Abstract

In this manuscript, we present a detailed investigation of the impact of dispersion on the spectral resolution achievable by the application of spectral focusing in coherent Raman imaging. Our results reveal the detrimental effect of third order dispersion that limits the resolution for group delay dispersion of 100 000 fs2 and more. Experimental examples for the exact determination of the described effects are given as well as a condensed presentation of the known equations. We introduce useful approximations to the latter, which serve to facilitate the straightforward integration of spectral focusing into any multimodal microscope.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Single-fiber-laser-based wavelength tunable excitation for coherent Raman spectroscopy

Jue Su, Ruxin Xie, Carey K. Johnson, and Rongqing Hui
J. Opt. Soc. Am. B 30(6) 1671-1682 (2013)

Interplay of pulse bandwidth and spectral resolution in spectral-focusing CARS microscopy

R. A. Cole and A. D. Slepkov
J. Opt. Soc. Am. B 35(4) 842-850 (2018)

Exploring the potential of tailored spectral focusing

L. Brückner, T. Buckup, and M. Motzkus
J. Opt. Soc. Am. B 33(7) 1482-1491 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Ch. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
    [Crossref]
  2. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
    [Crossref] [PubMed]
  3. D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, “Narrow-band coherent anti-stokes Raman signals from broad-band pulses,” Phys. Rev. Lett. 88(6), 063004 (2002).
    [Crossref] [PubMed]
  4. K. P. Knutsen, J. C. Johnson, A. E. Miller, P. B. Petersen, and R. J. Saykally, “High spectral resolution multiplex CARS spectroscopy using chirped pulses,” Chem. Phys. Lett. 387(4–6), 436–441 (2004).
    [Crossref]
  5. Th. Hellerer, A. M. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).
    [Crossref]
  6. A. D. Slepkov, A. Ridsdale, A. F. Pegoraro, D. J. Moffatt, and A. Stolow, “Multimodal CARS microscopy of structured carbohydrate biopolymers,” Biomed. Opt. Express 1(5), 1347–1357 (2010).
    [Crossref] [PubMed]
  7. A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophotonics 7(1-2), 49–58 (2014).
    [Crossref] [PubMed]
  8. J. Rehbinder, L. Brückner, A. Wipfler, T. Buckup, and M. Motzkus, “Multimodal nonlinear optical microscopy with shaped 10 fs pulses,” Opt. Express 22(23), 28790–28797 (2014).
    [Crossref] [PubMed]
  9. I. Rocha-Mendoza, W. Langbein, and P. Borri, “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett. 93(20), 201103 (2008).
    [Crossref]
  10. W. Langbein, I. Rocha-Mendoza, and P. Borri, “Single source coherent anti-Stokes Raman microspectroscopy using spectral focusing,” Appl. Phys. Lett. 95(8), 081109 (2009).
    [Crossref]
  11. A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17(4), 2984–2996 (2009).
    [Crossref] [PubMed]
  12. B. C. Chen, J. Sung, X. Wu, and S. H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 16(2), 021112 (2011).
    [Crossref] [PubMed]
  13. J. G. Porquez, R. A. Cole, J. T. Tabarangao, and A. D. Slepkov, “Spectrally-broad coherent anti-Stokes Raman scattering hyper-microscopy utilizing a Stokes supercontinuum pumped at 800 nm,” Biomed. Opt. Express 7(10), 4335–4345 (2016).
    [Crossref] [PubMed]
  14. E. R. Andresen, P. Berto, and H. Rigneault, “Stimulated Raman scattering microscopy by spectral focusing and fiber-generated soliton as Stokes pulse,” Opt. Lett. 36(13), 2387–2389 (2011).
    [Crossref] [PubMed]
  15. H. T. Beier, G. D. Noojin, and B. A. Rockwell, “Stimulated Raman scattering using a single femtosecond oscillator with flexibility for imaging and spectral applications,” Opt. Express 19(20), 18885–18892 (2011).
    [Crossref] [PubMed]
  16. D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
    [Crossref] [PubMed]
  17. Ch. Liao, K. Huang, W. Hong, A. J. Chen, C. Karanja, P. Wang, G. Eakins, and J.-X. Cheng, “Stimulated Raman spectroscopic imaging by microsecond delay-line tuning,” Optica 3(12), 1377–1380 (2016).
    [Crossref]
  18. M. S. Alshaykh, C. S. Liao, O. E. Sandoval, G. Gitzinger, N. Forget, D. E. Leaird, J.-X. Cheng, and A. M. Weiner, “High-speed stimulated hyperspectral Raman imaging using rapid acousto-optic delay lines,” Opt. Lett. 42(8), 1548–1551 (2017).
    [Crossref] [PubMed]
  19. L. Brückner, T. Buckup, and M. Motzkus, “Enhancement of coherent anti-Stokes Raman signal via tailored probing in spectral focusing,” Opt. Lett. 40(22), 5204–5207 (2015).
    [Crossref] [PubMed]
  20. L. Brückner, T. Buckup, and M. Motzkus, “Exploring the Potential of Tailored Spectral Focusing,” J. Opt. Soc. Am. B 33(7), 1482–1491 (2016).
    [Crossref]
  21. J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Acad. New York, 1995).
  22. R. L. Fork, C. H. Cruz, P. C. Becker, and C. V. Shank, “Compression of optical pulses to six femtoseconds by using cubic phase compensation,” Opt. Lett. 12(7), 483–485 (1987).
    [Crossref] [PubMed]
  23. C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
    [Crossref] [PubMed]
  24. P. Tournois, “New diffraction grating pair with very linear dispersion for laser pulse compression,” Electron. Lett. 29(16), 1414–1415 (1993).
    [Crossref]
  25. J. Zheng and H. Zacharias, “Design considerations for a compact grism stretcher for non-collinear optical parametric chirped-pulse amplification,” Appl. Phys. B 96(2–3), 445–452 (2009).
    [Crossref]
  26. V. Chauhan, P. Bowlan, J. Cohen, and R. Trebino, “Single-diffraction-grating and grism pulse compressors,” J. Opt. Soc. Am. B 27(4), 619–624 (2010).
    [Crossref]

