Abstract

A Tm-doped mixed sesquioxide ceramic laser is mode-locked near 2 µm using InGaAsSb quantum-well semiconductor saturable absorber and chirped mirrors for dispersion compensation. Maximum average output power of 175 mW is achieved for a pulse duration of 230 fs at a repetition rate of 78.9 MHz with a 3% output coupler. Applying a 0.2% output coupler pulses as short as 63 fs are generated at 2.057 µm.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Synthesis, spectroscopy, and efficient laser operation of “mixed” sesquioxide Tm:(Lu,Sc)2O3 transparent ceramics

Wei Jing, Pavel Loiko, Josep Maria Serres, Yicheng Wang, Elena Vilejshikova, Magdalena Aguiló, Francesc Díaz, Uwe Griebner, Hui Huang, Valentin Petrov, and Xavier Mateos
Opt. Mater. Express 7(11) 4192-4202 (2017)

Broadly tunable femtosecond Tm:Lu2O3 ceramic laser operating around 2070 nm

Alexander A. Lagatsky, Oleg L. Antipov, and Wilson Sibbett
Opt. Express 20(17) 19349-19354 (2012)

175 fs Tm:Lu2O3 laser at 2.07 µm mode-locked using single-walled carbon nanotubes

Andreas Schmidt, Philipp Koopmann, Günter Huber, Peter Fuhrberg, Sun Young Choi, Dong-Il Yeom, Fabian Rotermund, Valentin Petrov, and Uwe Griebner
Opt. Express 20(5) 5313-5318 (2012)

