Abstract

The entrainment phenomenon, by which an oscillator adjusts its natural rhythm to an external periodic signal, has been observed in many natural systems. Recently, attention has focused on which are the optimal conditions for achieving entrainment. Here we use a semiconductor laser with optical feedback, operating in the low-frequency fluctuations (LFFs) regime, as a testbed for a controlled entrainment experiment. In the LFF regime the laser intensity displays abrupt spikes, which can be entrained to a weak periodic signal that directly modulates the laser pump current. We compare the performance of three modulation waveforms for producing 1:1 locking (one spike is emitted in each modulation cycle), as well as higher order locking regimes. We characterize the parameter regions where high-quality locking occurs, and those where the laser emits spikes which are not entrained to the external signal. The role of the modulation amplitude and frequency, and the role of the dc value of the laser pump current (that controls the natural spike frequency) in the entrainment quality are discussed.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Effects of periodic forcing on the temporally correlated spikes of a semiconductor laser with feedback

Taciano Sorrentino, C. Quintero-Quiroz, Andrés Aragoneses, M. C. Torrent, and Cristina Masoller
Opt. Express 23(5) 5571-5581 (2015)

Experimental and numerical study of the symbolic dynamics of a modulated external-cavity semiconductor laser

Andrés Aragoneses, Taciano Sorrentino, Sandro Perrone, Daniel J. Gauthier, M. C. Torrent, and Cristina Masoller
Opt. Express 22(4) 4705-4713 (2014)

Power dropout control by optical phase modulation in a chaotic semiconductor laser

Catălin M. Ticoş, Mircea Bulinski, Relu Andrei, and Mihai L. Pascu
J. Opt. Soc. Am. B 23(12) 2486-2493 (2006)

References

  • View by:
  • |
  • |
  • |

  1. A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A universal concept in nonlinear sciences (Cambridge University Press, 2001).
    [Crossref]
  2. T. Harada, H.A. Tanaka, M.J. Hankins, and I.Z. Kiss, “Optimal waveform for the entrainment of a weakly forced oscillator,” Phys. Rev. Lett. 105, 088301 (2010).
    [Crossref] [PubMed]
  3. A.E. Granada and H. Herzel, “How to achieve fast entrainment? The timescale to synchronization,” PLoS ONE 4(9): e7057 (2009).
    [Crossref] [PubMed]
  4. A. Zlotnik, Y. Chen, I.Z. Kiss, H.A. Tanaka, and J.S. Li, “Optimal waveform for fast entrainment of weakly forced nonlinear oscillators,” Phys. Rev. Lett. 111, 024102 (2013).
    [Crossref] [PubMed]
  5. A. Pikovsky, “Maximizing coherence of oscillations by external locking,” Phys. Rev. Lett. 115, 070602 (2015).
    [Crossref] [PubMed]
  6. H.A. Tanaka, “Optimal entrainment with smooth, pulse, and square signals in weakly forced nonlinear oscillator,” Physica D 288, 1–22 (2014).
    [Crossref]
  7. J. Mork, B. Tromborg, and J. Mark, “Chaos in semiconductor lasers with optical feedback – Theory and experiment,” IEEE J. Quantum Electron. 28, 93–108 (1992).
    [Crossref]
  8. J. Ohtsubo, Semiconductor Lasers, Stability, Instability and Chaos (Springer, 3th edition, 2013)
  9. M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Photonics 9, 151 (2015).
    [Crossref]
  10. L. Jumpertz, K. Schires, M. Carras, M. Sciamanna, and F. Grillot, “Chaotic light at mid-infrared wavelength,” Light-Science & Appl. 5, e16088 (2016).
    [Crossref]
  11. J. X. Dong, J. P. Zhuang, and S.-C. Chan, “Tunable switching between stable and periodic states in a semiconductor laser with feedback,” Opt. Lett. 42, 4291–4294 (2017).
    [Crossref] [PubMed]
  12. T. Sano, “Antimode dynamics and chaotic itinerancy in the coherence collapse of semiconductor lasers with optical feedback,” Phys. Rev. A 50, 2719–2726 (1994).
    [Crossref] [PubMed]
  13. A. Hohl, H.J.C. Vanderlinden, and R. Roy, “Determinism and stochasticity of power-dropout events in semiconductor-lasers with optical feedback,” Opt. Lett. 20, 2396–2398 (1995).
    [Crossref]
  14. I. Fischer, G.H.M. van Tartwijk, A.M. Levine, W. Elsasser, E. Gobel, and D. Lenstra, “Fast pulsing and chaotic itinerancy with a drift in the coherence collapse of semiconductor lasers,” Phys. Rev. Lett. 76, 220 (1996).
    [Crossref] [PubMed]
  15. D.W. Sukow, J.R. Gardner, and D.J. Gauthier, “Statistics of power-dropout events in semiconductor lasers with time-delayed optical feedback,” Phys. Rev. A 56, R3370–R3373 (1997).
    [Crossref]
  16. T. Heil, I. Fischer, W. Elsasser, J. Mulet, and C.R. Mirasso, “Statistical properties of LFFs during single-mode operation in distributed-feedback lasers: experiments and modeling,” Opt. Lett. 24, 1275–1277 (1999).
    [Crossref]
  17. R.L. Davidchack, Y.C. Lai, A. Gavrielides, and V. Kovanis, “Dynamical origin of low frequency fluctuations in external cavity semiconductor lasers,” Phys. Lett. A 267, 350–356 (2000).
    [Crossref]
  18. G. Giacomelli, M. Giudici, S. Balle, and J. R. Treddice, “Experimental evidence of coherence resonance in an optical system,” Phys. Rev. Lett. 84, 3298–3301 (2000).
    [Crossref] [PubMed]
  19. J. F. M. Avila, H. L. D. S. Cavalcante, and J. R. R. Leite, “Experimental deterministic coherence resonance,” Phys. Rev. Lett. 93, 144101 (2004).
    [Crossref]
  20. Y. Hong and K.A. Shore, “Statistical measures of the power dropout ratio in semiconductor lasers subject to optical feedback,” Opt. Lett. 30, 3332–3334 (2005).
    [Crossref]
  21. J. Tiana-Alsina, M.C. Torrent, O.A. Rosso, C. Masoller, and J. García-Ojalvo, “Quantifying the statistical complexity of low-frequency fluctuations in semiconductor lasers with optical feedback,” Phys. Rev. A 82, 013819 (2010).
    [Crossref]
  22. T. Schwalger, J. Tiana-Alsina, M.C. Torrent, J. García-Ojalvo, and B. Lindner, “Interspike-interval correlations induced by two-state switching in an excitable system,” EPL 99, 10004 (2012).
    [Crossref]
  23. D. Brunner, M. C. Soriano, X. Porte, and I. Fischer, “Experimental phase space tomography of semiconductor laser dynamics,” Phys. Rev. Lett 115, 053901 (2015).
    [Crossref]
  24. F. Baladi, M.W. Lee, J-R Burie, M.A. Tettiati, A. Boudrioua, and A.P.A. Fischer, “High-resolution LFF map of a multimode laser diode subject to filtered optical feedback via a fiber Bragg grating”, Opt. Lett. 41, 2950 (2016).
    [Crossref] [PubMed]
  25. D. Choi, M.J. Wishon, J. Barnoud, C.Y. Chang, Y. Bouazizi, A. Locquet, and D. S. Citrin, “Low-frequency fluctuations in an external-cavity laser leading to extreme events,” Phys. Rev. E 93, 042216 (2016).
    [Crossref] [PubMed]
  26. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980).
    [Crossref]
  27. A. Torcini, S. Barland, G. Giacomelli, and F. Marin, “Low-frequency fluctuations in vertical cavity lasers: Experiments versus Lang-Kobayashi dynamics,” Phys. Rev. A 74, 063801 (2006).
    [Crossref]
  28. J. Zamora-Munt, C. Masoller, and J. García-Ojalvo, “Transient low-frequency fluctuations in semiconductor lasers with optical feedback,” Phys. Rev. A 81, 033820 (2010).
    [Crossref]
  29. K. Hicke, X. Porte, and I. Fischer, “Characterizing the deterministic nature of individual power dropouts in semiconductor lasers subject to delayed feedback,” Phys. Rev. E 88, 052904 (2013).
    [Crossref]
  30. A. Aragoneses, N. Rubido, J. Tiana-Alsina, M.C. Torrent, and C. Masoller, “Distinguishing signatures of determinism and stochasticity in spiking complex systems,” Sci. Rep. 3, 1778 (2013).
    [Crossref]
  31. D.W. Sukow and D.J. Gauthier, “Entraining power-dropout events in an external-cavity semiconductor laser using weak modulation of the injection current,” IEEE J. Quantum Electron. 36, 175–183 (2000).
    [Crossref]
  32. J.M. Mendez, R. Laje, M. Giudici, J. Aliaga, and G.B. Mindlin, “Dynamics of periodically forced semiconductor laser with optical feedback,” Phys. Rev. E 63, 066218 (2001).
    [Crossref]
  33. J. P. Toomey, D. M. Kane, M. W. Lee, and K. A. Shore, “Nonlinear dynamics of semiconductor lasers with feedback and modulation,” Opt. Express 18, 16955 (2010).
    [Crossref] [PubMed]
  34. D. Baums, W. Elsasser, and E.O. Gobel, “Farey tree and devils staircase of a modulated external-cavity semiconductor laser,” Phys. Rev. Lett. 63, 155–158 (1989).
    [Crossref] [PubMed]
  35. J. Sacher, D. Baums, P. Panknin, W. Elsasser, and E.O. Gobel, “Intensity instabilities of semiconductor-lasers under current modulation, external light injection and delayed feedback,” Phys. Rev. A 45, 1893–1905 (1992).
    [Crossref] [PubMed]
  36. F. Marino, M. Giudici, S. Barland, and S. Balle, “Experimental evidence of stochastic resonance in an excitable optical system,” Phys. Rev. Lett. 88, 040601 (2002).
    [Crossref] [PubMed]
  37. L. Gammaitoni, P. Hanggi, P. Jung, and F. Marchesoni, “Stochastic resonance,” Rev. Mod. Phys. 70, 223–287 (1998).
    [Crossref]
  38. T. Sorrentino, C. Quintero-Quiroz, A. Aragoneses, M. C. Torrent, and C. Masoller, “Effects of periodic forcing on the temporally correlated spikes of a semiconductor laser with feedback,” Opt. Express 23, 5571 (2015).
    [Crossref] [PubMed]
  39. T. Sorrentino, C. Quintero-Quiroz, M.C. Torrent, and C. Masoller, “Analysis of the spike rate and spike correlations in modulated semiconductor lasers with optical feedback,” IEEE J. Sel. Top. Quantum Electron. 21, 1801107 (2015).
    [Crossref]
  40. C. Quintero-Quiroz, J. Tiana-Alsina, J. Romà, M. C. Torrent, and C. Masoller, “Characterizing how complex optical signals emerge from noisy intensity fluctuations,” Sci. Rep. 637510 (2016).
    [Crossref]
  41. M. Panozzo, C. Quintero-Quiroz, J. Tiana-Alsina, M. C. Torrent, and C. Masoller, “Experimental characterization of the transition to coherence collapse in a semiconductor laser with optical feedback,” Chaos 27, 114315 (2017).
    [Crossref] [PubMed]
  42. Video showing how the intensity time series gradually changes as the laser pump current is increased: https://youtu.be/nltBQG_IIWQ .
  43. T. Jin, C. Siyu, and C. Masoller, “Generation of extreme pulses on demand in semiconductor lasers with optical injection,” Opt. Express 25, 031326 (2017).
    [Crossref]