2017 (1)

2016 (3)

2015 (2)

L. Brückner, T. Buckup, and M. Motzkus, “Enhancement of coherent anti-Stokes Raman signal via tailored probing in spectral focusing,” Opt. Lett. 40(22), 5204–5207 (2015).
[Crossref] [PubMed]

Ch. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
[Crossref]

2014 (2)

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophotonics 7(1-2), 49–58 (2014).
[Crossref] [PubMed]

J. Rehbinder, L. Brückner, A. Wipfler, T. Buckup, and M. Motzkus, “Multimodal nonlinear optical microscopy with shaped 10 fs pulses,” Opt. Express 22(23), 28790–28797 (2014).
[Crossref] [PubMed]

2013 (1)

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

2012 (1)

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (2)

2009 (3)

J. Zheng and H. Zacharias, “Design considerations for a compact grism stretcher for non-collinear optical parametric chirped-pulse amplification,” Appl. Phys. B 96(2–3), 445–452 (2009).
[Crossref]

W. Langbein, I. Rocha-Mendoza, and P. Borri, “Single source coherent anti-Stokes Raman microspectroscopy using spectral focusing,” Appl. Phys. Lett. 95(8), 081109 (2009).
[Crossref]

A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17(4), 2984–2996 (2009).
[Crossref] [PubMed]

2008 (1)

I. Rocha-Mendoza, W. Langbein, and P. Borri, “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett. 93(20), 201103 (2008).
[Crossref]

2004 (2)

K. P. Knutsen, J. C. Johnson, A. E. Miller, P. B. Petersen, and R. J. Saykally, “High spectral resolution multiplex CARS spectroscopy using chirped pulses,” Chem. Phys. Lett. 387(4–6), 436–441 (2004).
[Crossref]

Th. Hellerer, A. M. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).
[Crossref]

2002 (2)

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[Crossref] [PubMed]

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, “Narrow-band coherent anti-stokes Raman signals from broad-band pulses,” Phys. Rev. Lett. 88(6), 063004 (2002).
[Crossref] [PubMed]

1993 (1)

P. Tournois, “New diffraction grating pair with very linear dispersion for laser pulse compression,” Electron. Lett. 29(16), 1414–1415 (1993).
[Crossref]

1987 (1)

Alshaykh, M. S.

Andresen, E. R.

Becker, P. C.

Beier, H. T.

Berto, P.

Borri, P.

