soc. (1)

M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. 2, 07022 (2007).

J. Opt. Soc. Am. B (2)

Lab Chip (1)

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C.-M. Hsieh, C.-H. Lee, K.-B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
[PubMed]

Nanophotonics (1)

Y. Zeng, R. Hu, L. Wang, D. Gu, J. He, S.-Y. Wu, H.-P. Ho, X. Li, J. Qu, B. Z. Gao, and Y. Shao, “Recent advances in surface plasmon resonance imaging: detection speed, sensitivity, and portability,” Nanophotonics 6, 1017–1030 (2017).

Nanotechnology (1)

R. Gillibert, M. Sarkar, J.-F. Bryche, R. Yasukuni, J. Moreau, M. Besbes, G. Barbillon, B. Bartenlian, M. Canva, and M. L. de la Chapelle, “Directional surface enhanced Raman scattering on gold nano-gratings,” Nanotechnology 27(11), 115202 (2016).
[PubMed]

Nat. Photonics (1)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972).

Plasmonics (1)

M. Chamtouri, A. Dhawan, M. Besbes, J. Moreau, H. Ghalila, T. Vo-Dinh, and M. Canva, “Enhanced SPR Sensitivity with Nano-Micro-Ribbon Grating—an Exhaustive Simulation Mapping,” Plasmonics 9, 79–92 (2014).

Rep. Prog. Phys. (1)

S. Collin, “Nanostructure arrays in free-space: optical properties and applications,” Rep. Prog. Phys. 77(12), 126402 (2014).
[PubMed]

Rev. Sci. Instrum. (1)

C. E. H. Berger, R. P. H. Kooyman, and J. Greve, “Resolution in surface plasmon microscopy,” Rev. Sci. Instrum. 65, 2829–2836 (1994).

Sens. Actuat. B Chem. (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface Plasmon Resonance Based Sensors,” Sens. Actuat. B Chem. 54, 3–15 (1999).

Z. Fr Phys. Hadrons Nucl. (1)

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Fr Phys. Hadrons Nucl. 216, 398–410 (1968).

Z. Für Naturforschung A. (1)

E. Kretschmann and H. Raether, “Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light,” Z. Für Naturforschung A. 23, 2135–2136 (1968).

Other (1)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 2006), Vol. 111.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of the SPRI substrate thin film stack: BK7 glass cover slip – Cr adhesion layer (3 nm) – nanostructured Au film – distilled water. The nanostructured Au film is composed of a uniform bottom layer (height h1) and a grating top layer (height h2, period Λ, width w along x). For 1D gratings, the geometry is uniform along y, whereas 2D gratings have the same periodicity along x and y. A TM-polarized plane wave with wavevector kinc is incident at the glass/metal interface at angle θ; (b) Modeled reflectance curves versus incidence angle for unstructured (h1 = 50 nm) and structured (w = 200 nm, Λ = 400 nm, h1 = 25 nm, h2 = 25 nm) Au films, showing the resonance contrast metric definition for the 2D grating; (c-d) SEM images of 1D and 2D nanostructured substrates with grating parameters as in (b).
Fig. 2
Fig. 2 (a)-(e) Modeled 2D maps of the performance metrics as a function of in-plane grating parameters (w and Λ) for fixed out-of-plane parameters (h1 = 25 nm, h2 = 25 nm); (f)-(j) Modeled 2D maps of the performance metrics as a function of out-of-plane grating parameters (h1 and h2) for fixed in-plane parameters (w = 200 nm and Λ = 400 nm). The star markers indicate the estimated metric values for a surface nanostructure geometry of w = 200 nm, Λ = 400 nm, h1 = 25 nm, h2 = 25 nm. All results calculated for λ = 830 nm.
Fig. 3
Fig. 3 Modeled contrast vs mode attenuation length at λ = 830 nm for different configurations of the structure shown in Fig. 1. Solid black curve: unstructured Au film, thickness increases from 10 to 50 nm, left to right along the curve (small dots: 1 nm steps, large dots: 10 nm steps). Colored curves: nanostructured Au films (1D gratings, w = 200 nm, Λ = 400 nm) for 3 examples of selected nanostructure height (h2 = 15 nm, 25 nm, 35 nm) as a function of increasing bottom metal layer thicknesses from left to right along the curves, where the values of h1 at the apex of each curve (maximum contrast) are given in the legend. Dotted black line: maximum achievable contrast versus attenuation length for structured films at varying nanostructure heights h2. The circular markers indicate the 1D nanostructured substrate configuration and two unstructured substrate configurations that were fabricated and characterized experimentally, as shown below.
Fig. 4
Fig. 4 (a) Brightfield image of a cross-shaped orifice in the synthetic target layer: the dielectric atop the metal outside the cross is KMPR and water inside the cross; (b-e) Normalized SPRI images at λ = 830 nm of the cross patterned atop: unstructured Au films (b: 50 nm, c: 25 nm) and nanostructured Au films (d: 1D lines, e: 2D pillars, h1 = 25 nm, h2 = 25 nm, w = 200 nm, Λ = 400 nm). Mode propagation is from left to right. The horizontal line overlays indicate the line profiles plotted in Fig. 5.
Fig. 5
Fig. 5 Plots of reflected intensity line profiles in the direction of mode propagation for the line overlays shown in Figs. 4(b)-4(e). Experimental data: solid lines, parametric model fits: dotted lines.
Fig. 6
Fig. 6 Resolution test chart patterned in the synthetic target layer imaged with (a) brightfield and SPRI on unstructured (b: 50 nm, c: 25 nm) and nanostructured (d: 1D lines, e: 2D pillars, h1 = 25 nm, h2 = 25 nm, w = 200 nm, Λ = 400 nm) Au films at λ = 830 nm. In (b)-(e), light grey (weak coupling to the hybrid mode) indicates KMPR atop the metal and dark grey (strong coupling) indicates water-filled orifices in the target layer. Mode propagation direction is left to right horizontally, i.e. perpendicular to the vertical edges. Top row in the images: 2 µm wide lines with variable spacing (10 to 1 µm, in 0.5 µm steps). Second row: groups of 3 lines having equal width and spacing (10, 5, 3, 2, 1 µm). Third row: lines of variable width (15, 10, 5, 4, 3, 2.5, 2, 1.5, 1 µm) at fixed spacing (10 µm). Fourth row: inverse of previous row (10 µm fixed line width, variable spacing).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

L x = 1 2 k "
L z = 1 ( k ' ) 2 ( 2π n BK7 λ ) 2
I(x)=( I max I min ) e 2 k " x cos( Δ k ' x )+ I min
Δ k ' = k ' k inc ' = k ' 2π λ n BK7 sin( θ inc )

Metrics