References

  • View by:
  • |
  • |
  • |

  1. U. N. Singh, B. M. Walsh, J. Yu, M. Petros, M. J. Kavaya, T. F. Refaat, and N. P. Barnes, “Twenty years of Tm:Ho:YLF and LuLiF laser development for global wind and carbon dioxide active remote sensing,” Opt. Mater. Express 5(4), 827–837 (2015).
    [Crossref]
  2. K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 µm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (InTech, Rijeka, 2010), pp. 471–500.
  3. V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
    [Crossref]
  4. B. Shan and Z. H. Chang, “Dramatic extension of the high-order harmonic cutoff by using a long-wavelength driving field,” Phys. Rev. A 65, 011804 (2002).
  5. Y. Wang, W. Chen, M. Mero, L. Zhang, H. Lin, Z. Lin, G. Zhang, F. Rotermund, Y. J. Cho, P. Loiko, X. Mateos, U. Griebner, and V. Petrov, “Sub-100 fs Tm:MgWO4 laser at 2017 nm mode locked by a graphene saturable absorber,” Opt. Lett. 42(16), 3076–3079 (2017).
    [Crossref] [PubMed]
  6. A. Schmidt, S. Y. Choi, D.-I. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Díaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 μm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
    [Crossref]
  7. A. A. Lagatsky, P. Koopmann, P. Fuhrberg, G. Huber, C. T. A. Brown, and W. Sibbett, “Passively mode locked femtosecond Tm:Sc2O3 laser at 2.1 μm,” Opt. Lett. 37(3), 437–439 (2012).
    [Crossref] [PubMed]
  8. M. Tokurakawa, E. Fujita, and C. Kränkel, “Kerr-lens mode-locked Tm3+:Sc2O3 single-crystal laser in-band pumped by an Er:Yb fiber MOPA at 1611 nm,” Opt. Lett. 42(16), 3185–3188 (2017).
    [Crossref] [PubMed]
  9. A. Schmidt, P. Koopmann, G. Huber, P. Fuhrberg, S. Y. Choi, D.-I. Yeom, F. Rotermund, V. Petrov, and U. Griebner, “175 fs Tm:Lu2O3 laser at 2.07 µm mode-locked using single-walled carbon nanotubes,” Opt. Express 20(5), 5313–5318 (2012).
    [Crossref] [PubMed]
  10. A. A. Lagatsky, P. Koopmann, O. L. Antipov, C. T. A. Brown, G. Huber, and W. Sibbett, “Femtosecond pulse generation with Tm-doped sesquioxides,” Conference on Lasers & Electro-Optics Europe CLEO EUROPE, Munich, 2013, OSA, paper CA_6_3.
  11. R. Peters, C. Krankel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high-purity Yb:Lu2O3,” J. Cryst. Growth 310(7-9), 1934–1938 (2008).
    [Crossref]
  12. O. L. Antipov, A. A. Novikov, N. G. Zakharov, and A. P. Zinoviev, “Optical properties and efficient laser oscillation at 2066 nm of novel Tm:Lu2O3 ceramics,” Opt. Mater. Express 2(2), 183–189 (2012).
    [Crossref]
  13. O. L. Antipov, A. A. Novikov, N. G. Zakharov, A. P. Zinoviev, H. Yagi, N. V. Sakharov, M. V. Kruglova, M. O. Marychev, O. N. Gorshkov, and A. A. Lagatskii, “Efficient 2.1-μm lasers based on Tm3+:Lu2O3 ceramics pumped by 800-nm laser diodes,” Phys. Status Solidi C 10(6), 969–973 (2013).
    [Crossref]
  14. E. J. Saarinen, E. Vasileva, O. Antipov, J.-P. Penttinen, M. Tavast, T. Leinonen, and O. G. Okhotnikov, “2-µm Tm:Lu2O3 ceramic disk laser intracavity-pumped by a semiconductor disk laser,” Opt. Express 21(20), 23844–23850 (2013).
    [Crossref] [PubMed]
  15. A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102(1), 013113 (2013).
    [Crossref]
  16. A. A. Lagatsky, O. L. Antipov, and W. Sibbett, “Broadly tunable femtosecond Tm:Lu2O3 ceramic laser operating around 2070 nm,” Opt. Express 20(17), 19349–19354 (2012).
    [Crossref] [PubMed]
  17. W. Jing, P. Loiko, J. M. Serres, Y. Wang, E. Vilejshikova, M. Aguiló, F. Díaz, U. Griebner, H. Huang, V. Petrov, and X. Mateos, “Synthesis, spectroscopy, and efficient laser operation of ‘mixed’ sesquioxide Tm:(Lu,Sc)2O3 transparent ceramics,” Opt. Mater. Express 7(1), 4192–4202 (2017).
    [Crossref]
  18. C. Kränkel, “Rare-earth-doped sesquioxides for diode-pumped high-power lasers in the 1-, 2-, and 3-µm spectral range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602013 (2015).
  19. J. Paajaste, S. Suomalainen, A. Härkönen, U. Griebner, G. Steinmeyer, and M. Guina, “Absorption recovery dynamics in 2 µm GaSb-based SESAMs,” J. Phys. D Appl. Phys. 47(6), 065102 (2014).
    [Crossref]
  20. A. Gluth, Y. Wang, V. Petrov, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, G. Steinmeyer, X. Mateos, S. Veronesi, M. Tonelli, J. Li, Y. Pan, J. Guo, and U. Griebner, “GaSb-based SESAM mode-locked Tm:YAG ceramic laser at 2 µm,” Opt. Express 23(2), 1361–1369 (2015).
    [Crossref] [PubMed]
  21. Y. Wang, G. Xie, X. Xu, J. Di, Z. Qin, S. Suomalainen, M. Guina, A. Härkönen, A. Agnesi, U. Griebner, X. Mateos, P. Loiko, and V. Petrov, “SESAM mode-locked Tm:CALGO laser at 2 μm,” Opt. Mater. Express 6(1), 131–136 (2016).
    [Crossref]
  22. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16(1), 46–56 (1999).
    [Crossref]

2017 (3)

2016 (1)

2015 (4)

2014 (1)

J. Paajaste, S. Suomalainen, A. Härkönen, U. Griebner, G. Steinmeyer, and M. Guina, “Absorption recovery dynamics in 2 µm GaSb-based SESAMs,” J. Phys. D Appl. Phys. 47(6), 065102 (2014).
[Crossref]

2013 (3)

O. L. Antipov, A. A. Novikov, N. G. Zakharov, A. P. Zinoviev, H. Yagi, N. V. Sakharov, M. V. Kruglova, M. O. Marychev, O. N. Gorshkov, and A. A. Lagatskii, “Efficient 2.1-μm lasers based on Tm3+:Lu2O3 ceramics pumped by 800-nm laser diodes,” Phys. Status Solidi C 10(6), 969–973 (2013).
[Crossref]

