Abstract

Time-resolved multispectral imaging has many applications in different fields, which range from characterization of biological tissues to environmental monitoring. In particular, optical techniques, such as lidar and fluorescence lifetime imaging, require imaging at the subnanosecond scales over an extended area. In this paper, we demonstrate experimentally a time-resolved multispectral acquisition scheme based on single-pixel imaging. Single-pixel imaging is an emerging paradigm that provides low-cost high-quality images. Here, we use an adaptive strategy that allows acquisition and image reconstruction times to be reduced drastically or full basis scans. Adaptive time-resolved multispectral imaging scheme can have significant applications in biological imaging, at scales from macroscopic to microscopic.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Photon arrival timing with sub-camera exposure time resolution in wide-field time-resolved photon counting imaging

Zdeněk Petrášek and Klaus Suhling
Opt. Express 18(24) 24888-24901 (2010)

Time-resolved Hadamard fluorescence imaging

Kai Hassler, Tiemo Anhut, and Theo Lasser
Appl. Opt. 44(35) 7564-7572 (2005)

High-speed time-resolved laser-scanning microscopy using the line-to-pixel referencing method

Jiheun Ryu, Jayul Kim, Hyunjun Kim, Jae-heon Jeong, Hak-jun Lee, Hongki Yoo, and Dae-Gab Gweon
Appl. Opt. 55(32) 9033-9041 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Shan and C. K. Toth, Topographic laser ranging and scanning: principles and processing (CRC Press, 2008).
    [Crossref]
  2. W. Becker, “Fluorescence lifetime imaging - techniques and applications,” J. Microsc. 247, 119–136 (2012).
    [Crossref] [PubMed]
  3. L. Marcu, “Fluorescence lifetime techniques in medical applications,” Annals Biomed. Eng. 40, 304–331 (2012).
    [Crossref]
  4. K. Amarnath, J. Zaks, S. Park, K. Niyogi, and G. Fleming, “Fluorescence lifetime snapshots reveal two rapidly reversible mechanisms of photoprotection in live cells of chlamydomonas reinhardtii,” Proc. Natl. Acad. Sci. U.S.A. 109, 8405–8410 (2012).
    [Crossref] [PubMed]
  5. T. Laviv, B. Kim, J. Chu, A. Lam, M. Lin, and R. Yasuda, “Simultaneous dual-color fluorescence lifetime imaging with novel red-shifted fluorescent proteins,” Nat. Methods 13, 989–992 (2016).
    [Crossref] [PubMed]
  6. R. Lussana, F. Villa, A. Dalla Mora, D. Contini, A. Farina, L. D. Sieno, and F. Zappa, “Non-contact inclusion detection in food through a single-photon time-of-flight imager,” IEEE Sensors J. 17, 78–83 (2017).
    [Crossref]
  7. G. Satat, M. Tancik, and R. Raskar, “Lensless Imaging with Compressive Ultrafast Sensing,” IEEE Transactions on Comput. Imaging 3, 398–407 (2016).
    [Crossref]
  8. A. Kirmani, A. Colaço, F. N. C. Wong, and V. K. Goyal, “Exploiting sparsity in time-of-flight range acquisition using a single time-resolved sensor,” Opt. Express 19, 21485–21507 (2011).
    [Crossref] [PubMed]
  9. M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” Signal Process. Mag. IEEE 25, 83–91 (2008).
    [Crossref]
  10. S. S. Welsh, M. P. Edgar, R. Bowman, B. Sun, and M. J. Padgett, “Near video-rate linear stokes imaging with single-pixel detectors,” J. Opt. 17, 025705 (2015).
    [Crossref]
  11. Z. Zhang and J. Zhong, “Three-dimensional single-pixel imaging with far fewer measurements than effective image pixels,” Opt. Lett. 41, 2497–2500 (2016).
    [Crossref] [PubMed]
  12. B.-L. Liu, Z.-H. Yang, X. Liu, and L.-A. Wu, “Coloured computational imaging with single-pixel detectors based on a 2d discrete cosine transform,” J. Mod. Opt. 64, 259–264 (2017).
    [Crossref]
  13. H. Dai, G. Gu, W. He, F. Liao, J. Zhuang, X. Liu, and Q. Chen, “Adaptive compressed sampling based on extended wavelet trees,” Appl. Opt. 53, 6619–6628 (2014).
    [Crossref] [PubMed]
  14. Y.-R. Huo, H.-J. He, F. Chen, and H.-M. Tai, “Adaptive single-pixel imaging based on guided coefficients,” J. Opt. Soc. Am. A 34, 39–51 (2017).
    [Crossref]
  15. F. Rousset, N. Ducros, A. Farina, G. Valentini, C. D’Andrea, and F. Peyrin, “Adaptive basis scan by wavelet prediction for single-pixel imaging,” IEEE Transactions on Comput. Imaging 3, 36–46 (2017).
    [Crossref]
  16. J. Ma, “Single-pixel remote sensing,” IEEE Geosci. Remote. Sens. Lett. 6, 199–203 (2009).
    [Crossref]
  17. S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Opt. Express 21, 23068–23074 (2013).
    [Crossref] [PubMed]
  18. C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
    [Crossref]
  19. E. Tajahuerce, V. Durán, P. Clemente, E. Irles, F. Soldevila, P. Andrés, and J. Lancis, “Image transmission through dynamic scattering media by single-pixel photodetection,” Opt. Express 22, 16945–16955 (2014).
    [Crossref] [PubMed]
  20. Y. Zhang, M. P. Edgar, B. Sun, N. Radwell, G. M. Gibson, and M. J. Padgett, “3d single-pixel video,” J. Opt. 18, 035203 (2016).
    [Crossref]
  21. Q. Pian, R. Yao, N. Sinsuebphon, and X. Intes, “Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging,” Nat. Photonics 11, 411–414 (2017).
    [Crossref] [PubMed]
  22. Q. Pian, R. Yao, L. Zhao, and X. Intes, “Hyperspectral time-resolved wide-field fluorescence molecular tomography based on structured light and single-pixel detection,” Opt. Lett. 40, 431–434 (2015).
    [Crossref] [PubMed]
  23. A. Farina, M. Betcke, L. di Sieno, A. Bassi, N. Ducros, A. Pifferi, G. Valentini, S. Arridge, and C. D’Andrea, “Multiple-view diffuse optical tomography system based on time-domain compressive measurements,” Opt. Lett. 42, 2822–2825 (2017).
    [Crossref] [PubMed]
  24. C. D’Andrea, D. Comelli, A. Pifferi, A. Torricelli, G. Valentini, and R. Cubeddu, “Time-resolved optical imaging through turbid media using a fast data acquisition system based on a gated ccd camera,” J. Phys. D: Appl. Phys. 36, 1675–1681 (2003).
    [Crossref]
  25. S. Mallat, A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way (Academic Press, 2008), 3rd ed.
  26. F. Rousset and N. Ducros, SPIRIT ( https://www.creatis.insa-lyon.fr/~ducros/WebPage/spirit.html , 2017).
  27. I. Van Stokkum, D. Larsen, and R. Van Grondelle, “Global and target analysis of time-resolved spectra,” Biochimica et Biophys. Acta - Bioenerg. 1657, 82–104 (2004).
    [Crossref]
  28. P. Peronio, I. Labanca, G. Acconcia, A. Ruggeri, A. A. Lavdas, A. A. Hicks, P. P. Pramstaller, M. Ghioni, and I. Rech, “32-Channel Time-Correlated-Single-Photon-Counting System for High-Throughput Lifetime Imaging,” Rev. Sci. Instruments 88, 083704 (2017).
    [Crossref]

