Abstract

A technique integrating the bidirectional reflectance distribution function (BRDF) is proposed to generate realistic high-quality colour computer-generated holograms (CGHs). We build on prior work, namely a fast computer-generated holography method for point clouds that handles occlusions. We extend the method by integrating the Phong illumination model so that the properties of the objects’ surfaces are taken into account to achieve natural light phenomena such as reflections and shadows. Our experiments show that rendering holograms with the proposed algorithm provides realistic looking objects without any noteworthy increase to the computational cost.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Computer generated hologram from point cloud using graphics processor

Rick H.-Y. Chen and Timothy D. Wilkinson
Appl. Opt. 48(36) 6841-6850 (2009)

Computer-generated holograms by multiple wavefront recording plane method with occlusion culling

Athanasia Symeonidou, David Blinder, Adrian Munteanu, and Peter Schelkens
Opt. Express 23(17) 22149-22161 (2015)

Rendering of specular surfaces in polygon-based computer-generated holograms

Hirohito Nishi, Kyoji Matsushima, and Sumio Nakahara
Appl. Opt. 50(34) H245-H252 (2011)

References

  • View by:
  • |
  • |
  • |

  1. B. Javidi and F. Okano, Three-Dimensional Television, Video, and Display Technologies (SpringerBerlin Heidelberg, 2002).
  2. S. A. Benton and V. M. Bove, Holographic Imaging (Wiley, 2008).
    [Crossref]
  3. Y. Pan, J. Liu, X. Li, and Y. Wang, “A review of dynamic holographic three-dimensional display: Algorithms, devices, and systems,” IEEE Trans. Ind. Informat. 12, 1599–1610 (2016).
    [Crossref]
  4. T. Kozacki and M. Chlipala, “Color holographic display with white light LED source and single phase only SLM,” Opt. Express 24, 2189–2199 (2016).
    [Crossref] [PubMed]
  5. L. Onural, F. Yaras, and H. Kang, “Digital holographic three-dimensional video displays,” Proc. IEEE 99, 576–589 (2011).
    [Crossref]
  6. P. W. M. Tsang and T. C. Poon, “Review on the state-of-the-art technologies for acquisition and display of digital holograms,” IEEE Trans. Ind. Informat. 12, 886–901 (2016).
    [Crossref]
  7. H. Zhang, Y. Zhao, L. Cao, and G. Jin, “Fully computed holographic stereogram based algorithm for computer-generated holograms with accurate depth cues,” Opt. Express 23, 3901–3913 (2015).
    [Crossref] [PubMed]
  8. K. Matsushima, “Computer-generated holograms for three-dimensional surface objects with shade and texture,” Appl. Opt. 44, 4607–4614 (2005).
    [Crossref] [PubMed]
  9. K. Matsushima, Y. Arima, and S. Nakahara, “Digitized holography: modern holography for 3D imaging of virtual and real objects,” Appl. Opt. 50, H278–H284 (2011).
    [Crossref] [PubMed]
  10. T. Shimobaba, N. Masuda, and T. Ito, “Simple and fast calculation algorithm for computer-generated hologram with wavefront recording plane,” Opt. Lett. 34, 3133–3135 (2009).
    [Crossref] [PubMed]
  11. H. Zhang, Q. Tan, and G. Jin, “Full parallax three-dimensional computer generated hologram with occlusion effect using ray casting technique,” J. Phys. Conf. Ser. 415, 012048 (2013).
    [Crossref]
  12. A. Symeonidou, D. Blinder, A. Munteanu, and P. Schelkens, “Computer-generated holograms by multiple wavefront recording plane method with occlusion culling,” Opt. Express 23, 22149–22161 (2015).
    [Crossref] [PubMed]
  13. D. Arai, T. Shimobaba, T. Nishitsuji, T. Kakue, N. Masuda, and T. Ito, “An accelerated hologram calculation using the wavefront recording plane method and wavelet transform,” Opt. Commun. 393, 107–112 (2017).
    [Crossref]
  14. C. Chang, Y. Qi, J. Wu, C. Yuan, S. Nie, and J. Xia, “Numerical study for the calculation of computer-generated hologram in color holographic 3D projection enabled by modified wavefront recording plane method,” Opt. Commun. 387, 267–274 (2017).
    [Crossref]
  15. M. E. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2, 28–34 (1993).
    [Crossref]
  16. Y. Pan, X. Xu, S. Solanki, X. Liang, R. B. A. Tanjung, C. Tan, and T.-C. Chong, “Fast CGH computation using S-LUT on GPU,” Opt. Express 17, 18543–18555 (2009).
    [Crossref]
  17. J. Jia, Y. Wang, J. Liu, X. Li, Y. Pan, Z. Sun, B. Zhang, Q. Zhao, and W. Jiang, “Reducing the memory usage for effective computer-generated hologram calculation using compressed look-up table in full-color holographic display,” Appl. Opt. 52, 1404–1412 (2013).
    [Crossref] [PubMed]