E. J. Saarinen, E. Vasileva, O. Antipov, J.-P. Penttinen, M. Tavast, T. Leinonen, and O. G. Okhotnikov, “2-µm Tm:Lu2O3 ceramic disk laser intracavity-pumped by a semiconductor disk laser,” Opt. Express 21(20), 23844–23850 (2013).
[Crossref] [PubMed]

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102(1), 013113 (2013).
[Crossref]

2012 (5)

2008 (1)

R. Peters, C. Krankel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high-purity Yb:Lu2O3,” J. Cryst. Growth 310(7-9), 1934–1938 (2008).
[Crossref]

2002 (1)

B. Shan and Z. H. Chang, “Dramatic extension of the high-order harmonic cutoff by using a long-wavelength driving field,” Phys. Rev. A 65, 011804 (2002).

1999 (1)

Agnesi, A.

Aguiló, M.

Ahn, J. H.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102(1), 013113 (2013).
[Crossref]

Antipov, O.

Antipov, O. L.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102(1), 013113 (2013).
[Crossref]

O. L. Antipov, A. A. Novikov, N. G. Zakharov, A. P. Zinoviev, H. Yagi, N. V. Sakharov, M. V. Kruglova, M. O. Marychev, O. N. Gorshkov, and A. A. Lagatskii, “Efficient 2.1-μm lasers based on Tm3+:Lu2O3 ceramics pumped by 800-nm laser diodes,” Phys. Status Solidi C 10(6), 969–973 (2013).
[Crossref]

O. L. Antipov, A. A. Novikov, N. G. Zakharov, and A. P. Zinoviev, “Optical properties and efficient laser oscillation at 2066 nm of novel Tm:Lu2O3 ceramics,” Opt. Mater. Express 2(2), 183–189 (2012).
[Crossref]

A. A. Lagatsky, O. L. Antipov, and W. Sibbett, “Broadly tunable femtosecond Tm:Lu2O3 ceramic laser operating around 2070 nm,” Opt. Express 20(17), 19349–19354 (2012).
[Crossref] [PubMed]

Barnes, N. P.

Brown, C. T. A.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102(1), 013113 (2013).
[Crossref]

A. A. Lagatsky, P. Koopmann, P. Fuhrberg, G. Huber, C. T. A. Brown, and W. Sibbett, “Passively mode locked femtosecond Tm:Sc2O3 laser at 2.1 μm,” Opt. Lett. 37(3), 437–439 (2012).
[Crossref] [PubMed]

Chang, Z. H.

B. Shan and Z. H. Chang, “Dramatic extension of the high-order harmonic cutoff by using a long-wavelength driving field,” Phys. Rev. A 65, 011804 (2002).

Chen, W.

Cho, Y. J.

Choi, S. Y.

A. Schmidt, S. Y. Choi, D.-I. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Díaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 μm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
[Crossref]

A. Schmidt, P. Koopmann, G. Huber, P. Fuhrberg, S. Y. Choi, D.-I. Yeom, F. Rotermund, V. Petrov, and U. Griebner, “175 fs Tm:Lu2O3 laser at 2.07 µm mode-locked using single-walled carbon nanotubes,” Opt. Express 20(5), 5313–5318 (2012).
[Crossref] [PubMed]

Di, J.

Díaz, F.

W. Jing, P. Loiko, J. M. Serres, Y. Wang, E. Vilejshikova, M. Aguiló, F. Díaz, U. Griebner, H. Huang, V. Petrov, and X. Mateos, “Synthesis, spectroscopy, and efficient laser operation of ‘mixed’ sesquioxide Tm:(Lu,Sc)2O3 transparent ceramics,” Opt. Mater. Express 7(1), 4192–4202 (2017).
[Crossref]

A. Schmidt, S. Y. Choi, D.-I. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Díaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 μm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
[Crossref]

Ferrari, A. C.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102(1), 013113 (2013).
[Crossref]

Fuhrberg, P.

Fujita, E.

Gluth, A.

Gorshkov, O. N.

O. L. Antipov, A. A. Novikov, N. G. Zakharov, A. P. Zinoviev, H. Yagi, N. V. Sakharov, M. V. Kruglova, M. O. Marychev, O. N. Gorshkov, and A. A. Lagatskii, “Efficient 2.1-μm lasers based on Tm3+:Lu2O3 ceramics pumped by 800-nm laser diodes,” Phys. Status Solidi C 10(6), 969–973 (2013).
[Crossref]

Griebner, U.