2017 (7)

R. Lussana, F. Villa, A. Dalla Mora, D. Contini, A. Farina, L. D. Sieno, and F. Zappa, “Non-contact inclusion detection in food through a single-photon time-of-flight imager,” IEEE Sensors J. 17, 78–83 (2017).
[Crossref]

B.-L. Liu, Z.-H. Yang, X. Liu, and L.-A. Wu, “Coloured computational imaging with single-pixel detectors based on a 2d discrete cosine transform,” J. Mod. Opt. 64, 259–264 (2017).
[Crossref]

Y.-R. Huo, H.-J. He, F. Chen, and H.-M. Tai, “Adaptive single-pixel imaging based on guided coefficients,” J. Opt. Soc. Am. A 34, 39–51 (2017).
[Crossref]

F. Rousset, N. Ducros, A. Farina, G. Valentini, C. D’Andrea, and F. Peyrin, “Adaptive basis scan by wavelet prediction for single-pixel imaging,” IEEE Transactions on Comput. Imaging 3, 36–46 (2017).
[Crossref]

Q. Pian, R. Yao, N. Sinsuebphon, and X. Intes, “Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging,” Nat. Photonics 11, 411–414 (2017).
[Crossref] [PubMed]

A. Farina, M. Betcke, L. di Sieno, A. Bassi, N. Ducros, A. Pifferi, G. Valentini, S. Arridge, and C. D’Andrea, “Multiple-view diffuse optical tomography system based on time-domain compressive measurements,” Opt. Lett. 42, 2822–2825 (2017).
[Crossref] [PubMed]

P. Peronio, I. Labanca, G. Acconcia, A. Ruggeri, A. A. Lavdas, A. A. Hicks, P. P. Pramstaller, M. Ghioni, and I. Rech, “32-Channel Time-Correlated-Single-Photon-Counting System for High-Throughput Lifetime Imaging,” Rev. Sci. Instruments 88, 083704 (2017).
[Crossref]

2016 (4)

Y. Zhang, M. P. Edgar, B. Sun, N. Radwell, G. M. Gibson, and M. J. Padgett, “3d single-pixel video,” J. Opt. 18, 035203 (2016).
[Crossref]

Z. Zhang and J. Zhong, “Three-dimensional single-pixel imaging with far fewer measurements than effective image pixels,” Opt. Lett. 41, 2497–2500 (2016).
[Crossref] [PubMed]

G. Satat, M. Tancik, and R. Raskar, “Lensless Imaging with Compressive Ultrafast Sensing,” IEEE Transactions on Comput. Imaging 3, 398–407 (2016).
[Crossref]

T. Laviv, B. Kim, J. Chu, A. Lam, M. Lin, and R. Yasuda, “Simultaneous dual-color fluorescence lifetime imaging with novel red-shifted fluorescent proteins,” Nat. Methods 13, 989–992 (2016).
[Crossref] [PubMed]

2015 (2)

S. S. Welsh, M. P. Edgar, R. Bowman, B. Sun, and M. J. Padgett, “Near video-rate linear stokes imaging with single-pixel detectors,” J. Opt. 17, 025705 (2015).
[Crossref]

Q. Pian, R. Yao, L. Zhao, and X. Intes, “Hyperspectral time-resolved wide-field fluorescence molecular tomography based on structured light and single-pixel detection,” Opt. Lett. 40, 431–434 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (1)