  18. R. H.-Y. Chen and T. D. Wilkinson, “Computer generated hologram from point cloud using graphics processor,” Appl. Opt. 48, 6841–6850 (2009).
    [Crossref] [PubMed]
  19. N. Takada, T. Shimobaba, H. Nakayama, A. Shiraki, N. Okada, M. Oikawa, N. Masuda, and T. Ito, “Fast high-resolution computer-generated hologram computation using multiple graphics processing unit cluster system,” Appl. Opt. 51, 7303–7307 (2012).
    [Crossref] [PubMed]
  20. F. E. Nicodemus, “Directional reflectance and emissivity of an opaque surface,” Appl. Opt. 4, 767–775 (1965).
    [Crossref]
  21. T. Akenine-Möller, E. Haines, and N. Hoffman, Real-Time Rendering (A. K. Peters, Ltd., 2008), 3rd ed.
  22. B. T. Phong, “Illumination for computer generated pictures,” Commun. ACM 18, 311–317 (1975).
    [Crossref]
  23. T. Ichikawa, K. Yamaguchi, and Y. Sakamoto, “Realistic expression for full-parallax computer-generated holograms with the ray-tracing method,” Appl. Opt. 52, A201–A209 (2013).
    [Crossref] [PubMed]
  24. T. Ichikawa and Y. Sakamoto, “A rendering method of background reflections on a specular surface for CGH,” J. Phys. Conf. Ser. 415, 012044 (2013).
    [Crossref]
  25. H. Nishi, K. Matsushima, and S. Nakahara, “Rendering of specular surfaces in polygon-based computer-generated holograms,” Appl. Opt. 50, H245–H252 (2011).
    [Crossref] [PubMed]
  26. H. Nishi and K. Matsushima, “Rendering of specular curved objects in polygon-based computer holography,” Appl. Opt. 56, F37–F44 (2017).
    [Crossref] [PubMed]
  27. H.-J. Yeom and J.-H. Park, “Calculation of reflectance distribution using angular spectrum convolution in mesh-based computer generated hologram,” Opt. Express 24, 19801–19813 (2016).
    [Crossref] [PubMed]
  28. A. Gilles, P. Gioia, R. Cozot, and L. Morin, “Computer generated hologram from multiview-plus-depth data considering specular reflections,” in “2016 IEEE International Conf. Multimedia Expo Workshops (ICMEW)” (2016), pp. 1–6.
  29. T. Kurihara and Y. Takaki, “Shading of a computer-generated hologram by zone plate modulation,” Opt. Express 20, 3529–3540 (2012).
    [Crossref] [PubMed]
  30. H. Zhang, L. Cao, and G. Jin, “Lighting effects rendering in three-dimensional computer-generated holographic display,” Opt. Commun. 370, 192–197 (2016).
    [Crossref]
  31. A. Symeonidou, D. Blinder, A. Ahar, C. Schretter, A. Munteanu, and P. Schelkens, “Speckle noise reduction for computer generated holograms of objects with diffuse surfaces,” Proc. SPIE 9896, 98960F (2016).
  32. E. E. Catmull, “A subdivision algorithm for computer display of curved surfaces,” Ph. D. Dissertation, Department of Computer Science, University of Utah (1974).
  33. H. Sasaki, K. Yamamoto, Y. Ichihashi, and T. Senoh, “Image size scalable full-parallax coloured three-dimensional video by electronic holography,” Sci. Rep. 4, 2045–2322 (2014).
  34. J. W. Goodman, Introduction to Fourier Optics (Roberts and Company Publishers, 2004), 3rd ed.
  35. A. Symeonidou, D. Blinder, B. Ceulemans, A. Munteanu, and P. Schelkens, “Three-dimensional rendering of computer-generated holograms acquired from point-clouds on light field displays,” Proc. SPIE 9971, 99710S (2016).
    [Crossref]
  36. “CGH dataset: Interfere-III, http://www.erc-interfere.eu/downloads.html ”.
  37. D. DiLaura and I. E. S. of North America, The Lighting Handbook: Reference and Application, IESNA LIGHTING HANDBOOK (Illuminating Engineering Society of North America, 2011).
  38. T. McReynolds and D. Blythe, Advanced Graphics Programming Using OpenGL (The Morgan Kaufmann Series in Computer Graphics) (Morgan Kaufmann Publishers Inc., USA, 2005).
  39. J. Zhao, H. Jiang, and J. Di, “Recording and reconstruction of a color holographic image by using digital lensless fourier transform holography,” Opt. Express 16, 2514–2519 (2008).
    [Crossref] [PubMed]
  40. J. Wang, H. D. Zheng, and Y. J. Yu, “Achromatization in optical reconstruction of computer generated color holograms,” Journal of Display Technology 12, 390–396 (2016).
    [Crossref]

2017 (3)

D. Arai, T. Shimobaba, T. Nishitsuji, T. Kakue, N. Masuda, and T. Ito, “An accelerated hologram calculation using the wavefront recording plane method and wavelet transform,” Opt. Commun. 393, 107–112 (2017).
[Crossref]

C. Chang, Y. Qi, J. Wu, C. Yuan, S. Nie, and J. Xia, “Numerical study for the calculation of computer-generated hologram in color holographic 3D projection enabled by modified wavefront recording plane method,” Opt. Commun. 387, 267–274 (2017).
[Crossref]