W. Jing, P. Loiko, J. M. Serres, Y. Wang, E. Vilejshikova, M. Aguiló, F. Díaz, U. Griebner, H. Huang, V. Petrov, and X. Mateos, “Synthesis, spectroscopy, and efficient laser operation of ‘mixed’ sesquioxide Tm:(Lu,Sc)2O3 transparent ceramics,” Opt. Mater. Express 7(1), 4192–4202 (2017).
[Crossref]

Y. Wang, W. Chen, M. Mero, L. Zhang, H. Lin, Z. Lin, G. Zhang, F. Rotermund, Y. J. Cho, P. Loiko, X. Mateos, U. Griebner, and V. Petrov, “Sub-100 fs Tm:MgWO4 laser at 2017 nm mode locked by a graphene saturable absorber,” Opt. Lett. 42(16), 3076–3079 (2017).
[Crossref] [PubMed]

Y. Wang, G. Xie, X. Xu, J. Di, Z. Qin, S. Suomalainen, M. Guina, A. Härkönen, A. Agnesi, U. Griebner, X. Mateos, P. Loiko, and V. Petrov, “SESAM mode-locked Tm:CALGO laser at 2 μm,” Opt. Mater. Express 6(1), 131–136 (2016).
[Crossref]

A. Gluth, Y. Wang, V. Petrov, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, G. Steinmeyer, X. Mateos, S. Veronesi, M. Tonelli, J. Li, Y. Pan, J. Guo, and U. Griebner, “GaSb-based SESAM mode-locked Tm:YAG ceramic laser at 2 µm,” Opt. Express 23(2), 1361–1369 (2015).
[Crossref] [PubMed]

J. Paajaste, S. Suomalainen, A. Härkönen, U. Griebner, G. Steinmeyer, and M. Guina, “Absorption recovery dynamics in 2 µm GaSb-based SESAMs,” J. Phys. D Appl. Phys. 47(6), 065102 (2014).
[Crossref]

A. Schmidt, S. Y. Choi, D.-I. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Díaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 μm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
[Crossref]

A. Schmidt, P. Koopmann, G. Huber, P. Fuhrberg, S. Y. Choi, D.-I. Yeom, F. Rotermund, V. Petrov, and U. Griebner, “175 fs Tm:Lu2O3 laser at 2.07 µm mode-locked using single-walled carbon nanotubes,” Opt. Express 20(5), 5313–5318 (2012).
[Crossref] [PubMed]

Guina, M.

Guo, J.

Härkönen, A.

Hönninger, C.

Huang, H.

Huber, G.

Jing, W.

Kavaya, M. J.

Keller, U.

Koopmann, P.

Krankel, C.

R. Peters, C. Krankel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high-purity Yb:Lu2O3,” J. Cryst. Growth 310(7-9), 1934–1938 (2008).
[Crossref]

Kränkel, C.

M. Tokurakawa, E. Fujita, and C. Kränkel, “Kerr-lens mode-locked Tm3+:Sc2O3 single-crystal laser in-band pumped by an Er:Yb fiber MOPA at 1611 nm,” Opt. Lett. 42(16), 3185–3188 (2017).
[Crossref] [PubMed]

C. Kränkel, “Rare-earth-doped sesquioxides for diode-pumped high-power lasers in the 1-, 2-, and 3-µm spectral range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602013 (2015).

Kruglova, M. V.

O. L. Antipov, A. A. Novikov, N. G. Zakharov, A. P. Zinoviev, H. Yagi, N. V. Sakharov, M. V. Kruglova, M. O. Marychev, O. N. Gorshkov, and A. A. Lagatskii, “Efficient 2.1-μm lasers based on Tm3+:Lu2O3 ceramics pumped by 800-nm laser diodes,” Phys. Status Solidi C 10(6), 969–973 (2013).
[Crossref]

Kulmala, T. S.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102(1), 013113 (2013).
[Crossref]

Lagatskii, A. A.

O. L. Antipov, A. A. Novikov, N. G. Zakharov, A. P. Zinoviev, H. Yagi, N. V. Sakharov, M. V. Kruglova, M. O. Marychev, O. N. Gorshkov, and A. A. Lagatskii, “Efficient 2.1-μm lasers based on Tm3+:Lu2O3 ceramics pumped by 800-nm laser diodes,” Phys. Status Solidi C 10(6), 969–973 (2013).
[Crossref]

Lagatsky, A. A.