2017 (3)

M. Panozzo, C. Quintero-Quiroz, J. Tiana-Alsina, M. C. Torrent, and C. Masoller, “Experimental characterization of the transition to coherence collapse in a semiconductor laser with optical feedback,” Chaos 27, 114315 (2017).
[Crossref] [PubMed]

T. Jin, C. Siyu, and C. Masoller, “Generation of extreme pulses on demand in semiconductor lasers with optical injection,” Opt. Express 25, 031326 (2017).
[Crossref]

J. X. Dong, J. P. Zhuang, and S.-C. Chan, “Tunable switching between stable and periodic states in a semiconductor laser with feedback,” Opt. Lett. 42, 4291–4294 (2017).
[Crossref] [PubMed]

2016 (4)

F. Baladi, M.W. Lee, J-R Burie, M.A. Tettiati, A. Boudrioua, and A.P.A. Fischer, “High-resolution LFF map of a multimode laser diode subject to filtered optical feedback via a fiber Bragg grating”, Opt. Lett. 41, 2950 (2016).
[Crossref] [PubMed]

C. Quintero-Quiroz, J. Tiana-Alsina, J. Romà, M. C. Torrent, and C. Masoller, “Characterizing how complex optical signals emerge from noisy intensity fluctuations,” Sci. Rep. 637510 (2016).
[Crossref]

L. Jumpertz, K. Schires, M. Carras, M. Sciamanna, and F. Grillot, “Chaotic light at mid-infrared wavelength,” Light-Science & Appl. 5, e16088 (2016).
[Crossref]

D. Choi, M.J. Wishon, J. Barnoud, C.Y. Chang, Y. Bouazizi, A. Locquet, and D. S. Citrin, “Low-frequency fluctuations in an external-cavity laser leading to extreme events,” Phys. Rev. E 93, 042216 (2016).
[Crossref] [PubMed]

2015 (5)

M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Photonics 9, 151 (2015).
[Crossref]

A. Pikovsky, “Maximizing coherence of oscillations by external locking,” Phys. Rev. Lett. 115, 070602 (2015).
[Crossref] [PubMed]

T. Sorrentino, C. Quintero-Quiroz, M.C. Torrent, and C. Masoller, “Analysis of the spike rate and spike correlations in modulated semiconductor lasers with optical feedback,” IEEE J. Sel. Top. Quantum Electron. 21, 1801107 (2015).
[Crossref]

D. Brunner, M. C. Soriano, X. Porte, and I. Fischer, “Experimental phase space tomography of semiconductor laser dynamics,” Phys. Rev. Lett 115, 053901 (2015).
[Crossref]

T. Sorrentino, C. Quintero-Quiroz, A. Aragoneses, M. C. Torrent, and C. Masoller, “Effects of periodic forcing on the temporally correlated spikes of a semiconductor laser with feedback,” Opt. Express 23, 5571 (2015).
[Crossref] [PubMed]

2014 (1)

H.A. Tanaka, “Optimal entrainment with smooth, pulse, and square signals in weakly forced nonlinear oscillator,” Physica D 288, 1–22 (2014).
[Crossref]

2013 (3)

A. Zlotnik, Y. Chen, I.Z. Kiss, H.A. Tanaka, and J.S. Li, “Optimal waveform for fast entrainment of weakly forced nonlinear oscillators,” Phys. Rev. Lett. 111, 024102 (2013).
[Crossref] [PubMed]

K. Hicke, X. Porte, and I. Fischer, “Characterizing the deterministic nature of individual power dropouts in semiconductor lasers subject to delayed feedback,” Phys. Rev. E 88, 052904 (2013).
[Crossref]

A. Aragoneses, N. Rubido, J. Tiana-Alsina, M.C. Torrent, and C. Masoller, “Distinguishing signatures of determinism and stochasticity in spiking complex systems,” Sci. Rep. 3, 1778 (2013).
[Crossref]

2012 (1)

T. Schwalger, J. Tiana-Alsina, M.C. Torrent, J. García-Ojalvo, and B. Lindner, “Interspike-interval correlations induced by two-state switching in an excitable system,” EPL 99, 10004 (2012).
[Crossref]

2010 (4)

J. Tiana-Alsina, M.C. Torrent, O.A. Rosso, C. Masoller, and J. García-Ojalvo, “Quantifying the statistical complexity of low-frequency fluctuations in semiconductor lasers with optical feedback,” Phys. Rev. A 82, 013819 (2010).
[Crossref]

J. Zamora-Munt, C. Masoller, and J. García-Ojalvo, “Transient low-frequency fluctuations in semiconductor lasers with optical feedback,” Phys. Rev. A 81, 033820 (2010).
[Crossref]

T. Harada, H.A. Tanaka, M.J. Hankins, and I.Z. Kiss, “Optimal waveform for the entrainment of a weakly forced oscillator,” Phys. Rev. Lett. 105, 088301 (2010).
[Crossref] [PubMed]

