Abstract

A sinusoidal phase modulating absolute distance measurement (ADM) interferometer combining frequency-sweeping interferometry (FSI) and multi-wavelength interferometry (MWI) is proposed in this paper. The swept frequency in FSI and the wavelengths for MWI are calibrated by an optical frequency comb, so the distance measurement can be directly traced back to the SI definition of a meter. With a simple optical structure, an ADM interferometer consisting of a measurement interferometer and a monitor interferometer is constructed without polarization optics. A near-infrared external cavity diode laser (ECDL) calibrated by an optical frequency comb is used as a work source of the measurement interferometer for frequency sweeping and hopping. The monitor interferometer using a He-Ne laser runs parallel to the measurement interferometer to monitor the fluctuation of the measured distance during the measurement. Experiments for absolute distance measurements in a range of 8.25 m were carried out to verify the feasibility of the proposed ADM interferometer. The experimental results show that the maximum measurement error is less than 1 μm compared with an incremental-type laser interferometer.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Absolute distance measurement using frequency-sweeping heterodyne interferometer calibrated by an optical frequency comb

Xuejian Wu, Haoyun Wei, Hongyuan Zhang, Libing Ren, Yan Li, and Jitao Zhang
Appl. Opt. 52(10) 2042-2048 (2013)

Radio frequency controlled synthetic wavelength sweep for absolute distance measurement by optical interferometry

Sébastien Le Floch, Yves Salvadé, Rostand Mitouassiwou, and Patrick Favre
Appl. Opt. 47(16) 3027-3031 (2008)

Multi-channel absolute distance measurement system with sub ppm-accuracy and 20 m range using frequency scanning interferometry and gas absorption cells