H. Nishi and K. Matsushima, “Rendering of specular curved objects in polygon-based computer holography,” Appl. Opt. 56, F37–F44 (2017).
[Crossref] [PubMed]

2016 (8)

H.-J. Yeom and J.-H. Park, “Calculation of reflectance distribution using angular spectrum convolution in mesh-based computer generated hologram,” Opt. Express 24, 19801–19813 (2016).
[Crossref] [PubMed]

H. Zhang, L. Cao, and G. Jin, “Lighting effects rendering in three-dimensional computer-generated holographic display,” Opt. Commun. 370, 192–197 (2016).
[Crossref]

A. Symeonidou, D. Blinder, A. Ahar, C. Schretter, A. Munteanu, and P. Schelkens, “Speckle noise reduction for computer generated holograms of objects with diffuse surfaces,” Proc. SPIE 9896, 98960F (2016).

A. Symeonidou, D. Blinder, B. Ceulemans, A. Munteanu, and P. Schelkens, “Three-dimensional rendering of computer-generated holograms acquired from point-clouds on light field displays,” Proc. SPIE 9971, 99710S (2016).
[Crossref]

J. Wang, H. D. Zheng, and Y. J. Yu, “Achromatization in optical reconstruction of computer generated color holograms,” Journal of Display Technology 12, 390–396 (2016).
[Crossref]

Y. Pan, J. Liu, X. Li, and Y. Wang, “A review of dynamic holographic three-dimensional display: Algorithms, devices, and systems,” IEEE Trans. Ind. Informat. 12, 1599–1610 (2016).
[Crossref]

T. Kozacki and M. Chlipala, “Color holographic display with white light LED source and single phase only SLM,” Opt. Express 24, 2189–2199 (2016).
[Crossref] [PubMed]

P. W. M. Tsang and T. C. Poon, “Review on the state-of-the-art technologies for acquisition and display of digital holograms,” IEEE Trans. Ind. Informat. 12, 886–901 (2016).
[Crossref]

2015 (2)

2014 (1)

H. Sasaki, K. Yamamoto, Y. Ichihashi, and T. Senoh, “Image size scalable full-parallax coloured three-dimensional video by electronic holography,” Sci. Rep. 4, 2045–2322 (2014).

2013 (4)

T. Ichikawa, K. Yamaguchi, and Y. Sakamoto, “Realistic expression for full-parallax computer-generated holograms with the ray-tracing method,” Appl. Opt. 52, A201–A209 (2013).
[Crossref] [PubMed]

T. Ichikawa and Y. Sakamoto, “A rendering method of background reflections on a specular surface for CGH,” J. Phys. Conf. Ser. 415, 012044 (2013).
[Crossref]

H. Zhang, Q. Tan, and G. Jin, “Full parallax three-dimensional computer generated hologram with occlusion effect using ray casting technique,” J. Phys. Conf. Ser. 415, 012048 (2013).
[Crossref]

J. Jia, Y. Wang, J. Liu, X. Li, Y. Pan, Z. Sun, B. Zhang, Q. Zhao, and W. Jiang, “Reducing the memory usage for effective computer-generated hologram calculation using compressed look-up table in full-color holographic display,” Appl. Opt. 52, 1404–1412 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (3)

2009 (3)

2008 (1)

2005 (1)

1993 (1)

M. E. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2, 28–34 (1993).
[Crossref]

1975 (1)

B. T. Phong, “Illumination for computer generated pictures,” Commun. ACM 18, 311–317 (1975).
[Crossref]

1965 (1)

Ahar, A.

A. Symeonidou, D. Blinder, A. Ahar, C. Schretter, A. Munteanu, and P. Schelkens, “Speckle noise reduction for computer generated holograms of objects with diffuse surfaces,” Proc. SPIE 9896, 98960F (2016).

Akenine-Möller, T.

T. Akenine-Möller, E. Haines, and N. Hoffman, Real-Time Rendering (A. K. Peters, Ltd., 2008), 3rd ed.

Arai, D.

D. Arai, T. Shimobaba, T. Nishitsuji, T. Kakue, N. Masuda, and T. Ito, “An accelerated hologram calculation using the wavefront recording plane method and wavelet transform,” Opt. Commun. 393, 107–112 (2017).
[Crossref]

Arima, Y.

Benton, S. A.

S. A. Benton and V. M. Bove, Holographic Imaging (Wiley, 2008).
[Crossref]

Blinder, D.

A. Symeonidou, D. Blinder, B. Ceulemans, A. Munteanu, and P. Schelkens, “Three-dimensional rendering of computer-generated holograms acquired from point-clouds on light field displays,” Proc. SPIE 9971, 99710S (2016).
[Crossref]

A. Symeonidou, D. Blinder, A. Ahar, C. Schretter, A. Munteanu, and P. Schelkens, “Speckle noise reduction for computer generated holograms of objects with diffuse surfaces,” Proc. SPIE 9896, 98960F (2016).

A. Symeonidou, D. Blinder, A. Munteanu, and P. Schelkens, “Computer-generated holograms by multiple wavefront recording plane method with occlusion culling,” Opt. Express 23, 22149–22161 (2015).
[Crossref] [PubMed]

Blythe, D.