J. P. Toomey, D. M. Kane, M. W. Lee, and K. A. Shore, “Nonlinear dynamics of semiconductor lasers with feedback and modulation,” Opt. Express 18, 16955 (2010).
[Crossref] [PubMed]

2009 (1)

A.E. Granada and H. Herzel, “How to achieve fast entrainment? The timescale to synchronization,” PLoS ONE 4(9): e7057 (2009).
[Crossref] [PubMed]

2006 (1)

A. Torcini, S. Barland, G. Giacomelli, and F. Marin, “Low-frequency fluctuations in vertical cavity lasers: Experiments versus Lang-Kobayashi dynamics,” Phys. Rev. A 74, 063801 (2006).
[Crossref]

2005 (1)

2004 (1)

J. F. M. Avila, H. L. D. S. Cavalcante, and J. R. R. Leite, “Experimental deterministic coherence resonance,” Phys. Rev. Lett. 93, 144101 (2004).
[Crossref]

2002 (1)

F. Marino, M. Giudici, S. Barland, and S. Balle, “Experimental evidence of stochastic resonance in an excitable optical system,” Phys. Rev. Lett. 88, 040601 (2002).
[Crossref] [PubMed]

2001 (1)

J.M. Mendez, R. Laje, M. Giudici, J. Aliaga, and G.B. Mindlin, “Dynamics of periodically forced semiconductor laser with optical feedback,” Phys. Rev. E 63, 066218 (2001).
[Crossref]

2000 (3)

D.W. Sukow and D.J. Gauthier, “Entraining power-dropout events in an external-cavity semiconductor laser using weak modulation of the injection current,” IEEE J. Quantum Electron. 36, 175–183 (2000).
[Crossref]

R.L. Davidchack, Y.C. Lai, A. Gavrielides, and V. Kovanis, “Dynamical origin of low frequency fluctuations in external cavity semiconductor lasers,” Phys. Lett. A 267, 350–356 (2000).
[Crossref]

G. Giacomelli, M. Giudici, S. Balle, and J. R. Treddice, “Experimental evidence of coherence resonance in an optical system,” Phys. Rev. Lett. 84, 3298–3301 (2000).
[Crossref] [PubMed]

1999 (1)

1998 (1)

L. Gammaitoni, P. Hanggi, P. Jung, and F. Marchesoni, “Stochastic resonance,” Rev. Mod. Phys. 70, 223–287 (1998).
[Crossref]

1997 (1)

D.W. Sukow, J.R. Gardner, and D.J. Gauthier, “Statistics of power-dropout events in semiconductor lasers with time-delayed optical feedback,” Phys. Rev. A 56, R3370–R3373 (1997).
[Crossref]

1996 (1)

I. Fischer, G.H.M. van Tartwijk, A.M. Levine, W. Elsasser, E. Gobel, and D. Lenstra, “Fast pulsing and chaotic itinerancy with a drift in the coherence collapse of semiconductor lasers,” Phys. Rev. Lett. 76, 220 (1996).
[Crossref] [PubMed]

1995 (1)

1994 (1)

T. Sano, “Antimode dynamics and chaotic itinerancy in the coherence collapse of semiconductor lasers with optical feedback,” Phys. Rev. A 50, 2719–2726 (1994).
[Crossref] [PubMed]

1992 (2)

J. Mork, B. Tromborg, and J. Mark, “Chaos in semiconductor lasers with optical feedback – Theory and experiment,” IEEE J. Quantum Electron. 28, 93–108 (1992).
[Crossref]

J. Sacher, D. Baums, P. Panknin, W. Elsasser, and E.O. Gobel, “Intensity instabilities of semiconductor-lasers under current modulation, external light injection and delayed feedback,” Phys. Rev. A 45, 1893–1905 (1992).
[Crossref] [PubMed]

1989 (1)

D. Baums, W. Elsasser, and E.O. Gobel, “Farey tree and devils staircase of a modulated external-cavity semiconductor laser,” Phys. Rev. Lett. 63, 155–158 (1989).
[Crossref] [PubMed]

1980 (1)

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980).
[Crossref]

Aliaga, J.

J.M. Mendez, R. Laje, M. Giudici, J. Aliaga, and G.B. Mindlin, “Dynamics of periodically forced semiconductor laser with optical feedback,” Phys. Rev. E 63, 066218 (2001).
[Crossref]

Aragoneses, A.

T. Sorrentino, C. Quintero-Quiroz, A. Aragoneses, M. C. Torrent, and C. Masoller, “Effects of periodic forcing on the temporally correlated spikes of a semiconductor laser with feedback,” Opt. Express 23, 5571 (2015).
[Crossref] [PubMed]

A. Aragoneses, N. Rubido, J. Tiana-Alsina, M.C. Torrent, and C. Masoller, “Distinguishing signatures of determinism and stochasticity in spiking complex systems,” Sci. Rep. 3, 1778 (2013).
[Crossref]

Avila, J. F. M.

J. F. M. Avila, H. L. D. S. Cavalcante, and J. R. R. Leite, “Experimental deterministic coherence resonance,” Phys. Rev. Lett. 93, 144101 (2004).
[Crossref]

Baladi, F.

Balle, S.

F. Marino, M. Giudici, S. Barland, and S. Balle, “Experimental evidence of stochastic resonance in an excitable optical system,” Phys. Rev. Lett. 88, 040601 (2002).
[Crossref] [PubMed]

G. Giacomelli, M. Giudici, S. Balle, and J. R. Treddice, “Experimental evidence of coherence resonance in an optical system,” Phys. Rev. Lett. 84, 3298–3301 (2000).
[Crossref] [PubMed]

Barland, S.

A. Torcini, S. Barland, G. Giacomelli, and F. Marin, “Low-frequency fluctuations in vertical cavity lasers: Experiments versus Lang-Kobayashi dynamics,” Phys. Rev. A 74, 063801 (2006).
[Crossref]

F. Marino, M. Giudici, S. Barland, and S. Balle, “Experimental evidence of stochastic resonance in an excitable optical system,” Phys. Rev. Lett. 88, 040601 (2002).
[Crossref] [PubMed]

Barnoud, J.

D. Choi, M.J. Wishon, J. Barnoud, C.Y. Chang, Y. Bouazizi, A. Locquet, and D. S. Citrin, “Low-frequency fluctuations in an external-cavity laser leading to extreme events,” Phys. Rev. E 93, 042216 (2016).
[Crossref] [PubMed]

Baums, D.

J. Sacher, D. Baums, P. Panknin, W. Elsasser, and E.O. Gobel, “Intensity instabilities of semiconductor-lasers under current modulation, external light injection and delayed feedback,” Phys. Rev. A 45, 1893–1905 (1992).
[Crossref] [PubMed]

D. Baums, W. Elsasser, and E.O. Gobel, “Farey tree and devils staircase of a modulated external-cavity semiconductor laser,” Phys. Rev. Lett. 63, 155–158 (1989).
[Crossref] [PubMed]

Bouazizi, Y.

D. Choi, M.J. Wishon, J. Barnoud, C.Y. Chang, Y. Bouazizi, A. Locquet, and D. S. Citrin, “Low-frequency fluctuations in an external-cavity laser leading to extreme events,” Phys. Rev. E 93, 042216 (2016).
[Crossref] [PubMed]

Boudrioua, A.

Brunner, D.

D. Brunner, M. C. Soriano, X. Porte, and I. Fischer, “Experimental phase space tomography of semiconductor laser dynamics,” Phys. Rev. Lett 115, 053901 (2015).
[Crossref]

Burie, J-R

Carras, M.

L. Jumpertz, K. Schires, M. Carras, M. Sciamanna, and F. Grillot, “Chaotic light at mid-infrared wavelength,” Light-Science & Appl. 5, e16088 (2016).
[Crossref]

Cavalcante, H. L. D. S.

J. F. M. Avila, H. L. D. S. Cavalcante, and J. R. R. Leite, “Experimental deterministic coherence resonance,” Phys. Rev. Lett. 93, 144101 (2004).
[Crossref]

Chan, S.-C.

Chang, C.Y.

D. Choi, M.J. Wishon, J. Barnoud, C.Y. Chang, Y. Bouazizi, A. Locquet, and D. S. Citrin, “Low-frequency fluctuations in an external-cavity laser leading to extreme events,” Phys. Rev. E 93, 042216 (2016).
[Crossref] [PubMed]

Chen, Y.