W. Langbein, I. Rocha-Mendoza, and P. Borri, “Single source coherent anti-Stokes Raman microspectroscopy using spectral focusing,” Appl. Phys. Lett. 95(8), 081109 (2009).
[Crossref]

I. Rocha-Mendoza, W. Langbein, and P. Borri, “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett. 93(20), 201103 (2008).
[Crossref]

Bowlan, P.

Brückner, L.

Buckup, T.

Camp, Ch. H.

Ch. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
[Crossref]

Chauhan, V.

Chen, A. J.

Chen, B. C.

B. C. Chen, J. Sung, X. Wu, and S. H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 16(2), 021112 (2011).
[Crossref] [PubMed]

Cheng, J.-X.

Cicerone, M. T.

Ch. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
[Crossref]

Cohen, J.

Cole, R. A.

Cruz, C. H.

Dudovich, N.

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, “Narrow-band coherent anti-stokes Raman signals from broad-band pulses,” Phys. Rev. Lett. 88(6), 063004 (2002).
[Crossref] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[Crossref] [PubMed]

Eakins, G.

Eliceiri, K. W.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[Crossref] [PubMed]

Enejder, A. M.

Th. Hellerer, A. M. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).
[Crossref]

Forget, N.

Fork, R. L.

Freudiger, C.

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

Fu, D.

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

Gitzinger, G.

Hellerer, Th.

Th. Hellerer, A. M. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).
[Crossref]

Holtom, G.

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

Hong, W.

Huang, K.

Jia, Y.

Johnson, J. C.

K. P. Knutsen, J. C. Johnson, A. E. Miller, P. B. Petersen, and R. J. Saykally, “High spectral resolution multiplex CARS spectroscopy using chirped pulses,” Chem. Phys. Lett. 387(4–6), 436–441 (2004).
[Crossref]

Karanja, C.

Knutsen, K. P.

K. P. Knutsen, J. C. Johnson, A. E. Miller, P. B. Petersen, and R. J. Saykally, “High spectral resolution multiplex CARS spectroscopy using chirped pulses,” Chem. Phys. Lett. 387(4–6), 436–441 (2004).
[Crossref]

Langbein, W.

W. Langbein, I. Rocha-Mendoza, and P. Borri, “Single source coherent anti-Stokes Raman microspectroscopy using spectral focusing,” Appl. Phys. Lett. 95(8), 081109 (2009).
[Crossref]

I. Rocha-Mendoza, W. Langbein, and P. Borri, “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett. 93(20), 201103 (2008).
[Crossref]

Leaird, D. E.

Liao, C. S.

Liao, Ch.

Lim, S. H.

B. C. Chen, J. Sung, X. Wu, and S. H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 16(2), 021112 (2011).
[Crossref] [PubMed]

Miller, A. E.

K. P. Knutsen, J. C. Johnson, A. E. Miller, P. B. Petersen, and R. J. Saykally, “High spectral resolution multiplex CARS spectroscopy using chirped pulses,” Chem. Phys. Lett. 387(4–6), 436–441 (2004).
[Crossref]

Moffatt, D. J.

Motzkus, M.

Noojin, G. D.

Oron, D.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[Crossref] [PubMed]

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, “Narrow-band coherent anti-stokes Raman signals from broad-band pulses,” Phys. Rev. Lett. 88(6), 063004 (2002).
[Crossref] [PubMed]

Pegoraro, A. F.

Petersen, P. B.

K. P. Knutsen, J. C. Johnson, A. E. Miller, P. B. Petersen, and R. J. Saykally, “High spectral resolution multiplex CARS spectroscopy using chirped pulses,” Chem. Phys. Lett. 387(4–6), 436–441 (2004).
[Crossref]

Pezacki, J. P.

Porquez, J. G.

Rasband, W. S.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[Crossref] [PubMed]

Rehbinder, J.

Ridsdale, A.

Rigneault, H.

Rocha-Mendoza, I.

W. Langbein, I. Rocha-Mendoza, and P. Borri, “Single source coherent anti-Stokes Raman microspectroscopy using spectral focusing,” Appl. Phys. Lett. 95(8), 081109 (2009).
[Crossref]

I. Rocha-Mendoza, W. Langbein, and P. Borri, “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett. 93(20), 201103 (2008).
[Crossref]

Rockwell, B. A.

Sandoval, O. E.