T. McReynolds and D. Blythe, Advanced Graphics Programming Using OpenGL (The Morgan Kaufmann Series in Computer Graphics) (Morgan Kaufmann Publishers Inc., USA, 2005).

Bove, V. M.

S. A. Benton and V. M. Bove, Holographic Imaging (Wiley, 2008).
[Crossref]

Cao, L.

H. Zhang, L. Cao, and G. Jin, “Lighting effects rendering in three-dimensional computer-generated holographic display,” Opt. Commun. 370, 192–197 (2016).
[Crossref]

H. Zhang, Y. Zhao, L. Cao, and G. Jin, “Fully computed holographic stereogram based algorithm for computer-generated holograms with accurate depth cues,” Opt. Express 23, 3901–3913 (2015).
[Crossref] [PubMed]

Catmull, E. E.

E. E. Catmull, “A subdivision algorithm for computer display of curved surfaces,” Ph. D. Dissertation, Department of Computer Science, University of Utah (1974).

Ceulemans, B.

A. Symeonidou, D. Blinder, B. Ceulemans, A. Munteanu, and P. Schelkens, “Three-dimensional rendering of computer-generated holograms acquired from point-clouds on light field displays,” Proc. SPIE 9971, 99710S (2016).
[Crossref]

Chang, C.

C. Chang, Y. Qi, J. Wu, C. Yuan, S. Nie, and J. Xia, “Numerical study for the calculation of computer-generated hologram in color holographic 3D projection enabled by modified wavefront recording plane method,” Opt. Commun. 387, 267–274 (2017).
[Crossref]

Chen, R. H.-Y.

Chlipala, M.

Chong, T.-C.

Cozot, R.

A. Gilles, P. Gioia, R. Cozot, and L. Morin, “Computer generated hologram from multiview-plus-depth data considering specular reflections,” in “2016 IEEE International Conf. Multimedia Expo Workshops (ICMEW)” (2016), pp. 1–6.

Di, J.

DiLaura, D.

D. DiLaura and I. E. S. of North America, The Lighting Handbook: Reference and Application, IESNA LIGHTING HANDBOOK (Illuminating Engineering Society of North America, 2011).

Gilles, A.

A. Gilles, P. Gioia, R. Cozot, and L. Morin, “Computer generated hologram from multiview-plus-depth data considering specular reflections,” in “2016 IEEE International Conf. Multimedia Expo Workshops (ICMEW)” (2016), pp. 1–6.

Gioia, P.

A. Gilles, P. Gioia, R. Cozot, and L. Morin, “Computer generated hologram from multiview-plus-depth data considering specular reflections,” in “2016 IEEE International Conf. Multimedia Expo Workshops (ICMEW)” (2016), pp. 1–6.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (Roberts and Company Publishers, 2004), 3rd ed.

Haines, E.

T. Akenine-Möller, E. Haines, and N. Hoffman, Real-Time Rendering (A. K. Peters, Ltd., 2008), 3rd ed.

Hoffman, N.

T. Akenine-Möller, E. Haines, and N. Hoffman, Real-Time Rendering (A. K. Peters, Ltd., 2008), 3rd ed.

Ichihashi, Y.

H. Sasaki, K. Yamamoto, Y. Ichihashi, and T. Senoh, “Image size scalable full-parallax coloured three-dimensional video by electronic holography,” Sci. Rep. 4, 2045–2322 (2014).

Ichikawa, T.

T. Ichikawa and Y. Sakamoto, “A rendering method of background reflections on a specular surface for CGH,” J. Phys. Conf. Ser. 415, 012044 (2013).
[Crossref]

T. Ichikawa, K. Yamaguchi, and Y. Sakamoto, “Realistic expression for full-parallax computer-generated holograms with the ray-tracing method,” Appl. Opt. 52, A201–A209 (2013).
[Crossref] [PubMed]

Ito, T.

Javidi, B.

B. Javidi and F. Okano, Three-Dimensional Television, Video, and Display Technologies (SpringerBerlin Heidelberg, 2002).

Jia, J.

Jiang, H.

Jiang, W.

Jin, G.

H. Zhang, L. Cao, and G. Jin, “Lighting effects rendering in three-dimensional computer-generated holographic display,” Opt. Commun. 370, 192–197 (2016).
[Crossref]

H. Zhang, Y. Zhao, L. Cao, and G. Jin, “Fully computed holographic stereogram based algorithm for computer-generated holograms with accurate depth cues,” Opt. Express 23, 3901–3913 (2015).
[Crossref] [PubMed]

H. Zhang, Q. Tan, and G. Jin, “Full parallax three-dimensional computer generated hologram with occlusion effect using ray casting technique,” J. Phys. Conf. Ser. 415, 012048 (2013).
[Crossref]

Kakue, T.

D. Arai, T. Shimobaba, T. Nishitsuji, T. Kakue, N. Masuda, and T. Ito, “An accelerated hologram calculation using the wavefront recording plane method and wavelet transform,” Opt. Commun. 393, 107–112 (2017).
[Crossref]

Kang, H.