A. Zlotnik, Y. Chen, I.Z. Kiss, H.A. Tanaka, and J.S. Li, “Optimal waveform for fast entrainment of weakly forced nonlinear oscillators,” Phys. Rev. Lett. 111, 024102 (2013).
[Crossref] [PubMed]

Choi, D.

D. Choi, M.J. Wishon, J. Barnoud, C.Y. Chang, Y. Bouazizi, A. Locquet, and D. S. Citrin, “Low-frequency fluctuations in an external-cavity laser leading to extreme events,” Phys. Rev. E 93, 042216 (2016).
[Crossref] [PubMed]

Citrin, D. S.

D. Choi, M.J. Wishon, J. Barnoud, C.Y. Chang, Y. Bouazizi, A. Locquet, and D. S. Citrin, “Low-frequency fluctuations in an external-cavity laser leading to extreme events,” Phys. Rev. E 93, 042216 (2016).
[Crossref] [PubMed]

Davidchack, R.L.

R.L. Davidchack, Y.C. Lai, A. Gavrielides, and V. Kovanis, “Dynamical origin of low frequency fluctuations in external cavity semiconductor lasers,” Phys. Lett. A 267, 350–356 (2000).
[Crossref]

Dong, J. X.

Elsasser, W.

T. Heil, I. Fischer, W. Elsasser, J. Mulet, and C.R. Mirasso, “Statistical properties of LFFs during single-mode operation in distributed-feedback lasers: experiments and modeling,” Opt. Lett. 24, 1275–1277 (1999).
[Crossref]

I. Fischer, G.H.M. van Tartwijk, A.M. Levine, W. Elsasser, E. Gobel, and D. Lenstra, “Fast pulsing and chaotic itinerancy with a drift in the coherence collapse of semiconductor lasers,” Phys. Rev. Lett. 76, 220 (1996).
[Crossref] [PubMed]

J. Sacher, D. Baums, P. Panknin, W. Elsasser, and E.O. Gobel, “Intensity instabilities of semiconductor-lasers under current modulation, external light injection and delayed feedback,” Phys. Rev. A 45, 1893–1905 (1992).
[Crossref] [PubMed]

D. Baums, W. Elsasser, and E.O. Gobel, “Farey tree and devils staircase of a modulated external-cavity semiconductor laser,” Phys. Rev. Lett. 63, 155–158 (1989).
[Crossref] [PubMed]

Fischer, A.P.A.

Fischer, I.

D. Brunner, M. C. Soriano, X. Porte, and I. Fischer, “Experimental phase space tomography of semiconductor laser dynamics,” Phys. Rev. Lett 115, 053901 (2015).
[Crossref]

K. Hicke, X. Porte, and I. Fischer, “Characterizing the deterministic nature of individual power dropouts in semiconductor lasers subject to delayed feedback,” Phys. Rev. E 88, 052904 (2013).
[Crossref]

T. Heil, I. Fischer, W. Elsasser, J. Mulet, and C.R. Mirasso, “Statistical properties of LFFs during single-mode operation in distributed-feedback lasers: experiments and modeling,” Opt. Lett. 24, 1275–1277 (1999).
[Crossref]

I. Fischer, G.H.M. van Tartwijk, A.M. Levine, W. Elsasser, E. Gobel, and D. Lenstra, “Fast pulsing and chaotic itinerancy with a drift in the coherence collapse of semiconductor lasers,” Phys. Rev. Lett. 76, 220 (1996).
[Crossref] [PubMed]

Gammaitoni, L.

L. Gammaitoni, P. Hanggi, P. Jung, and F. Marchesoni, “Stochastic resonance,” Rev. Mod. Phys. 70, 223–287 (1998).
[Crossref]

García-Ojalvo, J.

T. Schwalger, J. Tiana-Alsina, M.C. Torrent, J. García-Ojalvo, and B. Lindner, “Interspike-interval correlations induced by two-state switching in an excitable system,” EPL 99, 10004 (2012).
[Crossref]

J. Tiana-Alsina, M.C. Torrent, O.A. Rosso, C. Masoller, and J. García-Ojalvo, “Quantifying the statistical complexity of low-frequency fluctuations in semiconductor lasers with optical feedback,” Phys. Rev. A 82, 013819 (2010).
[Crossref]

J. Zamora-Munt, C. Masoller, and J. García-Ojalvo, “Transient low-frequency fluctuations in semiconductor lasers with optical feedback,” Phys. Rev. A 81, 033820 (2010).
[Crossref]

Gardner, J.R.

D.W. Sukow, J.R. Gardner, and D.J. Gauthier, “Statistics of power-dropout events in semiconductor lasers with time-delayed optical feedback,” Phys. Rev. A 56, R3370–R3373 (1997).
[Crossref]

Gauthier, D.J.

D.W. Sukow and D.J. Gauthier, “Entraining power-dropout events in an external-cavity semiconductor laser using weak modulation of the injection current,” IEEE J. Quantum Electron. 36, 175–183 (2000).
[Crossref]

D.W. Sukow, J.R. Gardner, and D.J. Gauthier, “Statistics of power-dropout events in semiconductor lasers with time-delayed optical feedback,” Phys. Rev. A 56, R3370–R3373 (1997).
[Crossref]

Gavrielides, A.

R.L. Davidchack, Y.C. Lai, A. Gavrielides, and V. Kovanis, “Dynamical origin of low frequency fluctuations in external cavity semiconductor lasers,” Phys. Lett. A 267, 350–356 (2000).
[Crossref]

Giacomelli, G.

A. Torcini, S. Barland, G. Giacomelli, and F. Marin, “Low-frequency fluctuations in vertical cavity lasers: Experiments versus Lang-Kobayashi dynamics,” Phys. Rev. A 74, 063801 (2006).
[Crossref]

G. Giacomelli, M. Giudici, S. Balle, and J. R. Treddice, “Experimental evidence of coherence resonance in an optical system,” Phys. Rev. Lett. 84, 3298–3301 (2000).
[Crossref] [PubMed]

Giudici, M.

F. Marino, M. Giudici, S. Barland, and S. Balle, “Experimental evidence of stochastic resonance in an excitable optical system,” Phys. Rev. Lett. 88, 040601 (2002).
[Crossref] [PubMed]

J.M. Mendez, R. Laje, M. Giudici, J. Aliaga, and G.B. Mindlin, “Dynamics of periodically forced semiconductor laser with optical feedback,” Phys. Rev. E 63, 066218 (2001).
[Crossref]

G. Giacomelli, M. Giudici, S. Balle, and J. R. Treddice, “Experimental evidence of coherence resonance in an optical system,” Phys. Rev. Lett. 84, 3298–3301 (2000).
[Crossref] [PubMed]

Gobel, E.

I. Fischer, G.H.M. van Tartwijk, A.M. Levine, W. Elsasser, E. Gobel, and D. Lenstra, “Fast pulsing and chaotic itinerancy with a drift in the coherence collapse of semiconductor lasers,” Phys. Rev. Lett. 76, 220 (1996).
[Crossref] [PubMed]

Gobel, E.O.

J. Sacher, D. Baums, P. Panknin, W. Elsasser, and E.O. Gobel, “Intensity instabilities of semiconductor-lasers under current modulation, external light injection and delayed feedback,” Phys. Rev. A 45, 1893–1905 (1992).
[Crossref] [PubMed]

D. Baums, W. Elsasser, and E.O. Gobel, “Farey tree and devils staircase of a modulated external-cavity semiconductor laser,” Phys. Rev. Lett. 63, 155–158 (1989).
[Crossref] [PubMed]

Granada, A.E.

A.E. Granada and H. Herzel, “How to achieve fast entrainment? The timescale to synchronization,” PLoS ONE 4(9): e7057 (2009).
[Crossref] [PubMed]

Grillot, F.

L. Jumpertz, K. Schires, M. Carras, M. Sciamanna, and F. Grillot, “Chaotic light at mid-infrared wavelength,” Light-Science & Appl. 5, e16088 (2016).
[Crossref]

Hanggi, P.

L. Gammaitoni, P. Hanggi, P. Jung, and F. Marchesoni, “Stochastic resonance,” Rev. Mod. Phys. 70, 223–287 (1998).
[Crossref]

Hankins, M.J.