2012 (3)

W. Becker, “Fluorescence lifetime imaging - techniques and applications,” J. Microsc. 247, 119–136 (2012).
[Crossref] [PubMed]

L. Marcu, “Fluorescence lifetime techniques in medical applications,” Annals Biomed. Eng. 40, 304–331 (2012).
[Crossref]

K. Amarnath, J. Zaks, S. Park, K. Niyogi, and G. Fleming, “Fluorescence lifetime snapshots reveal two rapidly reversible mechanisms of photoprotection in live cells of chlamydomonas reinhardtii,” Proc. Natl. Acad. Sci. U.S.A. 109, 8405–8410 (2012).
[Crossref] [PubMed]

2011 (1)

2009 (1)

J. Ma, “Single-pixel remote sensing,” IEEE Geosci. Remote. Sens. Lett. 6, 199–203 (2009).
[Crossref]

2008 (1)

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” Signal Process. Mag. IEEE 25, 83–91 (2008).
[Crossref]

2004 (1)

I. Van Stokkum, D. Larsen, and R. Van Grondelle, “Global and target analysis of time-resolved spectra,” Biochimica et Biophys. Acta - Bioenerg. 1657, 82–104 (2004).
[Crossref]

2003 (1)

C. D’Andrea, D. Comelli, A. Pifferi, A. Torricelli, G. Valentini, and R. Cubeddu, “Time-resolved optical imaging through turbid media using a fast data acquisition system based on a gated ccd camera,” J. Phys. D: Appl. Phys. 36, 1675–1681 (2003).
[Crossref]

Acconcia, G.

P. Peronio, I. Labanca, G. Acconcia, A. Ruggeri, A. A. Lavdas, A. A. Hicks, P. P. Pramstaller, M. Ghioni, and I. Rech, “32-Channel Time-Correlated-Single-Photon-Counting System for High-Throughput Lifetime Imaging,” Rev. Sci. Instruments 88, 083704 (2017).
[Crossref]

Amarnath, K.

K. Amarnath, J. Zaks, S. Park, K. Niyogi, and G. Fleming, “Fluorescence lifetime snapshots reveal two rapidly reversible mechanisms of photoprotection in live cells of chlamydomonas reinhardtii,” Proc. Natl. Acad. Sci. U.S.A. 109, 8405–8410 (2012).
[Crossref] [PubMed]

Andrés, P.

Arridge, S.

Baraniuk, R.

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” Signal Process. Mag. IEEE 25, 83–91 (2008).
[Crossref]

Bassi, A.

Becker, W.

W. Becker, “Fluorescence lifetime imaging - techniques and applications,” J. Microsc. 247, 119–136 (2012).
[Crossref] [PubMed]

Betcke, M.

Bowman, R.

S. S. Welsh, M. P. Edgar, R. Bowman, B. Sun, and M. J. Padgett, “Near video-rate linear stokes imaging with single-pixel detectors,” J. Opt. 17, 025705 (2015).
[Crossref]

S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Opt. Express 21, 23068–23074 (2013).
[Crossref] [PubMed]

Chen, F.

Chen, Q.

Chu, J.

T. Laviv, B. Kim, J. Chu, A. Lam, M. Lin, and R. Yasuda, “Simultaneous dual-color fluorescence lifetime imaging with novel red-shifted fluorescent proteins,” Nat. Methods 13, 989–992 (2016).
[Crossref] [PubMed]

Clemente, P.

Colaço, A.

Comelli, D.

C. D’Andrea, D. Comelli, A. Pifferi, A. Torricelli, G. Valentini, and R. Cubeddu, “Time-resolved optical imaging through turbid media using a fast data acquisition system based on a gated ccd camera,” J. Phys. D: Appl. Phys. 36, 1675–1681 (2003).
[Crossref]

Contini, D.

R. Lussana, F. Villa, A. Dalla Mora, D. Contini, A. Farina, L. D. Sieno, and F. Zappa, “Non-contact inclusion detection in food through a single-photon time-of-flight imager,” IEEE Sensors J. 17, 78–83 (2017).
[Crossref]

Cubeddu, R.

C. D’Andrea, D. Comelli, A. Pifferi, A. Torricelli, G. Valentini, and R. Cubeddu, “Time-resolved optical imaging through turbid media using a fast data acquisition system based on a gated ccd camera,” J. Phys. D: Appl. Phys. 36, 1675–1681 (2003).
[Crossref]

D’Andrea, C.

A. Farina, M. Betcke, L. di Sieno, A. Bassi, N. Ducros, A. Pifferi, G. Valentini, S. Arridge, and C. D’Andrea, “Multiple-view diffuse optical tomography system based on time-domain compressive measurements,” Opt. Lett. 42, 2822–2825 (2017).
[Crossref] [PubMed]

F. Rousset, N. Ducros, A. Farina, G. Valentini, C. D’Andrea, and F. Peyrin, “Adaptive basis scan by wavelet prediction for single-pixel imaging,” IEEE Transactions on Comput. Imaging 3, 36–46 (2017).
[Crossref]

C. D’Andrea, D. Comelli, A. Pifferi, A. Torricelli, G. Valentini, and R. Cubeddu, “Time-resolved optical imaging through turbid media using a fast data acquisition system based on a gated ccd camera,” J. Phys. D: Appl. Phys. 36, 1675–1681 (2003).
[Crossref]

Dai, H.

Dalla Mora, A.

