Abstract

A method for high spectral resolution channeled imaging spectropolarimetry (CISP) using a liquid crystal variable retarder (LCVR) is presented. Controlling the retardation of LCVR, the individual expanded channel, which takes up the whole detector, is obtained in each step. The resolution of recovered spectrum is increased largely, meanwhile the high resolution of image is maintained. The novel CISP system has the advantages of high throughput, compact and stable. It has no moving components and is easy to control as the retardation of LCVR is modulated by computer. The feasibility of that method is proved by the simulation results.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Stokes imaging spectropolarimeter based on channeled polarimetry with full-resolution spectra and aliasing reduction

Chunmin Zhang, Naicheng Quan, and Tingkui Mu
Appl. Opt. 57(21) 6128-6134 (2018)

Low crosstalk polarization-difference channeled imaging spectropolarimeter using double-Wollaston prism

Qiwei Li, Fang Lu, Xiaobin Wang, and Changjiang Zhu
Opt. Express 27(8) 11734-11747 (2019)

High throughput static channeled interference imaging spectropolarimeter based on a Savart polariscope

Chunmin Zhang, Qiwei Li, Tingyu Yan, Tingkui Mu, and Yutong Wei
Opt. Express 24(20) 23314-23332 (2016)

References

  • View by:
  • |
  • |
  • |

  1. C. Zhang, Q. Li, T. Yan, T. Mu, and Y. Wei, “High throughput static channeled interference imaging spectropolarimeter based on a Savart polariscope,” Opt. Express 24(20), 23314–23332 (2016).
    [Crossref] [PubMed]
  2. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
    [Crossref] [PubMed]
  3. T. G. Moran and J. M. Davila, “Three-dimensional polarimetric imaging of coronal mass ejections,” Science 305(5680), 66–70 (2004).
    [Crossref] [PubMed]
  4. R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7(11), 1245–1248 (2001).
    [Crossref] [PubMed]
  5. K. Oka and T. Kato, “Spectroscopic polarimetry with a channeled spectrum,” Opt. Lett. 24(21), 1475–1477 (1999).
    [Crossref] [PubMed]
  6. S. Jones, F. Iannarilli, and P. Kebabian, “Realization of quantitative-grade fieldable snapshot imaging spectropolarimeter,” Opt. Express 12(26), 6559–6573 (2004).
    [Crossref] [PubMed]
  7. J. S. Tyo and T. S. Turner., “Variable-retardance, Fourier-transform imaging spectropolarimeters for visible spectrum remote sensing,” Appl. Opt. 40(9), 1450–1458 (2001).
    [Crossref] [PubMed]
  8. R. W. Aumiller, C. Vandervlugt, E. L. Dereniak, R. Sampson, and R. W. McMillan, “Snapshot imaging spectropolarimetry in the visible and infrared,” Proc. SPIE 6972, 69720D (2008).
    [Crossref]
  9. J. M. Craven and M. W. Kudenov, “False signature reduction in channeled spectropolarimetry,” Opt. Eng. 49(5), 053602 (2010).
    [Crossref]
  10. D. H. Goldstein, Polarized Light, 3rd ed. (CRC Press, 2010).
  11. C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun. 203(1–2), 21–26 (2002).
    [Crossref]
  12. T. Yan, C. Zhang, Q. Li, Y. Wei, and J. Zhang, “Efficient background removal based on two-dimensional notch filtering for polarization interference imaging spectrometers,” Chin. Opt. Lett. 14(12), 123002 (2016).
    [Crossref]
  13. C. Zhang, X. Yan, and B. Zhao, “A novel model for obtaining interferogram and spectrum based on the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Commun. 281(8), 2050–2056 (2008).
    [Crossref]
  14. X. Jian, C. Zhang, L. Zhang, and B. Zhao, “The data processing of the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Express 18(6), 5674–5680 (2010).
    [Crossref] [PubMed]

2016 (2)

2010 (2)

2008 (2)

C. Zhang, X. Yan, and B. Zhao, “A novel model for obtaining interferogram and spectrum based on the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Commun. 281(8), 2050–2056 (2008).
[Crossref]

R. W. Aumiller, C. Vandervlugt, E. L. Dereniak, R. Sampson, and R. W. McMillan, “Snapshot imaging spectropolarimetry in the visible and infrared,” Proc. SPIE 6972, 69720D (2008).
[Crossref]

2006 (1)

2004 (2)

S. Jones, F. Iannarilli, and P. Kebabian, “Realization of quantitative-grade fieldable snapshot imaging spectropolarimeter,” Opt. Express 12(26), 6559–6573 (2004).
[Crossref] [PubMed]

T. G. Moran and J. M. Davila, “Three-dimensional polarimetric imaging of coronal mass ejections,” Science 305(5680), 66–70 (2004).
[Crossref] [PubMed]

2002 (1)

C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun. 203(1–2), 21–26 (2002).
[Crossref]

2001 (2)

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7(11), 1245–1248 (2001).
[Crossref] [PubMed]

J. S. Tyo and T. S. Turner., “Variable-retardance, Fourier-transform imaging spectropolarimeters for visible spectrum remote sensing,” Appl. Opt. 40(9), 1450–1458 (2001).
[Crossref] [PubMed]

1999 (1)

Aumiller, R. W.