T. Harada, H.A. Tanaka, M.J. Hankins, and I.Z. Kiss, “Optimal waveform for the entrainment of a weakly forced oscillator,” Phys. Rev. Lett. 105, 088301 (2010).
[Crossref] [PubMed]

Harada, T.

T. Harada, H.A. Tanaka, M.J. Hankins, and I.Z. Kiss, “Optimal waveform for the entrainment of a weakly forced oscillator,” Phys. Rev. Lett. 105, 088301 (2010).
[Crossref] [PubMed]

Heil, T.

Herzel, H.

A.E. Granada and H. Herzel, “How to achieve fast entrainment? The timescale to synchronization,” PLoS ONE 4(9): e7057 (2009).
[Crossref] [PubMed]

Hicke, K.

K. Hicke, X. Porte, and I. Fischer, “Characterizing the deterministic nature of individual power dropouts in semiconductor lasers subject to delayed feedback,” Phys. Rev. E 88, 052904 (2013).
[Crossref]

Hohl, A.

Hong, Y.

Jin, T.

T. Jin, C. Siyu, and C. Masoller, “Generation of extreme pulses on demand in semiconductor lasers with optical injection,” Opt. Express 25, 031326 (2017).
[Crossref]

Jumpertz, L.

L. Jumpertz, K. Schires, M. Carras, M. Sciamanna, and F. Grillot, “Chaotic light at mid-infrared wavelength,” Light-Science & Appl. 5, e16088 (2016).
[Crossref]

Jung, P.

L. Gammaitoni, P. Hanggi, P. Jung, and F. Marchesoni, “Stochastic resonance,” Rev. Mod. Phys. 70, 223–287 (1998).
[Crossref]

Kane, D. M.

Kiss, I.Z.

A. Zlotnik, Y. Chen, I.Z. Kiss, H.A. Tanaka, and J.S. Li, “Optimal waveform for fast entrainment of weakly forced nonlinear oscillators,” Phys. Rev. Lett. 111, 024102 (2013).
[Crossref] [PubMed]

T. Harada, H.A. Tanaka, M.J. Hankins, and I.Z. Kiss, “Optimal waveform for the entrainment of a weakly forced oscillator,” Phys. Rev. Lett. 105, 088301 (2010).
[Crossref] [PubMed]

Kobayashi, K.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980).
[Crossref]

Kovanis, V.

R.L. Davidchack, Y.C. Lai, A. Gavrielides, and V. Kovanis, “Dynamical origin of low frequency fluctuations in external cavity semiconductor lasers,” Phys. Lett. A 267, 350–356 (2000).
[Crossref]

Kurths, J.

A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A universal concept in nonlinear sciences (Cambridge University Press, 2001).
[Crossref]

Lai, Y.C.

R.L. Davidchack, Y.C. Lai, A. Gavrielides, and V. Kovanis, “Dynamical origin of low frequency fluctuations in external cavity semiconductor lasers,” Phys. Lett. A 267, 350–356 (2000).
[Crossref]

Laje, R.

J.M. Mendez, R. Laje, M. Giudici, J. Aliaga, and G.B. Mindlin, “Dynamics of periodically forced semiconductor laser with optical feedback,” Phys. Rev. E 63, 066218 (2001).
[Crossref]

Lang, R.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980).
[Crossref]

Lee, M. W.

Lee, M.W.

Leite, J. R. R.

J. F. M. Avila, H. L. D. S. Cavalcante, and J. R. R. Leite, “Experimental deterministic coherence resonance,” Phys. Rev. Lett. 93, 144101 (2004).
[Crossref]

Lenstra, D.

I. Fischer, G.H.M. van Tartwijk, A.M. Levine, W. Elsasser, E. Gobel, and D. Lenstra, “Fast pulsing and chaotic itinerancy with a drift in the coherence collapse of semiconductor lasers,” Phys. Rev. Lett. 76, 220 (1996).
[Crossref] [PubMed]

Levine, A.M.

I. Fischer, G.H.M. van Tartwijk, A.M. Levine, W. Elsasser, E. Gobel, and D. Lenstra, “Fast pulsing and chaotic itinerancy with a drift in the coherence collapse of semiconductor lasers,” Phys. Rev. Lett. 76, 220 (1996).
[Crossref] [PubMed]

Li, J.S.

A. Zlotnik, Y. Chen, I.Z. Kiss, H.A. Tanaka, and J.S. Li, “Optimal waveform for fast entrainment of weakly forced nonlinear oscillators,” Phys. Rev. Lett. 111, 024102 (2013).
[Crossref] [PubMed]

Lindner, B.

T. Schwalger, J. Tiana-Alsina, M.C. Torrent, J. García-Ojalvo, and B. Lindner, “Interspike-interval correlations induced by two-state switching in an excitable system,” EPL 99, 10004 (2012).
[Crossref]

Locquet, A.

D. Choi, M.J. Wishon, J. Barnoud, C.Y. Chang, Y. Bouazizi, A. Locquet, and D. S. Citrin, “Low-frequency fluctuations in an external-cavity laser leading to extreme events,” Phys. Rev. E 93, 042216 (2016).
[Crossref] [PubMed]

Marchesoni, F.

L. Gammaitoni, P. Hanggi, P. Jung, and F. Marchesoni, “Stochastic resonance,” Rev. Mod. Phys. 70, 223–287 (1998).
[Crossref]

Marin, F.

A. Torcini, S. Barland, G. Giacomelli, and F. Marin, “Low-frequency fluctuations in vertical cavity lasers: Experiments versus Lang-Kobayashi dynamics,” Phys. Rev. A 74, 063801 (2006).
[Crossref]

Marino, F.

F. Marino, M. Giudici, S. Barland, and S. Balle, “Experimental evidence of stochastic resonance in an excitable optical system,” Phys. Rev. Lett. 88, 040601 (2002).
[Crossref] [PubMed]

Mark, J.

J. Mork, B. Tromborg, and J. Mark, “Chaos in semiconductor lasers with optical feedback – Theory and experiment,” IEEE J. Quantum Electron. 28, 93–108 (1992).
[Crossref]

Masoller, C.

T. Jin, C. Siyu, and C. Masoller, “Generation of extreme pulses on demand in semiconductor lasers with optical injection,” Opt. Express 25, 031326 (2017).
[Crossref]

M. Panozzo, C. Quintero-Quiroz, J. Tiana-Alsina, M. C. Torrent, and C. Masoller, “Experimental characterization of the transition to coherence collapse in a semiconductor laser with optical feedback,” Chaos 27, 114315 (2017).
[Crossref] [PubMed]

C. Quintero-Quiroz, J. Tiana-Alsina, J. Romà, M. C. Torrent, and C. Masoller, “Characterizing how complex optical signals emerge from noisy intensity fluctuations,” Sci. Rep. 637510 (2016).
[Crossref]

T. Sorrentino, C. Quintero-Quiroz, M.C. Torrent, and C. Masoller, “Analysis of the spike rate and spike correlations in modulated semiconductor lasers with optical feedback,” IEEE J. Sel. Top. Quantum Electron. 21, 1801107 (2015).
[Crossref]

T. Sorrentino, C. Quintero-Quiroz, A. Aragoneses, M. C. Torrent, and C. Masoller, “Effects of periodic forcing on the temporally correlated spikes of a semiconductor laser with feedback,” Opt. Express 23, 5571 (2015).
[Crossref] [PubMed]

A. Aragoneses, N. Rubido, J. Tiana-Alsina, M.C. Torrent, and C. Masoller, “Distinguishing signatures of determinism and stochasticity in spiking complex systems,” Sci. Rep. 3, 1778 (2013).
[Crossref]

J. Tiana-Alsina, M.C. Torrent, O.A. Rosso, C. Masoller, and J. García-Ojalvo, “Quantifying the statistical complexity of low-frequency fluctuations in semiconductor lasers with optical feedback,” Phys. Rev. A 82, 013819 (2010).
[Crossref]

J. Zamora-Munt, C. Masoller, and J. García-Ojalvo, “Transient low-frequency fluctuations in semiconductor lasers with optical feedback,” Phys. Rev. A 81, 033820 (2010).
[Crossref]

Mendez, J.M.

J.M. Mendez, R. Laje, M. Giudici, J. Aliaga, and G.B. Mindlin, “Dynamics of periodically forced semiconductor laser with optical feedback,” Phys. Rev. E 63, 066218 (2001).
[Crossref]

Mindlin, G.B.