R. Lussana, F. Villa, A. Dalla Mora, D. Contini, A. Farina, L. D. Sieno, and F. Zappa, “Non-contact inclusion detection in food through a single-photon time-of-flight imager,” IEEE Sensors J. 17, 78–83 (2017).
[Crossref]

Davenport, M.

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” Signal Process. Mag. IEEE 25, 83–91 (2008).
[Crossref]

di Sieno, L.

Duarte, M.

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” Signal Process. Mag. IEEE 25, 83–91 (2008).
[Crossref]

Ducros, N.

F. Rousset, N. Ducros, A. Farina, G. Valentini, C. D’Andrea, and F. Peyrin, “Adaptive basis scan by wavelet prediction for single-pixel imaging,” IEEE Transactions on Comput. Imaging 3, 36–46 (2017).
[Crossref]

A. Farina, M. Betcke, L. di Sieno, A. Bassi, N. Ducros, A. Pifferi, G. Valentini, S. Arridge, and C. D’Andrea, “Multiple-view diffuse optical tomography system based on time-domain compressive measurements,” Opt. Lett. 42, 2822–2825 (2017).
[Crossref] [PubMed]

Durán, V.

Edgar, M. P.

Y. Zhang, M. P. Edgar, B. Sun, N. Radwell, G. M. Gibson, and M. J. Padgett, “3d single-pixel video,” J. Opt. 18, 035203 (2016).
[Crossref]

S. S. Welsh, M. P. Edgar, R. Bowman, B. Sun, and M. J. Padgett, “Near video-rate linear stokes imaging with single-pixel detectors,” J. Opt. 17, 025705 (2015).
[Crossref]

S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Opt. Express 21, 23068–23074 (2013).
[Crossref] [PubMed]

Farina, A.

F. Rousset, N. Ducros, A. Farina, G. Valentini, C. D’Andrea, and F. Peyrin, “Adaptive basis scan by wavelet prediction for single-pixel imaging,” IEEE Transactions on Comput. Imaging 3, 36–46 (2017).
[Crossref]

R. Lussana, F. Villa, A. Dalla Mora, D. Contini, A. Farina, L. D. Sieno, and F. Zappa, “Non-contact inclusion detection in food through a single-photon time-of-flight imager,” IEEE Sensors J. 17, 78–83 (2017).
[Crossref]

A. Farina, M. Betcke, L. di Sieno, A. Bassi, N. Ducros, A. Pifferi, G. Valentini, S. Arridge, and C. D’Andrea, “Multiple-view diffuse optical tomography system based on time-domain compressive measurements,” Opt. Lett. 42, 2822–2825 (2017).
[Crossref] [PubMed]

Fleming, G.

K. Amarnath, J. Zaks, S. Park, K. Niyogi, and G. Fleming, “Fluorescence lifetime snapshots reveal two rapidly reversible mechanisms of photoprotection in live cells of chlamydomonas reinhardtii,” Proc. Natl. Acad. Sci. U.S.A. 109, 8405–8410 (2012).
[Crossref] [PubMed]

Ghioni, M.

P. Peronio, I. Labanca, G. Acconcia, A. Ruggeri, A. A. Lavdas, A. A. Hicks, P. P. Pramstaller, M. Ghioni, and I. Rech, “32-Channel Time-Correlated-Single-Photon-Counting System for High-Throughput Lifetime Imaging,” Rev. Sci. Instruments 88, 083704 (2017).
[Crossref]

Gibson, G. M.

Y. Zhang, M. P. Edgar, B. Sun, N. Radwell, G. M. Gibson, and M. J. Padgett, “3d single-pixel video,” J. Opt. 18, 035203 (2016).
[Crossref]

Goyal, V. K.

Gu, G.

He, H.-J.

He, W.

Hicks, A. A.

P. Peronio, I. Labanca, G. Acconcia, A. Ruggeri, A. A. Lavdas, A. A. Hicks, P. P. Pramstaller, M. Ghioni, and I. Rech, “32-Channel Time-Correlated-Single-Photon-Counting System for High-Throughput Lifetime Imaging,” Rev. Sci. Instruments 88, 083704 (2017).
[Crossref]

Hunt, J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Huo, Y.-R.

Intes, X.

Q. Pian, R. Yao, N. Sinsuebphon, and X. Intes, “Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging,” Nat. Photonics 11, 411–414 (2017).
[Crossref] [PubMed]

Q. Pian, R. Yao, L. Zhao, and X. Intes, “Hyperspectral time-resolved wide-field fluorescence molecular tomography based on structured light and single-pixel detection,” Opt. Lett. 40, 431–434 (2015).
[Crossref] [PubMed]

Irles, E.

Jonathan, P.

Kelly, K.

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” Signal Process. Mag. IEEE 25, 83–91 (2008).
[Crossref]

Kim, B.

T. Laviv, B. Kim, J. Chu, A. Lam, M. Lin, and R. Yasuda, “Simultaneous dual-color fluorescence lifetime imaging with novel red-shifted fluorescent proteins,” Nat. Methods 13, 989–992 (2016).
[Crossref] [PubMed]

Kirmani, A.

Krishna, S.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Labanca, I.

P. Peronio, I. Labanca, G. Acconcia, A. Ruggeri, A. A. Lavdas, A. A. Hicks, P. P. Pramstaller, M. Ghioni, and I. Rech, “32-Channel Time-Correlated-Single-Photon-Counting System for High-Throughput Lifetime Imaging,” Rev. Sci. Instruments 88, 083704 (2017).
[Crossref]

Lam, A.