Saykally, R. J.

K. P. Knutsen, J. C. Johnson, A. E. Miller, P. B. Petersen, and R. J. Saykally, “High spectral resolution multiplex CARS spectroscopy using chirped pulses,” Chem. Phys. Lett. 387(4–6), 436–441 (2004).
[Crossref]

Schneider, C. A.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[Crossref] [PubMed]

Shank, C. V.

Silberberg, Y.

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, “Narrow-band coherent anti-stokes Raman signals from broad-band pulses,” Phys. Rev. Lett. 88(6), 063004 (2002).
[Crossref] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[Crossref] [PubMed]

Slepkov, A. D.

Stolow, A.

Sung, J.

B. C. Chen, J. Sung, X. Wu, and S. H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 16(2), 021112 (2011).
[Crossref] [PubMed]

Tabarangao, J. T.

Tournois, P.

P. Tournois, “New diffraction grating pair with very linear dispersion for laser pulse compression,” Electron. Lett. 29(16), 1414–1415 (1993).
[Crossref]

Trebino, R.

Wang, P.

Weiner, A. M.

Wipfler, A.

Wu, X.

B. C. Chen, J. Sung, X. Wu, and S. H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 16(2), 021112 (2011).
[Crossref] [PubMed]

Xie, X. S.

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

Yelin, D.

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, “Narrow-band coherent anti-stokes Raman signals from broad-band pulses,” Phys. Rev. Lett. 88(6), 063004 (2002).
[Crossref] [PubMed]

Zacharias, H.

J. Zheng and H. Zacharias, “Design considerations for a compact grism stretcher for non-collinear optical parametric chirped-pulse amplification,” Appl. Phys. B 96(2–3), 445–452 (2009).
[Crossref]

Zhang, X.

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

Zheng, J.

J. Zheng and H. Zacharias, “Design considerations for a compact grism stretcher for non-collinear optical parametric chirped-pulse amplification,” Appl. Phys. B 96(2–3), 445–452 (2009).
[Crossref]

Zumbusch, A.

Th. Hellerer, A. M. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).
[Crossref]

Appl. Phys. B (1)

J. Zheng and H. Zacharias, “Design considerations for a compact grism stretcher for non-collinear optical parametric chirped-pulse amplification,” Appl. Phys. B 96(2–3), 445–452 (2009).
[Crossref]

Appl. Phys. Lett. (3)

Th. Hellerer, A. M. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).
[Crossref]

I. Rocha-Mendoza, W. Langbein, and P. Borri, “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett. 93(20), 201103 (2008).
[Crossref]

W. Langbein, I. Rocha-Mendoza, and P. Borri, “Single source coherent anti-Stokes Raman microspectroscopy using spectral focusing,” Appl. Phys. Lett. 95(8), 081109 (2009).
[Crossref]

Biomed. Opt. Express (2)

Chem. Phys. Lett. (1)

K. P. Knutsen, J. C. Johnson, A. E. Miller, P. B. Petersen, and R. J. Saykally, “High spectral resolution multiplex CARS spectroscopy using chirped pulses,” Chem. Phys. Lett. 387(4–6), 436–441 (2004).
[Crossref]

Electron. Lett. (1)

P. Tournois, “New diffraction grating pair with very linear dispersion for laser pulse compression,” Electron. Lett. 29(16), 1414–1415 (1993).
[Crossref]

J. Biomed. Opt. (1)

B. C. Chen, J. Sung, X. Wu, and S. H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 16(2), 021112 (2011).
[Crossref] [PubMed]

J. Biophotonics (1)

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophotonics 7(1-2), 49–58 (2014).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. B (1)

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

Nat. Methods (1)

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

Ch. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
[Crossref]

Nature (1)

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (4)

Optica (1)

Phys. Rev. Lett. (1)

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, “Narrow-band coherent anti-stokes Raman signals from broad-band pulses,” Phys. Rev. Lett. 88(6), 063004 (2002).
[Crossref] [PubMed]

Other (1)