J.M. Mendez, R. Laje, M. Giudici, J. Aliaga, and G.B. Mindlin, “Dynamics of periodically forced semiconductor laser with optical feedback,” Phys. Rev. E 63, 066218 (2001).
[Crossref]

Mirasso, C.R.

Mork, J.

J. Mork, B. Tromborg, and J. Mark, “Chaos in semiconductor lasers with optical feedback – Theory and experiment,” IEEE J. Quantum Electron. 28, 93–108 (1992).
[Crossref]

Mulet, J.

Ohtsubo, J.

J. Ohtsubo, Semiconductor Lasers, Stability, Instability and Chaos (Springer, 3th edition, 2013)

Panknin, P.

J. Sacher, D. Baums, P. Panknin, W. Elsasser, and E.O. Gobel, “Intensity instabilities of semiconductor-lasers under current modulation, external light injection and delayed feedback,” Phys. Rev. A 45, 1893–1905 (1992).
[Crossref] [PubMed]

Panozzo, M.

M. Panozzo, C. Quintero-Quiroz, J. Tiana-Alsina, M. C. Torrent, and C. Masoller, “Experimental characterization of the transition to coherence collapse in a semiconductor laser with optical feedback,” Chaos 27, 114315 (2017).
[Crossref] [PubMed]

Pikovsky, A.

A. Pikovsky, “Maximizing coherence of oscillations by external locking,” Phys. Rev. Lett. 115, 070602 (2015).
[Crossref] [PubMed]

A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A universal concept in nonlinear sciences (Cambridge University Press, 2001).
[Crossref]

Porte, X.

D. Brunner, M. C. Soriano, X. Porte, and I. Fischer, “Experimental phase space tomography of semiconductor laser dynamics,” Phys. Rev. Lett 115, 053901 (2015).
[Crossref]

K. Hicke, X. Porte, and I. Fischer, “Characterizing the deterministic nature of individual power dropouts in semiconductor lasers subject to delayed feedback,” Phys. Rev. E 88, 052904 (2013).
[Crossref]

Quintero-Quiroz, C.

M. Panozzo, C. Quintero-Quiroz, J. Tiana-Alsina, M. C. Torrent, and C. Masoller, “Experimental characterization of the transition to coherence collapse in a semiconductor laser with optical feedback,” Chaos 27, 114315 (2017).
[Crossref] [PubMed]

C. Quintero-Quiroz, J. Tiana-Alsina, J. Romà, M. C. Torrent, and C. Masoller, “Characterizing how complex optical signals emerge from noisy intensity fluctuations,” Sci. Rep. 637510 (2016).
[Crossref]

T. Sorrentino, C. Quintero-Quiroz, M.C. Torrent, and C. Masoller, “Analysis of the spike rate and spike correlations in modulated semiconductor lasers with optical feedback,” IEEE J. Sel. Top. Quantum Electron. 21, 1801107 (2015).
[Crossref]

T. Sorrentino, C. Quintero-Quiroz, A. Aragoneses, M. C. Torrent, and C. Masoller, “Effects of periodic forcing on the temporally correlated spikes of a semiconductor laser with feedback,” Opt. Express 23, 5571 (2015).
[Crossref] [PubMed]

Romà, J.

C. Quintero-Quiroz, J. Tiana-Alsina, J. Romà, M. C. Torrent, and C. Masoller, “Characterizing how complex optical signals emerge from noisy intensity fluctuations,” Sci. Rep. 637510 (2016).
[Crossref]

Rosenblum, M.

A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A universal concept in nonlinear sciences (Cambridge University Press, 2001).
[Crossref]

Rosso, O.A.

J. Tiana-Alsina, M.C. Torrent, O.A. Rosso, C. Masoller, and J. García-Ojalvo, “Quantifying the statistical complexity of low-frequency fluctuations in semiconductor lasers with optical feedback,” Phys. Rev. A 82, 013819 (2010).
[Crossref]

Roy, R.

Rubido, N.

A. Aragoneses, N. Rubido, J. Tiana-Alsina, M.C. Torrent, and C. Masoller, “Distinguishing signatures of determinism and stochasticity in spiking complex systems,” Sci. Rep. 3, 1778 (2013).
[Crossref]

Sacher, J.

J. Sacher, D. Baums, P. Panknin, W. Elsasser, and E.O. Gobel, “Intensity instabilities of semiconductor-lasers under current modulation, external light injection and delayed feedback,” Phys. Rev. A 45, 1893–1905 (1992).
[Crossref] [PubMed]

Sano, T.

T. Sano, “Antimode dynamics and chaotic itinerancy in the coherence collapse of semiconductor lasers with optical feedback,” Phys. Rev. A 50, 2719–2726 (1994).
[Crossref] [PubMed]

Schires, K.

L. Jumpertz, K. Schires, M. Carras, M. Sciamanna, and F. Grillot, “Chaotic light at mid-infrared wavelength,” Light-Science & Appl. 5, e16088 (2016).
[Crossref]

Schwalger, T.

T. Schwalger, J. Tiana-Alsina, M.C. Torrent, J. García-Ojalvo, and B. Lindner, “Interspike-interval correlations induced by two-state switching in an excitable system,” EPL 99, 10004 (2012).
[Crossref]

Sciamanna, M.

L. Jumpertz, K. Schires, M. Carras, M. Sciamanna, and F. Grillot, “Chaotic light at mid-infrared wavelength,” Light-Science & Appl. 5, e16088 (2016).
[Crossref]

M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Photonics 9, 151 (2015).
[Crossref]

Shore, K. A.

Shore, K.A.

Siyu, C.

T. Jin, C. Siyu, and C. Masoller, “Generation of extreme pulses on demand in semiconductor lasers with optical injection,” Opt. Express 25, 031326 (2017).
[Crossref]

Soriano, M. C.

D. Brunner, M. C. Soriano, X. Porte, and I. Fischer, “Experimental phase space tomography of semiconductor laser dynamics,” Phys. Rev. Lett 115, 053901 (2015).
[Crossref]

Sorrentino, T.

T. Sorrentino, C. Quintero-Quiroz, M.C. Torrent, and C. Masoller, “Analysis of the spike rate and spike correlations in modulated semiconductor lasers with optical feedback,” IEEE J. Sel. Top. Quantum Electron. 21, 1801107 (2015).
[Crossref]

T. Sorrentino, C. Quintero-Quiroz, A. Aragoneses, M. C. Torrent, and C. Masoller, “Effects of periodic forcing on the temporally correlated spikes of a semiconductor laser with feedback,” Opt. Express 23, 5571 (2015).
[Crossref] [PubMed]

Sukow, D.W.

D.W. Sukow and D.J. Gauthier, “Entraining power-dropout events in an external-cavity semiconductor laser using weak modulation of the injection current,” IEEE J. Quantum Electron. 36, 175–183 (2000).
[Crossref]

D.W. Sukow, J.R. Gardner, and D.J. Gauthier, “Statistics of power-dropout events in semiconductor lasers with time-delayed optical feedback,” Phys. Rev. A 56, R3370–R3373 (1997).
[Crossref]

Tanaka, H.A.

H.A. Tanaka, “Optimal entrainment with smooth, pulse, and square signals in weakly forced nonlinear oscillator,” Physica D 288, 1–22 (2014).
[Crossref]

A. Zlotnik, Y. Chen, I.Z. Kiss, H.A. Tanaka, and J.S. Li, “Optimal waveform for fast entrainment of weakly forced nonlinear oscillators,” Phys. Rev. Lett. 111, 024102 (2013).
[Crossref] [PubMed]

T. Harada, H.A. Tanaka, M.J. Hankins, and I.Z. Kiss, “Optimal waveform for the entrainment of a weakly forced oscillator,” Phys. Rev. Lett. 105, 088301 (2010).
[Crossref] [PubMed]

Tettiati, M.A.

Tiana-Alsina, J.