T. Laviv, B. Kim, J. Chu, A. Lam, M. Lin, and R. Yasuda, “Simultaneous dual-color fluorescence lifetime imaging with novel red-shifted fluorescent proteins,” Nat. Methods 13, 989–992 (2016).
[Crossref] [PubMed]

Lancis, J.

Larsen, D.

I. Van Stokkum, D. Larsen, and R. Van Grondelle, “Global and target analysis of time-resolved spectra,” Biochimica et Biophys. Acta - Bioenerg. 1657, 82–104 (2004).
[Crossref]

Laska, J.

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” Signal Process. Mag. IEEE 25, 83–91 (2008).
[Crossref]

Lavdas, A. A.

P. Peronio, I. Labanca, G. Acconcia, A. Ruggeri, A. A. Lavdas, A. A. Hicks, P. P. Pramstaller, M. Ghioni, and I. Rech, “32-Channel Time-Correlated-Single-Photon-Counting System for High-Throughput Lifetime Imaging,” Rev. Sci. Instruments 88, 083704 (2017).
[Crossref]

Laviv, T.

T. Laviv, B. Kim, J. Chu, A. Lam, M. Lin, and R. Yasuda, “Simultaneous dual-color fluorescence lifetime imaging with novel red-shifted fluorescent proteins,” Nat. Methods 13, 989–992 (2016).
[Crossref] [PubMed]

Liao, F.

Lin, M.

T. Laviv, B. Kim, J. Chu, A. Lam, M. Lin, and R. Yasuda, “Simultaneous dual-color fluorescence lifetime imaging with novel red-shifted fluorescent proteins,” Nat. Methods 13, 989–992 (2016).
[Crossref] [PubMed]

Lipworth, G.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Liu, B.-L.

B.-L. Liu, Z.-H. Yang, X. Liu, and L.-A. Wu, “Coloured computational imaging with single-pixel detectors based on a 2d discrete cosine transform,” J. Mod. Opt. 64, 259–264 (2017).
[Crossref]

Liu, X.

B.-L. Liu, Z.-H. Yang, X. Liu, and L.-A. Wu, “Coloured computational imaging with single-pixel detectors based on a 2d discrete cosine transform,” J. Mod. Opt. 64, 259–264 (2017).
[Crossref]

H. Dai, G. Gu, W. He, F. Liao, J. Zhuang, X. Liu, and Q. Chen, “Adaptive compressed sampling based on extended wavelet trees,” Appl. Opt. 53, 6619–6628 (2014).
[Crossref] [PubMed]

Lussana, R.

R. Lussana, F. Villa, A. Dalla Mora, D. Contini, A. Farina, L. D. Sieno, and F. Zappa, “Non-contact inclusion detection in food through a single-photon time-of-flight imager,” IEEE Sensors J. 17, 78–83 (2017).
[Crossref]

Ma, J.

J. Ma, “Single-pixel remote sensing,” IEEE Geosci. Remote. Sens. Lett. 6, 199–203 (2009).
[Crossref]

Mallat, S.

S. Mallat, A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way (Academic Press, 2008), 3rd ed.

Marcu, L.

L. Marcu, “Fluorescence lifetime techniques in medical applications,” Annals Biomed. Eng. 40, 304–331 (2012).
[Crossref]

Montoya, J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Niyogi, K.

K. Amarnath, J. Zaks, S. Park, K. Niyogi, and G. Fleming, “Fluorescence lifetime snapshots reveal two rapidly reversible mechanisms of photoprotection in live cells of chlamydomonas reinhardtii,” Proc. Natl. Acad. Sci. U.S.A. 109, 8405–8410 (2012).
[Crossref] [PubMed]

Padgett, M. J.

Y. Zhang, M. P. Edgar, B. Sun, N. Radwell, G. M. Gibson, and M. J. Padgett, “3d single-pixel video,” J. Opt. 18, 035203 (2016).
[Crossref]

S. S. Welsh, M. P. Edgar, R. Bowman, B. Sun, and M. J. Padgett, “Near video-rate linear stokes imaging with single-pixel detectors,” J. Opt. 17, 025705 (2015).
[Crossref]

S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Opt. Express 21, 23068–23074 (2013).
[Crossref] [PubMed]

Padilla, W. J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Park, S.

K. Amarnath, J. Zaks, S. Park, K. Niyogi, and G. Fleming, “Fluorescence lifetime snapshots reveal two rapidly reversible mechanisms of photoprotection in live cells of chlamydomonas reinhardtii,” Proc. Natl. Acad. Sci. U.S.A. 109, 8405–8410 (2012).
[Crossref] [PubMed]

Peronio, P.

P. Peronio, I. Labanca, G. Acconcia, A. Ruggeri, A. A. Lavdas, A. A. Hicks, P. P. Pramstaller, M. Ghioni, and I. Rech, “32-Channel Time-Correlated-Single-Photon-Counting System for High-Throughput Lifetime Imaging,” Rev. Sci. Instruments 88, 083704 (2017).
[Crossref]

Peyrin, F.

F. Rousset, N. Ducros, A. Farina, G. Valentini, C. D’Andrea, and F. Peyrin, “Adaptive basis scan by wavelet prediction for single-pixel imaging,” IEEE Transactions on Comput. Imaging 3, 36–46 (2017).
[Crossref]

Pian, Q.