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Acad. New York, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Frequency-time distribution, the so-called Wigner distribution, (a) for a Fourier-transform limited laser pulse and (b) the same laser pulse that is linearly chirped.
Fig. 2
Fig. 2 Coherent Raman excitation with (a) FTL laser pulses, (b) laser pulses with the same chirp, (c) laser pulses with different chirp, (d) frequency scan with time delay and (e) frequency scan with time delay in presence of TOD.
Fig. 3
Fig. 3 Setup (M, M1: mirror, D: dichroic mirror, R: retroreflector, G: optical grating, CM: concave mirror, L: lens, Ob: objective, F: filter, BBO: SHG crystal). The femtosecond laser pulses were chirped by a prism stretcher. The retroreflector induced a height offset. After the prism stretcher, the beam was reflected by the mirror M1 and D1 onto the optical grating. Thereafter, the dispersion of 3rd and higher orders was compensated using the SLM. The green line indicates the pump laser, the red line the Stokes laser. The SLM also allowed additional desired phase modulation. A FROG setup was used to analyze the modulated pulses. Subsequently, the laser pulses were coupled into a multiphoton microscope (MPM).
Fig. 4
Fig. 4 (a) SFG microscopy image of the sample iron-(II)-iodate, (b) CARS microscopy image of the sample 2-chlorobenzamide and (c) Raman spectrum of the latter.
Fig. 5
Fig. 5 (a) CARS images of 2-chlorobenzamide taken at different time delays between the laser pulses. The intensity changes reflect the spectral scanning of the vibrational resonance. (b) Extracted normalized CARS spectra with varying amounts of TOD but the same amount of GDD = 69000 fs2 leading to a chirped pulse width of about 2 ps. TOD is completely compensated (red); TOD equals 5 ⋅ 105 fs3 (brown); TOD equals 1.5 ⋅ 106 fs3 (green).
Fig. 6
Fig. 6 (a) SFG images of iron-(II)-iodate at different time delays between the two laser pulses. (b) Corresponding normalized cross-correlations of the laser pulses: The blue curve shows case (A) of FTL laser pulses. The black and red curves show cases (B) and (C) where both laser pulses are chirped to about 1.3 ps and 2 ps, respectively.
Fig. 7
Fig. 7 CARS cross-correlations of 2-chlorobenzamide extracted from the intensity microscopy image stacks (not shown) for different laser pulse widths. Cases A (blue), B (black) and C (red) demonstrate the improvement in spectral resolution. a) plotted against time delay b) plotted against Raman shift. The inset shows the Raman spectrum of the sample.
Fig. 8
Fig. 8 FROG traces and autocorrelations of (a) the chirped Stokes pulse (λ = 1034 nm, τ = 2.0 ps) and (b) of the recompressed pump pulse (λ = 784 nm, τ = 90 fs).
Fig. 9
Fig. 9 GDD optimization of the microscope optics for both wavelengths 1034 nm and 784 nm at the location of the sample. (a) The pulse of the wavelength 784 nm is compensated while the GDD of the other pulse is varied. (b) GDD variation at 784 nm while the phase of the other pulse is compensated.
Fig. 10
Fig. 10 SFG cross-correlations for compensated (blue) and uncompensated laser pulses (red).

Tables (2)

Tables Icon

Table 1 TOD of different chirping devices for applying GDD = 80000 fs2 to a laser pulse at λ = 800 nm. Calculations were carried out according to [22] but with errors corrected.

Tables Icon

Table 2 Overview of experimental parameters and results and comparison with theoretical values.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

φ(ω) = φ( ω 0 )+ φ ω | ω 0 ( ω ω 0 )+ 1 2! 2 φ ω 2 | ω 0 (ω ω 0 ) 2 + 1 3! 3 φ ω 3 | ω 0 (ω ω 0 ) 3 + ...
φ( t ) t =ω(t) =  ω 0 +2βt
β= 2GDD τ 0 4 +4GD D 2 1 2GDD  for τ τ 0
τ= τ 0 1+ [ 4ln2GDD τ 0 2 ] 2 2.77 | GDD | τ 0  for τ τ 0
Δ ν ˜ = 2ln2 πc 2( τ p 2 + τ s 2 ) =20.8  ps cm 1 τ p 2 + τ s 2
d v ˜ = dt 2πcGDD =5.3 ps cm 1 dt GDD
Δt= 2( τ 0p 2 + τ 0s 2 )
Δ ν ˜ Δβ = | Δβ | πc τ p 2 + τ s 2 10.4 ps cm 1 ΔGDD τ m GD D m  for  ΔGDD GD D m 1 and  Δ τ 0 τ m 1

Metrics