M. Panozzo, C. Quintero-Quiroz, J. Tiana-Alsina, M. C. Torrent, and C. Masoller, “Experimental characterization of the transition to coherence collapse in a semiconductor laser with optical feedback,” Chaos 27, 114315 (2017).
[Crossref] [PubMed]

C. Quintero-Quiroz, J. Tiana-Alsina, J. Romà, M. C. Torrent, and C. Masoller, “Characterizing how complex optical signals emerge from noisy intensity fluctuations,” Sci. Rep. 637510 (2016).
[Crossref]

A. Aragoneses, N. Rubido, J. Tiana-Alsina, M.C. Torrent, and C. Masoller, “Distinguishing signatures of determinism and stochasticity in spiking complex systems,” Sci. Rep. 3, 1778 (2013).
[Crossref]

T. Schwalger, J. Tiana-Alsina, M.C. Torrent, J. García-Ojalvo, and B. Lindner, “Interspike-interval correlations induced by two-state switching in an excitable system,” EPL 99, 10004 (2012).
[Crossref]

J. Tiana-Alsina, M.C. Torrent, O.A. Rosso, C. Masoller, and J. García-Ojalvo, “Quantifying the statistical complexity of low-frequency fluctuations in semiconductor lasers with optical feedback,” Phys. Rev. A 82, 013819 (2010).
[Crossref]

Toomey, J. P.

Torcini, A.

A. Torcini, S. Barland, G. Giacomelli, and F. Marin, “Low-frequency fluctuations in vertical cavity lasers: Experiments versus Lang-Kobayashi dynamics,” Phys. Rev. A 74, 063801 (2006).
[Crossref]

Torrent, M. C.

M. Panozzo, C. Quintero-Quiroz, J. Tiana-Alsina, M. C. Torrent, and C. Masoller, “Experimental characterization of the transition to coherence collapse in a semiconductor laser with optical feedback,” Chaos 27, 114315 (2017).
[Crossref] [PubMed]

C. Quintero-Quiroz, J. Tiana-Alsina, J. Romà, M. C. Torrent, and C. Masoller, “Characterizing how complex optical signals emerge from noisy intensity fluctuations,” Sci. Rep. 637510 (2016).
[Crossref]

T. Sorrentino, C. Quintero-Quiroz, A. Aragoneses, M. C. Torrent, and C. Masoller, “Effects of periodic forcing on the temporally correlated spikes of a semiconductor laser with feedback,” Opt. Express 23, 5571 (2015).
[Crossref] [PubMed]

Torrent, M.C.

T. Sorrentino, C. Quintero-Quiroz, M.C. Torrent, and C. Masoller, “Analysis of the spike rate and spike correlations in modulated semiconductor lasers with optical feedback,” IEEE J. Sel. Top. Quantum Electron. 21, 1801107 (2015).
[Crossref]

A. Aragoneses, N. Rubido, J. Tiana-Alsina, M.C. Torrent, and C. Masoller, “Distinguishing signatures of determinism and stochasticity in spiking complex systems,” Sci. Rep. 3, 1778 (2013).
[Crossref]

T. Schwalger, J. Tiana-Alsina, M.C. Torrent, J. García-Ojalvo, and B. Lindner, “Interspike-interval correlations induced by two-state switching in an excitable system,” EPL 99, 10004 (2012).
[Crossref]

J. Tiana-Alsina, M.C. Torrent, O.A. Rosso, C. Masoller, and J. García-Ojalvo, “Quantifying the statistical complexity of low-frequency fluctuations in semiconductor lasers with optical feedback,” Phys. Rev. A 82, 013819 (2010).
[Crossref]

Treddice, J. R.

G. Giacomelli, M. Giudici, S. Balle, and J. R. Treddice, “Experimental evidence of coherence resonance in an optical system,” Phys. Rev. Lett. 84, 3298–3301 (2000).
[Crossref] [PubMed]

Tromborg, B.

J. Mork, B. Tromborg, and J. Mark, “Chaos in semiconductor lasers with optical feedback – Theory and experiment,” IEEE J. Quantum Electron. 28, 93–108 (1992).
[Crossref]

van Tartwijk, G.H.M.

I. Fischer, G.H.M. van Tartwijk, A.M. Levine, W. Elsasser, E. Gobel, and D. Lenstra, “Fast pulsing and chaotic itinerancy with a drift in the coherence collapse of semiconductor lasers,” Phys. Rev. Lett. 76, 220 (1996).
[Crossref] [PubMed]

Vanderlinden, H.J.C.

Wishon, M.J.

D. Choi, M.J. Wishon, J. Barnoud, C.Y. Chang, Y. Bouazizi, A. Locquet, and D. S. Citrin, “Low-frequency fluctuations in an external-cavity laser leading to extreme events,” Phys. Rev. E 93, 042216 (2016).
[Crossref] [PubMed]

Zamora-Munt, J.

J. Zamora-Munt, C. Masoller, and J. García-Ojalvo, “Transient low-frequency fluctuations in semiconductor lasers with optical feedback,” Phys. Rev. A 81, 033820 (2010).
[Crossref]

Zhuang, J. P.

Zlotnik, A.

A. Zlotnik, Y. Chen, I.Z. Kiss, H.A. Tanaka, and J.S. Li, “Optimal waveform for fast entrainment of weakly forced nonlinear oscillators,” Phys. Rev. Lett. 111, 024102 (2013).
[Crossref] [PubMed]

Chaos (1)

M. Panozzo, C. Quintero-Quiroz, J. Tiana-Alsina, M. C. Torrent, and C. Masoller, “Experimental characterization of the transition to coherence collapse in a semiconductor laser with optical feedback,” Chaos 27, 114315 (2017).
[Crossref] [PubMed]

EPL (1)

T. Schwalger, J. Tiana-Alsina, M.C. Torrent, J. García-Ojalvo, and B. Lindner, “Interspike-interval correlations induced by two-state switching in an excitable system,” EPL 99, 10004 (2012).
[Crossref]

IEEE J. Quantum Electron. (3)

D.W. Sukow and D.J. Gauthier, “Entraining power-dropout events in an external-cavity semiconductor laser using weak modulation of the injection current,” IEEE J. Quantum Electron. 36, 175–183 (2000).
[Crossref]

J. Mork, B. Tromborg, and J. Mark, “Chaos in semiconductor lasers with optical feedback – Theory and experiment,” IEEE J. Quantum Electron. 28, 93–108 (1992).
[Crossref]

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Sorrentino, C. Quintero-Quiroz, M.C. Torrent, and C. Masoller, “Analysis of the spike rate and spike correlations in modulated semiconductor lasers with optical feedback,” IEEE J. Sel. Top. Quantum Electron. 21, 1801107 (2015).
[Crossref]

Light-Science & Appl. (1)

L. Jumpertz, K. Schires, M. Carras, M. Sciamanna, and F. Grillot, “Chaotic light at mid-infrared wavelength,” Light-Science & Appl. 5, e16088 (2016).
[Crossref]

Nat. Photonics (1)

M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Photonics 9, 151 (2015).
[Crossref]

Opt. Express (3)

Opt. Lett. (5)

Phys. Lett. A (1)

R.L. Davidchack, Y.C. Lai, A. Gavrielides, and V. Kovanis, “Dynamical origin of low frequency fluctuations in external cavity semiconductor lasers,” Phys. Lett. A 267, 350–356 (2000).
[Crossref]

Phys. Rev. A (6)

T. Sano, “Antimode dynamics and chaotic itinerancy in the coherence collapse of semiconductor lasers with optical feedback,” Phys. Rev. A 50, 2719–2726 (1994).
[Crossref] [PubMed]

A. Torcini, S. Barland, G. Giacomelli, and F. Marin, “Low-frequency fluctuations in vertical cavity lasers: Experiments versus Lang-Kobayashi dynamics,” Phys. Rev. A 74, 063801 (2006).
[Crossref]

J. Zamora-Munt, C. Masoller, and J. García-Ojalvo, “Transient low-frequency fluctuations in semiconductor lasers with optical feedback,” Phys. Rev. A 81, 033820 (2010).
[Crossref]

D.W. Sukow, J.R. Gardner, and D.J. Gauthier, “Statistics of power-dropout events in semiconductor lasers with time-delayed optical feedback,” Phys. Rev. A 56, R3370–R3373 (1997).
[Crossref]

J. Sacher, D. Baums, P. Panknin, W. Elsasser, and E.O. Gobel, “Intensity instabilities of semiconductor-lasers under current modulation, external light injection and delayed feedback,” Phys. Rev. A 45, 1893–1905 (1992).
[Crossref] [PubMed]