R. W. Aumiller, C. Vandervlugt, E. L. Dereniak, R. Sampson, and R. W. McMillan, “Snapshot imaging spectropolarimetry in the visible and infrared,” Proc. SPIE 6972, 69720D (2008).
[Crossref]

Backman, V.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7(11), 1245–1248 (2001).
[Crossref] [PubMed]

Badizadegan, K.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7(11), 1245–1248 (2001).
[Crossref] [PubMed]

Chenault, D. B.

Craven, J. M.

J. M. Craven and M. W. Kudenov, “False signature reduction in channeled spectropolarimetry,” Opt. Eng. 49(5), 053602 (2010).
[Crossref]

Dasari, R. R.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7(11), 1245–1248 (2001).
[Crossref] [PubMed]

Davila, J. M.

T. G. Moran and J. M. Davila, “Three-dimensional polarimetric imaging of coronal mass ejections,” Science 305(5680), 66–70 (2004).
[Crossref] [PubMed]

Dereniak, E. L.

R. W. Aumiller, C. Vandervlugt, E. L. Dereniak, R. Sampson, and R. W. McMillan, “Snapshot imaging spectropolarimetry in the visible and infrared,” Proc. SPIE 6972, 69720D (2008).
[Crossref]

Feld, M. S.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7(11), 1245–1248 (2001).
[Crossref] [PubMed]

Georgakoudi, I.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7(11), 1245–1248 (2001).
[Crossref] [PubMed]

Goldstein, D. L.

Gurjar, R. S.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7(11), 1245–1248 (2001).
[Crossref] [PubMed]

Iannarilli, F.

Itzkan, I.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7(11), 1245–1248 (2001).
[Crossref] [PubMed]

Jian, X.

Jones, S.

Kato, T.

Kebabian, P.

Kudenov, M. W.

J. M. Craven and M. W. Kudenov, “False signature reduction in channeled spectropolarimetry,” Opt. Eng. 49(5), 053602 (2010).
[Crossref]

Li, Q.

McMillan, R. W.

R. W. Aumiller, C. Vandervlugt, E. L. Dereniak, R. Sampson, and R. W. McMillan, “Snapshot imaging spectropolarimetry in the visible and infrared,” Proc. SPIE 6972, 69720D (2008).
[Crossref]

Moran, T. G.

T. G. Moran and J. M. Davila, “Three-dimensional polarimetric imaging of coronal mass ejections,” Science 305(5680), 66–70 (2004).
[Crossref] [PubMed]

Mu, T.

Oka, K.

Perelman, L. T.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7(11), 1245–1248 (2001).
[Crossref] [PubMed]

Sampson, R.

R. W. Aumiller, C. Vandervlugt, E. L. Dereniak, R. Sampson, and R. W. McMillan, “Snapshot imaging spectropolarimetry in the visible and infrared,” Proc. SPIE 6972, 69720D (2008).
[Crossref]

Shaw, J. A.

Turner, T. S.

Tyo, J. S.

Vandervlugt, C.

R. W. Aumiller, C. Vandervlugt, E. L. Dereniak, R. Sampson, and R. W. McMillan, “Snapshot imaging spectropolarimetry in the visible and infrared,” Proc. SPIE 6972, 69720D (2008).
[Crossref]

Wei, Y.

Xiangli, B.

C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun. 203(1–2), 21–26 (2002).
[Crossref]

Yan, T.

Yan, X.

C. Zhang, X. Yan, and B. Zhao, “A novel model for obtaining interferogram and spectrum based on the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Commun. 281(8), 2050–2056 (2008).
[Crossref]

Yuan, X.

C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun. 203(1–2), 21–26 (2002).
[Crossref]

Zhang, C.

Zhang, J.

Zhang, L.

Zhao, B.