L. Onural, F. Yaras, and H. Kang, “Digital holographic three-dimensional video displays,” Proc. IEEE 99, 576–589 (2011).
[Crossref]

Kozacki, T.

Kurihara, T.

Li, X.

Liang, X.

Liu, J.

Lucente, M. E.

M. E. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2, 28–34 (1993).
[Crossref]

Masuda, N.

Matsushima, K.

McReynolds, T.

T. McReynolds and D. Blythe, Advanced Graphics Programming Using OpenGL (The Morgan Kaufmann Series in Computer Graphics) (Morgan Kaufmann Publishers Inc., USA, 2005).

Morin, L.

A. Gilles, P. Gioia, R. Cozot, and L. Morin, “Computer generated hologram from multiview-plus-depth data considering specular reflections,” in “2016 IEEE International Conf. Multimedia Expo Workshops (ICMEW)” (2016), pp. 1–6.

Munteanu, A.

A. Symeonidou, D. Blinder, A. Ahar, C. Schretter, A. Munteanu, and P. Schelkens, “Speckle noise reduction for computer generated holograms of objects with diffuse surfaces,” Proc. SPIE 9896, 98960F (2016).

A. Symeonidou, D. Blinder, B. Ceulemans, A. Munteanu, and P. Schelkens, “Three-dimensional rendering of computer-generated holograms acquired from point-clouds on light field displays,” Proc. SPIE 9971, 99710S (2016).
[Crossref]

A. Symeonidou, D. Blinder, A. Munteanu, and P. Schelkens, “Computer-generated holograms by multiple wavefront recording plane method with occlusion culling,” Opt. Express 23, 22149–22161 (2015).
[Crossref] [PubMed]

Nakahara, S.

Nakayama, H.

Nicodemus, F. E.

Nie, S.

C. Chang, Y. Qi, J. Wu, C. Yuan, S. Nie, and J. Xia, “Numerical study for the calculation of computer-generated hologram in color holographic 3D projection enabled by modified wavefront recording plane method,” Opt. Commun. 387, 267–274 (2017).
[Crossref]

Nishi, H.

Nishitsuji, T.

D. Arai, T. Shimobaba, T. Nishitsuji, T. Kakue, N. Masuda, and T. Ito, “An accelerated hologram calculation using the wavefront recording plane method and wavelet transform,” Opt. Commun. 393, 107–112 (2017).
[Crossref]

Oikawa, M.

Okada, N.

Okano, F.

B. Javidi and F. Okano, Three-Dimensional Television, Video, and Display Technologies (SpringerBerlin Heidelberg, 2002).

Onural, L.

L. Onural, F. Yaras, and H. Kang, “Digital holographic three-dimensional video displays,” Proc. IEEE 99, 576–589 (2011).
[Crossref]

Pan, Y.

Park, J.-H.

Phong, B. T.

B. T. Phong, “Illumination for computer generated pictures,” Commun. ACM 18, 311–317 (1975).
[Crossref]

Poon, T. C.

P. W. M. Tsang and T. C. Poon, “Review on the state-of-the-art technologies for acquisition and display of digital holograms,” IEEE Trans. Ind. Informat. 12, 886–901 (2016).
[Crossref]

Qi, Y.

C. Chang, Y. Qi, J. Wu, C. Yuan, S. Nie, and J. Xia, “Numerical study for the calculation of computer-generated hologram in color holographic 3D projection enabled by modified wavefront recording plane method,” Opt. Commun. 387, 267–274 (2017).
[Crossref]

Sakamoto, Y.

T. Ichikawa and Y. Sakamoto, “A rendering method of background reflections on a specular surface for CGH,” J. Phys. Conf. Ser. 415, 012044 (2013).
[Crossref]

T. Ichikawa, K. Yamaguchi, and Y. Sakamoto, “Realistic expression for full-parallax computer-generated holograms with the ray-tracing method,” Appl. Opt. 52, A201–A209 (2013).
[Crossref] [PubMed]

Sasaki, H.

H. Sasaki, K. Yamamoto, Y. Ichihashi, and T. Senoh, “Image size scalable full-parallax coloured three-dimensional video by electronic holography,” Sci. Rep. 4, 2045–2322 (2014).

Schelkens, P.

A. Symeonidou, D. Blinder, A. Ahar, C. Schretter, A. Munteanu, and P. Schelkens, “Speckle noise reduction for computer generated holograms of objects with diffuse surfaces,” Proc. SPIE 9896, 98960F (2016).

A. Symeonidou, D. Blinder, B. Ceulemans, A. Munteanu, and P. Schelkens, “Three-dimensional rendering of computer-generated holograms acquired from point-clouds on light field displays,” Proc. SPIE 9971, 99710S (2016).
[Crossref]

A. Symeonidou, D. Blinder, A. Munteanu, and P. Schelkens, “Computer-generated holograms by multiple wavefront recording plane method with occlusion culling,” Opt. Express 23, 22149–22161 (2015).
[Crossref] [PubMed]

Schretter, C.

A. Symeonidou, D. Blinder, A. Ahar, C. Schretter, A. Munteanu, and P. Schelkens, “Speckle noise reduction for computer generated holograms of objects with diffuse surfaces,” Proc. SPIE 9896, 98960F (2016).