Lee, Y.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102(1), 013113 (2013).
[Crossref]

Leinonen, T.

Li, J.

Lin, H.

Lin, Z.

Loiko, P.

Marychev, M. O.

O. L. Antipov, A. A. Novikov, N. G. Zakharov, A. P. Zinoviev, H. Yagi, N. V. Sakharov, M. V. Kruglova, M. O. Marychev, O. N. Gorshkov, and A. A. Lagatskii, “Efficient 2.1-μm lasers based on Tm3+:Lu2O3 ceramics pumped by 800-nm laser diodes,” Phys. Status Solidi C 10(6), 969–973 (2013).
[Crossref]

Mateos, X.

Mero, M.

Milana, S.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102(1), 013113 (2013).
[Crossref]

Morier-Genoud, F.

Moser, M.

Novikov, A. A.

O. L. Antipov, A. A. Novikov, N. G. Zakharov, A. P. Zinoviev, H. Yagi, N. V. Sakharov, M. V. Kruglova, M. O. Marychev, O. N. Gorshkov, and A. A. Lagatskii, “Efficient 2.1-μm lasers based on Tm3+:Lu2O3 ceramics pumped by 800-nm laser diodes,” Phys. Status Solidi C 10(6), 969–973 (2013).
[Crossref]

O. L. Antipov, A. A. Novikov, N. G. Zakharov, and A. P. Zinoviev, “Optical properties and efficient laser oscillation at 2066 nm of novel Tm:Lu2O3 ceramics,” Opt. Mater. Express 2(2), 183–189 (2012).
[Crossref]

Okhotnikov, O. G.

Paajaste, J.

Pan, Y.

Paschotta, R.

Penttinen, J.-P.

Petermann, K.

R. Peters, C. Krankel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high-purity Yb:Lu2O3,” J. Cryst. Growth 310(7-9), 1934–1938 (2008).
[Crossref]

Peters, R.

R. Peters, C. Krankel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high-purity Yb:Lu2O3,” J. Cryst. Growth 310(7-9), 1934–1938 (2008).
[Crossref]

Petros, M.

Petrov, V.

W. Jing, P. Loiko, J. M. Serres, Y. Wang, E. Vilejshikova, M. Aguiló, F. Díaz, U. Griebner, H. Huang, V. Petrov, and X. Mateos, “Synthesis, spectroscopy, and efficient laser operation of ‘mixed’ sesquioxide Tm:(Lu,Sc)2O3 transparent ceramics,” Opt. Mater. Express 7(1), 4192–4202 (2017).
[Crossref]

Y. Wang, W. Chen, M. Mero, L. Zhang, H. Lin, Z. Lin, G. Zhang, F. Rotermund, Y. J. Cho, P. Loiko, X. Mateos, U. Griebner, and V. Petrov, “Sub-100 fs Tm:MgWO4 laser at 2017 nm mode locked by a graphene saturable absorber,” Opt. Lett. 42(16), 3076–3079 (2017).
[Crossref] [PubMed]

Y. Wang, G. Xie, X. Xu, J. Di, Z. Qin, S. Suomalainen, M. Guina, A. Härkönen, A. Agnesi, U. Griebner, X. Mateos, P. Loiko, and V. Petrov, “SESAM mode-locked Tm:CALGO laser at 2 μm,” Opt. Mater. Express 6(1), 131–136 (2016).
[Crossref]

A. Gluth, Y. Wang, V. Petrov, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, G. Steinmeyer, X. Mateos, S. Veronesi, M. Tonelli, J. Li, Y. Pan, J. Guo, and U. Griebner, “GaSb-based SESAM mode-locked Tm:YAG ceramic laser at 2 µm,” Opt. Express 23(2), 1361–1369 (2015).
[Crossref] [PubMed]

V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
[Crossref]

A. Schmidt, S. Y. Choi, D.-I. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Díaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 μm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
[Crossref]

A. Schmidt, P. Koopmann, G. Huber, P. Fuhrberg, S. Y. Choi, D.-I. Yeom, F. Rotermund, V. Petrov, and U. Griebner, “175 fs Tm:Lu2O3 laser at 2.07 µm mode-locked using single-walled carbon nanotubes,” Opt. Express 20(5), 5313–5318 (2012).
[Crossref] [PubMed]

Qin, Z.