J. Tiana-Alsina, M.C. Torrent, O.A. Rosso, C. Masoller, and J. García-Ojalvo, “Quantifying the statistical complexity of low-frequency fluctuations in semiconductor lasers with optical feedback,” Phys. Rev. A 82, 013819 (2010).
[Crossref]

Phys. Rev. E (3)

D. Choi, M.J. Wishon, J. Barnoud, C.Y. Chang, Y. Bouazizi, A. Locquet, and D. S. Citrin, “Low-frequency fluctuations in an external-cavity laser leading to extreme events,” Phys. Rev. E 93, 042216 (2016).
[Crossref] [PubMed]

J.M. Mendez, R. Laje, M. Giudici, J. Aliaga, and G.B. Mindlin, “Dynamics of periodically forced semiconductor laser with optical feedback,” Phys. Rev. E 63, 066218 (2001).
[Crossref]

K. Hicke, X. Porte, and I. Fischer, “Characterizing the deterministic nature of individual power dropouts in semiconductor lasers subject to delayed feedback,” Phys. Rev. E 88, 052904 (2013).
[Crossref]

Phys. Rev. Lett (1)

D. Brunner, M. C. Soriano, X. Porte, and I. Fischer, “Experimental phase space tomography of semiconductor laser dynamics,” Phys. Rev. Lett 115, 053901 (2015).
[Crossref]

Phys. Rev. Lett. (8)

D. Baums, W. Elsasser, and E.O. Gobel, “Farey tree and devils staircase of a modulated external-cavity semiconductor laser,” Phys. Rev. Lett. 63, 155–158 (1989).
[Crossref] [PubMed]

F. Marino, M. Giudici, S. Barland, and S. Balle, “Experimental evidence of stochastic resonance in an excitable optical system,” Phys. Rev. Lett. 88, 040601 (2002).
[Crossref] [PubMed]

I. Fischer, G.H.M. van Tartwijk, A.M. Levine, W. Elsasser, E. Gobel, and D. Lenstra, “Fast pulsing and chaotic itinerancy with a drift in the coherence collapse of semiconductor lasers,” Phys. Rev. Lett. 76, 220 (1996).
[Crossref] [PubMed]

G. Giacomelli, M. Giudici, S. Balle, and J. R. Treddice, “Experimental evidence of coherence resonance in an optical system,” Phys. Rev. Lett. 84, 3298–3301 (2000).
[Crossref] [PubMed]

J. F. M. Avila, H. L. D. S. Cavalcante, and J. R. R. Leite, “Experimental deterministic coherence resonance,” Phys. Rev. Lett. 93, 144101 (2004).
[Crossref]

T. Harada, H.A. Tanaka, M.J. Hankins, and I.Z. Kiss, “Optimal waveform for the entrainment of a weakly forced oscillator,” Phys. Rev. Lett. 105, 088301 (2010).
[Crossref] [PubMed]

A. Zlotnik, Y. Chen, I.Z. Kiss, H.A. Tanaka, and J.S. Li, “Optimal waveform for fast entrainment of weakly forced nonlinear oscillators,” Phys. Rev. Lett. 111, 024102 (2013).
[Crossref] [PubMed]

A. Pikovsky, “Maximizing coherence of oscillations by external locking,” Phys. Rev. Lett. 115, 070602 (2015).
[Crossref] [PubMed]

Physica D (1)

H.A. Tanaka, “Optimal entrainment with smooth, pulse, and square signals in weakly forced nonlinear oscillator,” Physica D 288, 1–22 (2014).
[Crossref]

PLoS ONE (1)

A.E. Granada and H. Herzel, “How to achieve fast entrainment? The timescale to synchronization,” PLoS ONE 4(9): e7057 (2009).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

L. Gammaitoni, P. Hanggi, P. Jung, and F. Marchesoni, “Stochastic resonance,” Rev. Mod. Phys. 70, 223–287 (1998).
[Crossref]

Sci. Rep. (2)

C. Quintero-Quiroz, J. Tiana-Alsina, J. Romà, M. C. Torrent, and C. Masoller, “Characterizing how complex optical signals emerge from noisy intensity fluctuations,” Sci. Rep. 637510 (2016).
[Crossref]

A. Aragoneses, N. Rubido, J. Tiana-Alsina, M.C. Torrent, and C. Masoller, “Distinguishing signatures of determinism and stochasticity in spiking complex systems,” Sci. Rep. 3, 1778 (2013).
[Crossref]

Other (3)

A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A universal concept in nonlinear sciences (Cambridge University Press, 2001).
[Crossref]

J. Ohtsubo, Semiconductor Lasers, Stability, Instability and Chaos (Springer, 3th edition, 2013)

Video showing how the intensity time series gradually changes as the laser pump current is increased: https://youtu.be/nltBQG_IIWQ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Time series of the laser intensity (black line, normalized to zero mean and unit variance) and time series of the pump current (gray lines, different waveforms are shifted vertically for clarity). The dashed green line indicates the threshold used, −1.5, for detecting the spikes in the intensity signal. The dashed orange lines indicate the threshold used, in the pump current signal, to define the start of the detection window of τ = 15 ns, indicated as vertical green shaded areas (see text for details). The spikes occurring within the detection window (green dots) are counted in the success rate, Eq. (1); the spike that occurs outside (red cross) is counted in the false positive rate, Eq. (2).
Fig. 2
Fig. 2 Entrainment of the spikes in the laser intensity, when a periodic signal with pulse-down waveform is used to modulate the laser current. The modulation amplitude is 2.4% of the dc value of the pump current, Idc. (a) Success rate, Eq. (1), in log scale, as a function of the modulation frequency, fmod, when Idc = 26.0 mA. The horizontal dashed lines indicate the value expected, SR = 1/n, for locking n: 1, with n = 1, 2. … The arrows indicate the value of fmod corresponding to the time series shown in panels (c), (d) and (e). (b) Success rate (in color code) as a function of fmod and Idc. The white squares indicate the natural (un-modulated) spike frequency, for the range of values of Idc where the spikes, without modulation, have a well-defined frequency [40, 41]. The white dashed line indicates the SR horizontal cut shown in panel (a). The symbols indicate the different regions discussed in the text, and the corresponding time series are displayed in Fig 3. Panels (c), (d) and (e) display locking 1:1, 2:1 and 3:1 for fmod = 14 MHz, 30 MHz, and 50 MHz respectively.
Fig. 3
Fig. 3 Modulation input and laser output time series to illustrate dark yellow and dark blue areas detailed in Fig. 2(b). (a) Case example for the dark yellow area Idc = 28.00 mA and fmod = 10 MHz (black star in Fig. 2b). (b) Case example for the dark blue area, Idc = 25.50 mA and fmod = 60 MHz (red star in Fig. 2b).
Fig. 4
Fig. 4 Success rate (a,b,c), false positive rate (d,e,f) and coefficient of variation (g,h,i) in color code for the three waveforms studied, vs. the modulation frequency (in the range 1 – 80 MHz) and the dc value of the laser current. The modulation amplitude is 0.65 mA, which corresponds to 2.5% (2.2%) for Idc = 25 mA (29 mA).
Fig. 5
Fig. 5 Success rate (a,b,c), false positive (d,e,f) and coefficient of variation (g,h,i) for different modulation amplitudes for the three input modulation studied. (a, d, g) pulse-up, (b, e, h) sinusoidal and (c, f, i) pulse-down waveforms. The dc value of the pump current is Idc = 26.0 mA. For this dc current value and a modulation amplitude of 0.65 mA (which represents 2.5% of Idc), locking regions 1:1, 2:1 and 3:1 are observed in Fig. 4.
Fig. 6
Fig. 6 Success rate and false positives rate as a function of the modulation frequency and of the detection time window, normalized to the modulation period. The modulation waveform is (a,d) pulse-up, (b,e) sinusoidal and (c,f) pulse-down. Black and white dashed lines represent τ = 10 ns and τ = 15 ns respectively. The dc value of the pump current is Idc =26.0 mA and the modulation amplitude is 2.43% of Idc (0.65 mA) because for these values, locking regions 1:1, 2:1 and 3:1 are observed in Fig. 4.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

SR ( τ ) = # of spikes emitted in the interval τ # of modulation cycles .
FPR ( τ ) = # spikes that are not emitted in the time interval τ Total # of spikes .
C V = σ I S I I .

Metrics