Q. Pian, R. Yao, N. Sinsuebphon, and X. Intes, “Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging,” Nat. Photonics 11, 411–414 (2017).
[Crossref] [PubMed]

Q. Pian, R. Yao, L. Zhao, and X. Intes, “Hyperspectral time-resolved wide-field fluorescence molecular tomography based on structured light and single-pixel detection,” Opt. Lett. 40, 431–434 (2015).
[Crossref] [PubMed]

Pifferi, A.

A. Farina, M. Betcke, L. di Sieno, A. Bassi, N. Ducros, A. Pifferi, G. Valentini, S. Arridge, and C. D’Andrea, “Multiple-view diffuse optical tomography system based on time-domain compressive measurements,” Opt. Lett. 42, 2822–2825 (2017).
[Crossref] [PubMed]

C. D’Andrea, D. Comelli, A. Pifferi, A. Torricelli, G. Valentini, and R. Cubeddu, “Time-resolved optical imaging through turbid media using a fast data acquisition system based on a gated ccd camera,” J. Phys. D: Appl. Phys. 36, 1675–1681 (2003).
[Crossref]

Pramstaller, P. P.

P. Peronio, I. Labanca, G. Acconcia, A. Ruggeri, A. A. Lavdas, A. A. Hicks, P. P. Pramstaller, M. Ghioni, and I. Rech, “32-Channel Time-Correlated-Single-Photon-Counting System for High-Throughput Lifetime Imaging,” Rev. Sci. Instruments 88, 083704 (2017).
[Crossref]

Radwell, N.

Y. Zhang, M. P. Edgar, B. Sun, N. Radwell, G. M. Gibson, and M. J. Padgett, “3d single-pixel video,” J. Opt. 18, 035203 (2016).
[Crossref]

Raskar, R.

G. Satat, M. Tancik, and R. Raskar, “Lensless Imaging with Compressive Ultrafast Sensing,” IEEE Transactions on Comput. Imaging 3, 398–407 (2016).
[Crossref]

Rech, I.

P. Peronio, I. Labanca, G. Acconcia, A. Ruggeri, A. A. Lavdas, A. A. Hicks, P. P. Pramstaller, M. Ghioni, and I. Rech, “32-Channel Time-Correlated-Single-Photon-Counting System for High-Throughput Lifetime Imaging,” Rev. Sci. Instruments 88, 083704 (2017).
[Crossref]

Rousset, F.

F. Rousset, N. Ducros, A. Farina, G. Valentini, C. D’Andrea, and F. Peyrin, “Adaptive basis scan by wavelet prediction for single-pixel imaging,” IEEE Transactions on Comput. Imaging 3, 36–46 (2017).
[Crossref]

Ruggeri, A.

P. Peronio, I. Labanca, G. Acconcia, A. Ruggeri, A. A. Lavdas, A. A. Hicks, P. P. Pramstaller, M. Ghioni, and I. Rech, “32-Channel Time-Correlated-Single-Photon-Counting System for High-Throughput Lifetime Imaging,” Rev. Sci. Instruments 88, 083704 (2017).
[Crossref]

Satat, G.

G. Satat, M. Tancik, and R. Raskar, “Lensless Imaging with Compressive Ultrafast Sensing,” IEEE Transactions on Comput. Imaging 3, 398–407 (2016).
[Crossref]

Shan, J.

J. Shan and C. K. Toth, Topographic laser ranging and scanning: principles and processing (CRC Press, 2008).
[Crossref]

Shrekenhamer, D.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Sieno, L. D.

R. Lussana, F. Villa, A. Dalla Mora, D. Contini, A. Farina, L. D. Sieno, and F. Zappa, “Non-contact inclusion detection in food through a single-photon time-of-flight imager,” IEEE Sensors J. 17, 78–83 (2017).
[Crossref]

Sinsuebphon, N.

Q. Pian, R. Yao, N. Sinsuebphon, and X. Intes, “Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging,” Nat. Photonics 11, 411–414 (2017).
[Crossref] [PubMed]

Sleasman, T.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Smith, D. R.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Soldevila, F.

Sun, B.

Y. Zhang, M. P. Edgar, B. Sun, N. Radwell, G. M. Gibson, and M. J. Padgett, “3d single-pixel video,” J. Opt. 18, 035203 (2016).
[Crossref]

S. S. Welsh, M. P. Edgar, R. Bowman, B. Sun, and M. J. Padgett, “Near video-rate linear stokes imaging with single-pixel detectors,” J. Opt. 17, 025705 (2015).
[Crossref]

S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Opt. Express 21, 23068–23074 (2013).
[Crossref] [PubMed]

Sun, T.

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” Signal Process. Mag. IEEE 25, 83–91 (2008).
[Crossref]

Tai, H.-M.

Tajahuerce, E.

Takhar, D.

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” Signal Process. Mag. IEEE 25, 83–91 (2008).
[Crossref]

Tancik, M.

G. Satat, M. Tancik, and R. Raskar, “Lensless Imaging with Compressive Ultrafast Sensing,” IEEE Transactions on Comput. Imaging 3, 398–407 (2016).
[Crossref]

Torricelli, A.

C. D’Andrea, D. Comelli, A. Pifferi, A. Torricelli, G. Valentini, and R. Cubeddu, “Time-resolved optical imaging through turbid media using a fast data acquisition system based on a gated ccd camera,” J. Phys. D: Appl. Phys. 36, 1675–1681 (2003).
[Crossref]

Toth, C. K.

J. Shan and C. K. Toth, Topographic laser ranging and scanning: principles and processing (CRC Press, 2008).
[Crossref]

Valentini, G.