Refaat, T. F.

Rotermund, F.

Saarinen, E. J.

Sakharov, N. V.

O. L. Antipov, A. A. Novikov, N. G. Zakharov, A. P. Zinoviev, H. Yagi, N. V. Sakharov, M. V. Kruglova, M. O. Marychev, O. N. Gorshkov, and A. A. Lagatskii, “Efficient 2.1-μm lasers based on Tm3+:Lu2O3 ceramics pumped by 800-nm laser diodes,” Phys. Status Solidi C 10(6), 969–973 (2013).
[Crossref]

Schmidt, A.

A. Schmidt, S. Y. Choi, D.-I. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Díaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 μm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
[Crossref]

A. Schmidt, P. Koopmann, G. Huber, P. Fuhrberg, S. Y. Choi, D.-I. Yeom, F. Rotermund, V. Petrov, and U. Griebner, “175 fs Tm:Lu2O3 laser at 2.07 µm mode-locked using single-walled carbon nanotubes,” Opt. Express 20(5), 5313–5318 (2012).
[Crossref] [PubMed]

Segura, M.

A. Schmidt, S. Y. Choi, D.-I. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Díaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 μm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
[Crossref]

Serres, J. M.

Shan, B.

B. Shan and Z. H. Chang, “Dramatic extension of the high-order harmonic cutoff by using a long-wavelength driving field,” Phys. Rev. A 65, 011804 (2002).

Sibbett, W.

Singh, U. N.

Steinmeyer, G.

Sun, Z.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102(1), 013113 (2013).
[Crossref]

Sundaram, R. S.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102(1), 013113 (2013).
[Crossref]

Suomalainen, S.

Tavast, M.

Tokurakawa, M.

Tonelli, M.

Torrisi, F.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102(1), 013113 (2013).
[Crossref]

Vasileva, E.

Veronesi, S.

Vilejshikova, E.

Walsh, B. M.

Wang, Y.

Xie, G.

Xu, X.

Yagi, H.

O. L. Antipov, A. A. Novikov, N. G. Zakharov, A. P. Zinoviev, H. Yagi, N. V. Sakharov, M. V. Kruglova, M. O. Marychev, O. N. Gorshkov, and A. A. Lagatskii, “Efficient 2.1-μm lasers based on Tm3+:Lu2O3 ceramics pumped by 800-nm laser diodes,” Phys. Status Solidi C 10(6), 969–973 (2013).
[Crossref]

Yeom, D.-I.

A. Schmidt, S. Y. Choi, D.-I. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Díaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 μm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
[Crossref]

A. Schmidt, P. Koopmann, G. Huber, P. Fuhrberg, S. Y. Choi, D.-I. Yeom, F. Rotermund, V. Petrov, and U. Griebner, “175 fs Tm:Lu2O3 laser at 2.07 µm mode-locked using single-walled carbon nanotubes,” Opt. Express 20(5), 5313–5318 (2012).
[Crossref] [PubMed]

Yu, J.

Zakharov, N. G.

O. L. Antipov, A. A. Novikov, N. G. Zakharov, A. P. Zinoviev, H. Yagi, N. V. Sakharov, M. V. Kruglova, M. O. Marychev, O. N. Gorshkov, and A. A. Lagatskii, “Efficient 2.1-μm lasers based on Tm3+:Lu2O3 ceramics pumped by 800-nm laser diodes,” Phys. Status Solidi C 10(6), 969–973 (2013).
[Crossref]

O. L. Antipov, A. A. Novikov, N. G. Zakharov, and A. P. Zinoviev, “Optical properties and efficient laser oscillation at 2066 nm of novel Tm:Lu2O3 ceramics,” Opt. Mater. Express 2(2), 183–189 (2012).
[Crossref]

Zhang, G.

Zhang, L.

Zinoviev, A. P.