X. Jian, C. Zhang, L. Zhang, and B. Zhao, “The data processing of the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Express 18(6), 5674–5680 (2010).
[Crossref] [PubMed]

C. Zhang, X. Yan, and B. Zhao, “A novel model for obtaining interferogram and spectrum based on the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Commun. 281(8), 2050–2056 (2008).
[Crossref]

C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun. 203(1–2), 21–26 (2002).
[Crossref]

Appl. Opt. (2)

Chin. Opt. Lett. (1)

Nat. Med. (1)

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7(11), 1245–1248 (2001).
[Crossref] [PubMed]

Opt. Commun. (2)

C. Zhang, X. Yan, and B. Zhao, “A novel model for obtaining interferogram and spectrum based on the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Commun. 281(8), 2050–2056 (2008).
[Crossref]

C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun. 203(1–2), 21–26 (2002).
[Crossref]

Opt. Eng. (1)

J. M. Craven and M. W. Kudenov, “False signature reduction in channeled spectropolarimetry,” Opt. Eng. 49(5), 053602 (2010).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Proc. SPIE (1)

R. W. Aumiller, C. Vandervlugt, E. L. Dereniak, R. Sampson, and R. W. McMillan, “Snapshot imaging spectropolarimetry in the visible and infrared,” Proc. SPIE 6972, 69720D (2008).
[Crossref]

Science (1)

T. G. Moran and J. M. Davila, “Three-dimensional polarimetric imaging of coronal mass ejections,” Science 305(5680), 66–70 (2004).
[Crossref] [PubMed]

Other (1)

D. H. Goldstein, Polarized Light, 3rd ed. (CRC Press, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Seven-channel interferogram. The aliasing between channels can be seen obviously because of the short OPD for each channel.
Fig. 2
Fig. 2 Optical layout of the NCISP based on a LCVR. The red axis represents fast axis of the crystal retarders and LCVR.
Fig. 3
Fig. 3 Data acquisition model of the NCISP system.
Fig. 4
Fig. 4 (a) Narrow-band Gaussian line shape incident polarization spectrum in simulation, (b) aliasing channeled interferogram captured by conventional CISP, (c) recovered polarization spectrum captured by conventional CISP.
Fig. 5
Fig. 5 (a) The three channeled interferograms of Narrow-band polarization spectrum captured in three steps, (b) recovered polarization spectrum captured using NCISP.
Fig. 6
Fig. 6 (a) wide-band incident polarization spectrum with characteristic peaks in simulation, (b) aliasing channeled interferogram captured by conventional CISP, (c) recovered polarization spectrum captured by conventional CISP.
Fig. 7
Fig. 7 (a) The three channeled interferograms of wide-band polarization spectrum with characteristic peaks captured in three steps, (b) recovered polarization spectrum captured using NCISP.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

S(σ)=[ S 0 (σ) S 1 (σ) S 2 (σ) S 3 (σ) ]=[ I 0 (σ)+ I 90 (σ) I 0 (σ) I 90 (σ) I 45 (σ) I 135 (σ) I R (σ) I L (σ) ]
S out =[ S 0_out S 1_out S 2_out S 3_out ]=[ m 00 m 01 m 02 m 03 m 10 m 11 m 12 m 13 m 20 m 21 m 22 m 23 m 30 m 31 m 32 m 33 ][ S 0_in S 1_in S 2_in S 3_in ]=M S in
S out = M P 2 M LCVR M SP M P 1 M R 2 M R 1 S in
M SP =[ 1 0 0 0 0 cos φ SP 0 sin φ SP 0 0 1 0 0 sin φ SP 0 cos φ SP ]
M LCVR =[ 1 0 0 0 0 cos φ LCVR 0 sin φ LCVR 0 0 1 0 0 sin φ LCVR 0 cos φ LCVR ]
I CCD = S 0_out = 1 4 (1+cos φ LCVR cos φ SP sin φ LCVR sin φ SP ) S 0
S 0 = S 0_in + S 1_in cos φ 2 + S 2_in sin φ 1 sin φ 2 S 3_in cos φ 1 sin φ 2
φ LCVR (σ)=2π B LCVR (σ) d LCVR σ
φ SP (σ)=2π Δ SP σ
φ 1 (σ)=2πB(σ) d 1 σ
φ 2 (σ)=2πB(σ) d 2 σ
I CCD = [1+cos( φ SP + φ LCVR )] 4 [ S 0 + S 1 2 e i φ 2 + S 1 2 e i φ 2 + S 2 +i S 3 4 e i( φ 1 φ 2 ) + S 2 i S 3 4 e i( φ 1 φ 2 ) + S 2 +i S 3 4 e i( φ 1 + φ 2 ) + S 2 i S 3 4 e i( φ 1 + φ 2 ) ] = [1+cos( φ SP + φ LCVR )] 4 [ C 0 + C 1 + C 1 + C 2 + C 2 + C 3 + C 3 ]
Δ R 2 =4 Δ max
Δ R 2 Δ R 1 =2 Δ max
I step1 (Δ)= [1+cos( φ SP )] 4 S 0 dσ
I step2 (Δ)= [1+cos( φ SP )] 4 ( S 2 i S 3 4 )dσ
I step3 (Δ)= [1+cos( φ SP )] 4 ( S 1 2 )dσ
S 0 (σ)=4{ I step1 (Δ)}
S 1 (σ)=8{ I step3 (Δ)}
S 2 (σ)=16real({ I step2 (Δ)})
S 3 (σ)=16imag({ I step2 (Δ)})

Metrics