F. Rousset, N. Ducros, A. Farina, G. Valentini, C. D’Andrea, and F. Peyrin, “Adaptive basis scan by wavelet prediction for single-pixel imaging,” IEEE Transactions on Comput. Imaging 3, 36–46 (2017).
[Crossref]

A. Farina, M. Betcke, L. di Sieno, A. Bassi, N. Ducros, A. Pifferi, G. Valentini, S. Arridge, and C. D’Andrea, “Multiple-view diffuse optical tomography system based on time-domain compressive measurements,” Opt. Lett. 42, 2822–2825 (2017).
[Crossref] [PubMed]

C. D’Andrea, D. Comelli, A. Pifferi, A. Torricelli, G. Valentini, and R. Cubeddu, “Time-resolved optical imaging through turbid media using a fast data acquisition system based on a gated ccd camera,” J. Phys. D: Appl. Phys. 36, 1675–1681 (2003).
[Crossref]

Van Grondelle, R.

I. Van Stokkum, D. Larsen, and R. Van Grondelle, “Global and target analysis of time-resolved spectra,” Biochimica et Biophys. Acta - Bioenerg. 1657, 82–104 (2004).
[Crossref]

Van Stokkum, I.

I. Van Stokkum, D. Larsen, and R. Van Grondelle, “Global and target analysis of time-resolved spectra,” Biochimica et Biophys. Acta - Bioenerg. 1657, 82–104 (2004).
[Crossref]

Villa, F.

R. Lussana, F. Villa, A. Dalla Mora, D. Contini, A. Farina, L. D. Sieno, and F. Zappa, “Non-contact inclusion detection in food through a single-photon time-of-flight imager,” IEEE Sensors J. 17, 78–83 (2017).
[Crossref]

Watts, C. M.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Welsh, S. S.

S. S. Welsh, M. P. Edgar, R. Bowman, B. Sun, and M. J. Padgett, “Near video-rate linear stokes imaging with single-pixel detectors,” J. Opt. 17, 025705 (2015).
[Crossref]

S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Opt. Express 21, 23068–23074 (2013).
[Crossref] [PubMed]

Wong, F. N. C.

Wu, L.-A.

B.-L. Liu, Z.-H. Yang, X. Liu, and L.-A. Wu, “Coloured computational imaging with single-pixel detectors based on a 2d discrete cosine transform,” J. Mod. Opt. 64, 259–264 (2017).
[Crossref]

Yang, Z.-H.

B.-L. Liu, Z.-H. Yang, X. Liu, and L.-A. Wu, “Coloured computational imaging with single-pixel detectors based on a 2d discrete cosine transform,” J. Mod. Opt. 64, 259–264 (2017).
[Crossref]

Yao, R.

Q. Pian, R. Yao, N. Sinsuebphon, and X. Intes, “Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging,” Nat. Photonics 11, 411–414 (2017).
[Crossref] [PubMed]

Q. Pian, R. Yao, L. Zhao, and X. Intes, “Hyperspectral time-resolved wide-field fluorescence molecular tomography based on structured light and single-pixel detection,” Opt. Lett. 40, 431–434 (2015).
[Crossref] [PubMed]

Yasuda, R.

T. Laviv, B. Kim, J. Chu, A. Lam, M. Lin, and R. Yasuda, “Simultaneous dual-color fluorescence lifetime imaging with novel red-shifted fluorescent proteins,” Nat. Methods 13, 989–992 (2016).
[Crossref] [PubMed]

Zaks, J.

K. Amarnath, J. Zaks, S. Park, K. Niyogi, and G. Fleming, “Fluorescence lifetime snapshots reveal two rapidly reversible mechanisms of photoprotection in live cells of chlamydomonas reinhardtii,” Proc. Natl. Acad. Sci. U.S.A. 109, 8405–8410 (2012).
[Crossref] [PubMed]

Zappa, F.

R. Lussana, F. Villa, A. Dalla Mora, D. Contini, A. Farina, L. D. Sieno, and F. Zappa, “Non-contact inclusion detection in food through a single-photon time-of-flight imager,” IEEE Sensors J. 17, 78–83 (2017).
[Crossref]

Zhang, Y.

Y. Zhang, M. P. Edgar, B. Sun, N. Radwell, G. M. Gibson, and M. J. Padgett, “3d single-pixel video,” J. Opt. 18, 035203 (2016).
[Crossref]

Zhang, Z.

Zhao, L.

Zhong, J.

Zhuang, J.

Annals Biomed. Eng. (1)

L. Marcu, “Fluorescence lifetime techniques in medical applications,” Annals Biomed. Eng. 40, 304–331 (2012).
[Crossref]

Appl. Opt. (1)

Biochimica et Biophys. Acta - Bioenerg. (1)

I. Van Stokkum, D. Larsen, and R. Van Grondelle, “Global and target analysis of time-resolved spectra,” Biochimica et Biophys. Acta - Bioenerg. 1657, 82–104 (2004).
[Crossref]

IEEE Geosci. Remote. Sens. Lett. (1)

J. Ma, “Single-pixel remote sensing,” IEEE Geosci. Remote. Sens. Lett. 6, 199–203 (2009).
[Crossref]

IEEE Sensors J. (1)

R. Lussana, F. Villa, A. Dalla Mora, D. Contini, A. Farina, L. D. Sieno, and F. Zappa, “Non-contact inclusion detection in food through a single-photon time-of-flight imager,” IEEE Sensors J. 17, 78–83 (2017).
[Crossref]