Senoh, T.

H. Sasaki, K. Yamamoto, Y. Ichihashi, and T. Senoh, “Image size scalable full-parallax coloured three-dimensional video by electronic holography,” Sci. Rep. 4, 2045–2322 (2014).

Shimobaba, T.

Shiraki, A.

Solanki, S.

Sun, Z.

Symeonidou, A.

A. Symeonidou, D. Blinder, A. Ahar, C. Schretter, A. Munteanu, and P. Schelkens, “Speckle noise reduction for computer generated holograms of objects with diffuse surfaces,” Proc. SPIE 9896, 98960F (2016).

A. Symeonidou, D. Blinder, B. Ceulemans, A. Munteanu, and P. Schelkens, “Three-dimensional rendering of computer-generated holograms acquired from point-clouds on light field displays,” Proc. SPIE 9971, 99710S (2016).
[Crossref]

A. Symeonidou, D. Blinder, A. Munteanu, and P. Schelkens, “Computer-generated holograms by multiple wavefront recording plane method with occlusion culling,” Opt. Express 23, 22149–22161 (2015).
[Crossref] [PubMed]

Takada, N.

Takaki, Y.

Tan, C.

Tan, Q.

H. Zhang, Q. Tan, and G. Jin, “Full parallax three-dimensional computer generated hologram with occlusion effect using ray casting technique,” J. Phys. Conf. Ser. 415, 012048 (2013).
[Crossref]

Tanjung, R. B. A.

Tsang, P. W. M.

P. W. M. Tsang and T. C. Poon, “Review on the state-of-the-art technologies for acquisition and display of digital holograms,” IEEE Trans. Ind. Informat. 12, 886–901 (2016).
[Crossref]

Wang, J.

J. Wang, H. D. Zheng, and Y. J. Yu, “Achromatization in optical reconstruction of computer generated color holograms,” Journal of Display Technology 12, 390–396 (2016).
[Crossref]

Wang, Y.

Wilkinson, T. D.

Wu, J.

C. Chang, Y. Qi, J. Wu, C. Yuan, S. Nie, and J. Xia, “Numerical study for the calculation of computer-generated hologram in color holographic 3D projection enabled by modified wavefront recording plane method,” Opt. Commun. 387, 267–274 (2017).
[Crossref]

Xia, J.

C. Chang, Y. Qi, J. Wu, C. Yuan, S. Nie, and J. Xia, “Numerical study for the calculation of computer-generated hologram in color holographic 3D projection enabled by modified wavefront recording plane method,” Opt. Commun. 387, 267–274 (2017).
[Crossref]

Xu, X.

Yamaguchi, K.

Yamamoto, K.

H. Sasaki, K. Yamamoto, Y. Ichihashi, and T. Senoh, “Image size scalable full-parallax coloured three-dimensional video by electronic holography,” Sci. Rep. 4, 2045–2322 (2014).

Yaras, F.

L. Onural, F. Yaras, and H. Kang, “Digital holographic three-dimensional video displays,” Proc. IEEE 99, 576–589 (2011).
[Crossref]

Yeom, H.-J.

Yu, Y. J.

J. Wang, H. D. Zheng, and Y. J. Yu, “Achromatization in optical reconstruction of computer generated color holograms,” Journal of Display Technology 12, 390–396 (2016).
[Crossref]

Yuan, C.

C. Chang, Y. Qi, J. Wu, C. Yuan, S. Nie, and J. Xia, “Numerical study for the calculation of computer-generated hologram in color holographic 3D projection enabled by modified wavefront recording plane method,” Opt. Commun. 387, 267–274 (2017).
[Crossref]

Zhang, B.

Zhang, H.

H. Zhang, L. Cao, and G. Jin, “Lighting effects rendering in three-dimensional computer-generated holographic display,” Opt. Commun. 370, 192–197 (2016).
[Crossref]

H. Zhang, Y. Zhao, L. Cao, and G. Jin, “Fully computed holographic stereogram based algorithm for computer-generated holograms with accurate depth cues,” Opt. Express 23, 3901–3913 (2015).
[Crossref] [PubMed]

H. Zhang, Q. Tan, and G. Jin, “Full parallax three-dimensional computer generated hologram with occlusion effect using ray casting technique,” J. Phys. Conf. Ser. 415, 012048 (2013).
[Crossref]

Zhao, J.

Zhao, Q.

Zhao, Y.

Zheng, H. D.