O. L. Antipov, A. A. Novikov, N. G. Zakharov, A. P. Zinoviev, H. Yagi, N. V. Sakharov, M. V. Kruglova, M. O. Marychev, O. N. Gorshkov, and A. A. Lagatskii, “Efficient 2.1-μm lasers based on Tm3+:Lu2O3 ceramics pumped by 800-nm laser diodes,” Phys. Status Solidi C 10(6), 969–973 (2013).
[Crossref]

O. L. Antipov, A. A. Novikov, N. G. Zakharov, and A. P. Zinoviev, “Optical properties and efficient laser oscillation at 2066 nm of novel Tm:Lu2O3 ceramics,” Opt. Mater. Express 2(2), 183–189 (2012).
[Crossref]

Appl. Phys. Express (1)

A. Schmidt, S. Y. Choi, D.-I. Yeom, F. Rotermund, X. Mateos, M. Segura, F. Díaz, V. Petrov, and U. Griebner, “Femtosecond pulses near 2 μm from a Tm:KLuW laser mode-locked by a single-walled carbon nanotube saturable absorber,” Appl. Phys. Express 5(9), 092704 (2012).
[Crossref]

Appl. Phys. Lett. (1)

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102(1), 013113 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Kränkel, “Rare-earth-doped sesquioxides for diode-pumped high-power lasers in the 1-, 2-, and 3-µm spectral range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602013 (2015).

J. Cryst. Growth (1)

R. Peters, C. Krankel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high-purity Yb:Lu2O3,” J. Cryst. Growth 310(7-9), 1934–1938 (2008).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

J. Paajaste, S. Suomalainen, A. Härkönen, U. Griebner, G. Steinmeyer, and M. Guina, “Absorption recovery dynamics in 2 µm GaSb-based SESAMs,” J. Phys. D Appl. Phys. 47(6), 065102 (2014).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Opt. Mater. Express (4)

Phys. Rev. A (1)

B. Shan and Z. H. Chang, “Dramatic extension of the high-order harmonic cutoff by using a long-wavelength driving field,” Phys. Rev. A 65, 011804 (2002).

Phys. Status Solidi C (1)

O. L. Antipov, A. A. Novikov, N. G. Zakharov, A. P. Zinoviev, H. Yagi, N. V. Sakharov, M. V. Kruglova, M. O. Marychev, O. N. Gorshkov, and A. A. Lagatskii, “Efficient 2.1-μm lasers based on Tm3+:Lu2O3 ceramics pumped by 800-nm laser diodes,” Phys. Status Solidi C 10(6), 969–973 (2013).
[Crossref]

Prog. Quantum Electron. (1)

V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
[Crossref]

Other (2)

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 µm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (InTech, Rijeka, 2010), pp. 471–500.

A. A. Lagatsky, P. Koopmann, O. L. Antipov, C. T. A. Brown, G. Huber, and W. Sibbett, “Femtosecond pulse generation with Tm-doped sesquioxides,” Conference on Lasers & Electro-Optics Europe CLEO EUROPE, Munich, 2013, OSA, paper CA_6_3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) The fabricated 4.76 at.% Tm:LuScO mixed ceramic disks (laser-grade-polished) and (b) calculated gain cross section σgain for different inversion levels β of the Tm:LuScO mixed ceramic in the 2-µm spectral range.
Fig. 2
Fig. 2 Scheme of the Tm:LuScO mixed ceramic laser (L: lens, M: dichroic mirror, CM: chirped mirror, OC: output coupler, r: radius of curvature, f: focal length).
Fig. 3
Fig. 3 Tuning of the CW Tm:LuScO mixed ceramic laser with a Lyot filter and 1.5% OC.
Fig. 4
Fig. 4 Autocorrelation traces (a, c, e and g) measured by type-I second-harmonic generation in a 3-mm thick β-BaB2O4 crystal and optical spectra (b, d, f and h) of the mode-locked Tm:LuScO mixed ceramic laser measured with a 0.5 nm resolution rotating grating spectrometer for different OCs. Blue lines indicate calculated round trip GDD of the chirped mirrors and the 0.2% OC reflectivity, in (b) and (h), respectively.
Fig. 5
Fig. 5 Radio frequency spectra of the SESAM mode-locked Tm:LuScO ceramic laser with the 0.2% OC: (a) 1-GHz-wide span, (b) fundamental beat note (RBW: resolution bandwidth).

Tables (1)

Tables Icon

Table 1 Mode-locking results with the Tm:LuScO ceramics laser with different OCs (Pout, average output power; τ, pulse duration; Δλ, spectra bandwidth as FWHM; TBP, time bandwidth product).

Metrics