IEEE Transactions on Comput. Imaging (2)

G. Satat, M. Tancik, and R. Raskar, “Lensless Imaging with Compressive Ultrafast Sensing,” IEEE Transactions on Comput. Imaging 3, 398–407 (2016).
[Crossref]

F. Rousset, N. Ducros, A. Farina, G. Valentini, C. D’Andrea, and F. Peyrin, “Adaptive basis scan by wavelet prediction for single-pixel imaging,” IEEE Transactions on Comput. Imaging 3, 36–46 (2017).
[Crossref]

J. Microsc. (1)

W. Becker, “Fluorescence lifetime imaging - techniques and applications,” J. Microsc. 247, 119–136 (2012).
[Crossref] [PubMed]

J. Mod. Opt. (1)

B.-L. Liu, Z.-H. Yang, X. Liu, and L.-A. Wu, “Coloured computational imaging with single-pixel detectors based on a 2d discrete cosine transform,” J. Mod. Opt. 64, 259–264 (2017).
[Crossref]

J. Opt. (2)

S. S. Welsh, M. P. Edgar, R. Bowman, B. Sun, and M. J. Padgett, “Near video-rate linear stokes imaging with single-pixel detectors,” J. Opt. 17, 025705 (2015).
[Crossref]

Y. Zhang, M. P. Edgar, B. Sun, N. Radwell, G. M. Gibson, and M. J. Padgett, “3d single-pixel video,” J. Opt. 18, 035203 (2016).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. D: Appl. Phys. (1)

C. D’Andrea, D. Comelli, A. Pifferi, A. Torricelli, G. Valentini, and R. Cubeddu, “Time-resolved optical imaging through turbid media using a fast data acquisition system based on a gated ccd camera,” J. Phys. D: Appl. Phys. 36, 1675–1681 (2003).
[Crossref]

Nat. Methods (1)

T. Laviv, B. Kim, J. Chu, A. Lam, M. Lin, and R. Yasuda, “Simultaneous dual-color fluorescence lifetime imaging with novel red-shifted fluorescent proteins,” Nat. Methods 13, 989–992 (2016).
[Crossref] [PubMed]

Nat. Photonics (2)

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Q. Pian, R. Yao, N. Sinsuebphon, and X. Intes, “Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging,” Nat. Photonics 11, 411–414 (2017).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Proc. Natl. Acad. Sci. U.S.A. (1)

K. Amarnath, J. Zaks, S. Park, K. Niyogi, and G. Fleming, “Fluorescence lifetime snapshots reveal two rapidly reversible mechanisms of photoprotection in live cells of chlamydomonas reinhardtii,” Proc. Natl. Acad. Sci. U.S.A. 109, 8405–8410 (2012).
[Crossref] [PubMed]

Rev. Sci. Instruments (1)

P. Peronio, I. Labanca, G. Acconcia, A. Ruggeri, A. A. Lavdas, A. A. Hicks, P. P. Pramstaller, M. Ghioni, and I. Rech, “32-Channel Time-Correlated-Single-Photon-Counting System for High-Throughput Lifetime Imaging,” Rev. Sci. Instruments 88, 083704 (2017).
[Crossref]

Signal Process. Mag. IEEE (1)

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” Signal Process. Mag. IEEE 25, 83–91 (2008).
[Crossref]

Other (3)

J. Shan and C. K. Toth, Topographic laser ranging and scanning: principles and processing (CRC Press, 2008).
[Crossref]

S. Mallat, A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way (Academic Press, 2008), 3rd ed.

F. Rousset and N. Ducros, SPIRIT ( https://www.creatis.insa-lyon.fr/~ducros/WebPage/spirit.html , 2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental set-up. The object is illuminated in reflectance geometry and the light emerging from the DMD is collected by a multispectral time-resolved detector.
Fig. 2
Fig. 2 Time-resolved imaging of a laser pulse that propagates in two adjacent cuvettes, filled with Coumarin 540 and DCM. (a) Full basis scan acquisition of a 32 × 32 image (1024 measurements). (b, c) Adaptive acquisitions of a 64 × 64 image using adaptive basis scan by wavelet prediction with compression ratios of 75% (1024 measurements) (b) and 85% (614 measurements) (c). Using an adaptive approach, a higher resolution image can be obtained with fewer measurements, compared to a basis scan approach.
Fig. 3
Fig. 3 Adaptive basis scan by wavelet prediction acquistion. (a) Picture of the sample. (b–e) The 64 × 64 continuous wave images (compression ratio, 93%) recovered during the acquisition, after 16 measurements (b), 64 measurements (c), 227 measurements (d), and 286 measurements (e).
Fig. 4
Fig. 4 Spectral and temporal fluorescence images recovered using an adaptive scan (compression ratio, 93%). (a)–(c) Spectral images in different channels. (d)–(f) Time-resolved images in different time channels.
Fig. 5
Fig. 5 Spectra (left) and temporal (right) decay in each of the three regions of interest. The dotted vertical lines correspond to the time/ wavelength channels of the images shown in Fig. 4.
Fig. 6
Fig. 6 Images of the decay-associated spectra A1 (left images), A2 (middle images), and A3 (right images) for λ1 = 525 nm (top images) and λ2 = 625 nm (bottom images).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F = ( f 1 , 1 , , f λ , t , , f Λ , T ) .
M = P F Δ t .
F ( λ , t ) = m = 1 M A m ( λ ) exp ( t τ m ) ,

Metrics