J. Wang, H. D. Zheng, and Y. J. Yu, “Achromatization in optical reconstruction of computer generated color holograms,” Journal of Display Technology 12, 390–396 (2016).
[Crossref]

Appl. Opt. (9)

K. Matsushima, “Computer-generated holograms for three-dimensional surface objects with shade and texture,” Appl. Opt. 44, 4607–4614 (2005).
[Crossref] [PubMed]

K. Matsushima, Y. Arima, and S. Nakahara, “Digitized holography: modern holography for 3D imaging of virtual and real objects,” Appl. Opt. 50, H278–H284 (2011).
[Crossref] [PubMed]

J. Jia, Y. Wang, J. Liu, X. Li, Y. Pan, Z. Sun, B. Zhang, Q. Zhao, and W. Jiang, “Reducing the memory usage for effective computer-generated hologram calculation using compressed look-up table in full-color holographic display,” Appl. Opt. 52, 1404–1412 (2013).
[Crossref] [PubMed]

R. H.-Y. Chen and T. D. Wilkinson, “Computer generated hologram from point cloud using graphics processor,” Appl. Opt. 48, 6841–6850 (2009).
[Crossref] [PubMed]

N. Takada, T. Shimobaba, H. Nakayama, A. Shiraki, N. Okada, M. Oikawa, N. Masuda, and T. Ito, “Fast high-resolution computer-generated hologram computation using multiple graphics processing unit cluster system,” Appl. Opt. 51, 7303–7307 (2012).
[Crossref] [PubMed]

F. E. Nicodemus, “Directional reflectance and emissivity of an opaque surface,” Appl. Opt. 4, 767–775 (1965).
[Crossref]

T. Ichikawa, K. Yamaguchi, and Y. Sakamoto, “Realistic expression for full-parallax computer-generated holograms with the ray-tracing method,” Appl. Opt. 52, A201–A209 (2013).
[Crossref] [PubMed]

H. Nishi, K. Matsushima, and S. Nakahara, “Rendering of specular surfaces in polygon-based computer-generated holograms,” Appl. Opt. 50, H245–H252 (2011).
[Crossref] [PubMed]

H. Nishi and K. Matsushima, “Rendering of specular curved objects in polygon-based computer holography,” Appl. Opt. 56, F37–F44 (2017).
[Crossref] [PubMed]

Commun. ACM (1)

B. T. Phong, “Illumination for computer generated pictures,” Commun. ACM 18, 311–317 (1975).
[Crossref]

IEEE Trans. Ind. Informat. (2)

P. W. M. Tsang and T. C. Poon, “Review on the state-of-the-art technologies for acquisition and display of digital holograms,” IEEE Trans. Ind. Informat. 12, 886–901 (2016).
[Crossref]

Y. Pan, J. Liu, X. Li, and Y. Wang, “A review of dynamic holographic three-dimensional display: Algorithms, devices, and systems,” IEEE Trans. Ind. Informat. 12, 1599–1610 (2016).
[Crossref]

J. Electron. Imaging (1)

M. E. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2, 28–34 (1993).
[Crossref]

J. Phys. Conf. Ser. (2)

T. Ichikawa and Y. Sakamoto, “A rendering method of background reflections on a specular surface for CGH,” J. Phys. Conf. Ser. 415, 012044 (2013).
[Crossref]

H. Zhang, Q. Tan, and G. Jin, “Full parallax three-dimensional computer generated hologram with occlusion effect using ray casting technique,” J. Phys. Conf. Ser. 415, 012048 (2013).
[Crossref]

Journal of Display Technology (1)

J. Wang, H. D. Zheng, and Y. J. Yu, “Achromatization in optical reconstruction of computer generated color holograms,” Journal of Display Technology 12, 390–396 (2016).
[Crossref]

Opt. Commun. (3)

D. Arai, T. Shimobaba, T. Nishitsuji, T. Kakue, N. Masuda, and T. Ito, “An accelerated hologram calculation using the wavefront recording plane method and wavelet transform,” Opt. Commun. 393, 107–112 (2017).
[Crossref]

C. Chang, Y. Qi, J. Wu, C. Yuan, S. Nie, and J. Xia, “Numerical study for the calculation of computer-generated hologram in color holographic 3D projection enabled by modified wavefront recording plane method,” Opt. Commun. 387, 267–274 (2017).
[Crossref]

H. Zhang, L. Cao, and G. Jin, “Lighting effects rendering in three-dimensional computer-generated holographic display,” Opt. Commun. 370, 192–197 (2016).
[Crossref]

Opt. Express (7)

Opt. Lett. (1)

Proc. IEEE (1)

L. Onural, F. Yaras, and H. Kang, “Digital holographic three-dimensional video displays,” Proc. IEEE 99, 576–589 (2011).
[Crossref]

Proc. SPIE (2)

A. Symeonidou, D. Blinder, A. Ahar, C. Schretter, A. Munteanu, and P. Schelkens, “Speckle noise reduction for computer generated holograms of objects with diffuse surfaces,” Proc. SPIE 9896, 98960F (2016).

A. Symeonidou, D. Blinder, B. Ceulemans, A. Munteanu, and P. Schelkens, “Three-dimensional rendering of computer-generated holograms acquired from point-clouds on light field displays,” Proc. SPIE 9971, 99710S (2016).
[Crossref]

Sci. Rep. (1)

H. Sasaki, K. Yamamoto, Y. Ichihashi, and T. Senoh, “Image size scalable full-parallax coloured three-dimensional video by electronic holography,” Sci. Rep. 4, 2045–2322 (2014).

Other (9)

J. W. Goodman, Introduction to Fourier Optics (Roberts and Company Publishers, 2004), 3rd ed.

“CGH dataset: Interfere-III, http://www.erc-interfere.eu/downloads.html ”.

D. DiLaura and I. E. S. of North America, The Lighting Handbook: Reference and Application, IESNA LIGHTING HANDBOOK (Illuminating Engineering Society of North America, 2011).

T. McReynolds and D. Blythe, Advanced Graphics Programming Using OpenGL (The Morgan Kaufmann Series in Computer Graphics) (Morgan Kaufmann Publishers Inc., USA, 2005).

E. E. Catmull, “A subdivision algorithm for computer display of curved surfaces,” Ph. D. Dissertation, Department of Computer Science, University of Utah (1974).

A. Gilles, P. Gioia, R. Cozot, and L. Morin, “Computer generated hologram from multiview-plus-depth data considering specular reflections,” in “2016 IEEE International Conf. Multimedia Expo Workshops (ICMEW)” (2016), pp. 1–6.

B. Javidi and F. Okano, Three-Dimensional Television, Video, and Display Technologies (SpringerBerlin Heidelberg, 2002).

S. A. Benton and V. M. Bove, Holographic Imaging (Wiley, 2008).
[Crossref]

T. Akenine-Möller, E. Haines, and N. Hoffman, Real-Time Rendering (A. K. Peters, Ltd., 2008), 3rd ed.

Supplementary Material (1)

NameDescription
» Visualization 1       Numerical reconstructions of the CGH 'Biplane16K' with an aperture moving at a snake-like manner and depth of focus changing from front to back of the object.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The Phong reflection model for light reflection on an object surface.
Fig. 2
Fig. 2 The proposed colour CGH technique with multiple wavefront recording planes (WRPs) for point cloud datasets
Fig. 3
Fig. 3 Structure and dimensionality of the proposed LUTs for diffuse and specular reflections. For diffuse light, n entries are computed for each depth level d per wavelength, while for the specular reflection 1 entry per depth level is created for each angle of reflection per wavelength.
Fig. 4
Fig. 4 Demonstration of the effect of the terms of the Phong shading model. Numerical reconstructions of 4 CGHs computed with: (a) ambient (b) diffuse (c) specular component and (d) the combination of the three components
Fig. 5
Fig. 5 Numerical reconstruction of the CGHs “Sphere1” when illuminated with different light sources (a) white light from south (b) green light from southwest (c) yellow light from southeast (d) white light from south and blue light from northwest
Fig. 6
Fig. 6 Numerical reconstruction of the CGH “Sphere3” depicting three spheres made of different materials: polished gold, pearl and silver, respectively.
Fig. 7
Fig. 7 The 3D scene rendered with (a) 3D graphics, and the numerical reconstructions of the holograms computed with: (b) amplitude with uniform phase (UP-MWRP), (c) amplitude with random phase (RP-MWRP), and (d) the Phong model (PH-MWRP with A=9) for 20 WRPs.
Fig. 8
Fig. 8 Scene texture and depth map for CGH “Biplane”.
Fig. 9
Fig. 9 Numerical reconstruction of the CGH “Biplane” from 9 different views: central view and from ± 18 degrees, showing occlusion effect and full parallax. The white square shows the position of the aperture of the camera ( Visualization 1).

Tables (5)

Tables Icon

Algorithm 1 Proposed CGH method

Tables Icon

Table 1 Optical settings for the simulation parameters of “Sphere1” and “Biplane16K”

Tables Icon

Table 2 Colour and direction of the light sources for the CGHs “Sphere1”

Tables Icon

Table 3 Material reflectance parameters of the spheres for CGHs “Sphere1” and “Biplane16K”

Tables Icon

Table 4 Computation times for the LUT generation and CGH calculation for “Venus” with different CGH methods and parameters (in seconds), and implementation language

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

BRDF λ ( θ i , ϕ i , θ o , ϕ o , u , v ) ,
I = I a k a + l = 1 L I d k d ( L ^ l N ^ ) + I s k s ( R ^ l V ^ ) m ,
g ( x , y ) = exp ( x 2 + y 2 2 σ 2 ) ,
sin θ = λ f = λ 2 p ,
W j = | z j | tan ( sin 1 λ 2 p ) = | z j | λ 4 p 2 λ 2 ,
E ^ ( f x , f y ) = ( λ f x , λ f y , 1 λ 2 ( f x 2 + f y 2 ) )
a ( f x , f y ) = ( E ^ ( f x , f y ) N ^ ) m
W ( x , y ) i λ = I i ( D ( x , y ) + S ( x , y ) ) exp ( 2 π j Δ z i λ ) ,
D ( x , y ) i λ = ( k a i λ I a l λ + k d i λ L l = 1 L ρ d l I d l λ ) LUT q D , λ ( x , y ) ,
S ( x , y ) i λ = k s i λ L l = 1 L ρ s l I s l λ LUT θ ( l ) , ϕ ( l ) , q S , λ ( x , y ) ,
u 2 ( x 2 , y 2 , z ) = 1 [ [ u 1 ( x 1 , y 1 , 0 ) ] exp ( 2 π i z 1 / λ 2 ω x 2 ω y 2 ) ] ,
I ( x , y ) = I ( x , y ) I min I max I min
z min = Np 2 λ ,

Metrics