John Dale, Ben Hughes, Andrew J. Lancaster, Andrew J. Lewis, Armin J. H. Reichold, and Matthew S. Warden
Opt. Express 22(20) 24869-24893 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. E. Decker, J. R. Miles, A. A. Madej, R. F. Siemsen, K. J. Siemsen, S. de Bonth, K. Bustraan, S. Temple, and J. R. Pekelsky, “Increasing the range of unambiguity in step-height measurement with multiple-wavelength interferometry--application to absolute long gauge block measurement,” Appl. Opt. 42(28), 5670–5678 (2003).
    [Crossref] [PubMed]
  2. S. Azouigui, T. Badr, J. P. Wallerand, M. Himbert, J. Salgado, and P. Juncar, “Transportable distance measurement system based on superheterodyne interferometry using two phase-locked frequency-doubled Nd:YAG lasers,” Rev. Sci. Instrum. 81(5), 053112 (2010).
    [Crossref] [PubMed]
  3. Y. Salvadé, N. Schuhler, S. Lévêque, and S. Le Floch, “High-accuracy absolute distance measurement using frequency comb referenced multiwavelength source,” Appl. Opt. 47(14), 2715–2720 (2008).
    [Crossref] [PubMed]
  4. G. Wang, Y. S. Jang, S. Hyun, B. J. Chun, H. J. Kang, S. Yan, S. W. Kim, and Y. J. Kim, “Absolute positioning by multi-wavelength interferometry referenced to the frequency comb of a femtosecond laser,” Opt. Express 23(7), 9121–9129 (2015).
    [Crossref] [PubMed]
  5. L. Sheng-Hua and L. Cheng-Chung, “Measuring large step heights by variable synthetic wavelength interferometry,” Meas. Sci. Technol. 13(9), 1382–1387 (2002).
    [Crossref]
  6. J. Jin, Y.-J. Kim, Y. Kim, S.-W. Kim, and C.-S. Kang, “Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser,” Opt. Express 14(13), 5968–5974 (2006).
    [Crossref] [PubMed]
  7. S.-H. Lu, C.-I. Chiueh, and C.-C. Lee, “Differential wavelength-scanning heterodyne interferometer for measuring large step height,” Appl. Opt. 41(28), 5866–5871 (2002).
    [Crossref] [PubMed]
  8. X. Jia, Z. Liu, L. Tao, and Z. Deng, “Frequency-scanning interferometry using a time-varying Kalman filter for dynamic tracking measurements,” Opt. Express 25(21), 25782–25796 (2017).
    [Crossref] [PubMed]
  9. L. Hartmann, K. Meiners-Hagen, and A. Abou-Zeid, “An absolute distance interferometer with two external cavity diode lasers,” Meas. Sci. Technol. 19(4), 045307 (2008).
    [Crossref]
  10. J. E. Decker, A. Cabral, G.-S. Peng, and J. Rebordao, “Absolute distance metrology with frequency sweeping interferometry,” Proc. SPIE 5879, 58790L (2005).
    [Crossref]
  11. A. Cabral, “Accuracy of frequency-sweeping interferometry for absolute distance metrology,” Opt. Eng. 46(7), 073602 (2007).
    [Crossref]
  12. G. Prellinger, K. Meiners-Hagen, and F. Pollinger, “Spectroscopicallyin situtraceable heterodyne frequency-scanning interferometry for distances up to 50 m,” Meas. Sci. Technol. 26(8), 084003 (2015).
    [Crossref]
  13. S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, and S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20(9), 095302 (2009).
    [Crossref]
  14. X. Wu, H. Wei, H. Zhang, L. Ren, Y. Li, and J. Zhang, “Absolute distance measurement using frequency-sweeping heterodyne interferometer calibrated by an optical frequency comb,” Appl. Opt. 52(10), 2042–2048 (2013).
    [Crossref] [PubMed]
  15. J. L. Hall, “Nobel Lecture: Defining and measuring optical frequencies,” Rev. Mod. Phys. 78(4), 1279–1295 (2006).
    [Crossref] [PubMed]
  16. T. W. Hänsch, “Nobel Lecture: Passion for precision,” Rev. Mod. Phys. 78(4), 1297–1309 (2006).
    [Crossref]
  17. B. L. Swinkels, N. Bhattacharya, and J. J. M. Braat, “Correcting movement errors in frequency-sweeping interferometry,” Opt. Lett. 30(17), 2242–2244 (2005).
    [Crossref] [PubMed]
  18. S. Han, J. D. Ellis, J. Guo, Y. Guo, C. Lu, G. Liu, B. Liu, F. Chen, Z. Zhuang, X. Xu, and Y. Gan, “The correction of vibration in frequency scanning interferometry based absolute distance measurement system for dynamic measurements,” Proc. SPIE 9677, 96772F (2015).
  19. R. Schneider, P. Thuermel, and M. Stockmann, “Distance measurement of moving objects by frequency modulated laser radar,” Opt. Eng. 40(1), 33–38 (2001).
    [Crossref]
  20. E. Baumann, F. R. Giorgetta, I. Coddington, L. C. Sinclair, K. Knabe, W. C. Swann, and N. R. Newbury, “Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements,” Opt. Lett. 38(12), 2026–2028 (2013).
    [Crossref] [PubMed]
  21. A. B. Mateo and Z. W. Barber, “Precision and accuracy testing of FMCW ladar-based length metrology,” Appl. Opt. 54(19), 6019–6024 (2015).
    [Crossref] [PubMed]
  22. W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning, ” CIRP Ann. – Manufa. Techn. 64(2), 773–796 (2015).
  23. S. J. A. G. Cosijns, H. Haitjema, and P. H. J. Schellekens, “Modeling and verifying non-linearities in heterodyne displacement interferometry,” Precis. Eng. 26(4), 448–455 (2002).
    [Crossref]
  24. P. Hu, Y. Bai, J. Zhao, G. Wu, and J. Tan, “Toward a nonlinearity model for a heterodyne interferometer: not based on double-frequency mixing,” Opt. Express 23(20), 25935–25941 (2015).
    [Crossref] [PubMed]
  25. T. Suzuki, T. Ohizumi, T. Sekimoto, and O. Sasaki, “Disturbance-free distributed Bragg reflector laser-diode interferometer with a double sinusoidal phase-modulating technique for measurement of absolute distance,” Appl. Opt. 43(23), 4482–4487 (2004).
    [Crossref] [PubMed]
  26. Y. Kawata, K. Hyashi, and T. Aoto, “Two-wavelength interferometer based on sinusoidal phase modulation with an acetylene stabilized laser and a second harmonic generation,” Opt. Express 23(12), 16024–16034 (2015).
    [Crossref] [PubMed]
  27. T. Suzuki, T. Okada, O. Sasaki, and T. Maruyama, “Real-time vibration measurement using a feedback type of laser diode interferometer with an optical fiber,” Opt. Eng. 36(9), 2496–2502 (1997).
    [Crossref]
  28. O. Sasaki, J. Xin, S. Choi, and T. Suzuki, “Profile measurement of thin films by backpropagation of multiple-wavelength optical fields with two sinusoidal phase-modulating interferometers,” Opt. Commun. 356, 578–581 (2015).
    [Crossref]
  29. S. Zhang, L. Yan, B. Chen, Z. Xu, and J. Xie, “Real-time phase delay compensation of PGC demodulation in sinusoidal phase-modulation interferometer for nanometer displacement measurement,” Opt. Express 25(1), 472–485 (2017).
    [Crossref] [PubMed]
  30. S. Zhang, B. Chen, L. Yan, and Z. Xu, “Real-time normalization and nonlinearity evaluation methods of the PGC-arctan demodulation in an EOM-based sinusoidal phase modulating interferometer,” Opt. Express 26(2), 605–616 (2018).
    [Crossref] [PubMed]
  31. F. Pollinger, K. Meiners-Hagen, M. Wedde, and A. Abou-Zeid, “Diode-laser-based high-precision absolute distance interferometer of 20 m range,” Appl. Opt. 48(32), 6188–6194 (2009).
    [Crossref] [PubMed]

2018 (1)

2017 (2)

2015 (8)

G. Wang, Y. S. Jang, S. Hyun, B. J. Chun, H. J. Kang, S. Yan, S. W. Kim, and Y. J. Kim, “Absolute positioning by multi-wavelength interferometry referenced to the frequency comb of a femtosecond laser,” Opt. Express 23(7), 9121–9129 (2015).
[Crossref] [PubMed]

G. Prellinger, K. Meiners-Hagen, and F. Pollinger, “Spectroscopicallyin situtraceable heterodyne frequency-scanning interferometry for distances up to 50 m,” Meas. Sci. Technol. 26(8), 084003 (2015).
[Crossref]

O. Sasaki, J. Xin, S. Choi, and T. Suzuki, “Profile measurement of thin films by backpropagation of multiple-wavelength optical fields with two sinusoidal phase-modulating interferometers,” Opt. Commun. 356, 578–581 (2015).
[Crossref]

S. Han, J. D. Ellis, J. Guo, Y. Guo, C. Lu, G. Liu, B. Liu, F. Chen, Z. Zhuang, X. Xu, and Y. Gan, “The correction of vibration in frequency scanning interferometry based absolute distance measurement system for dynamic measurements,” Proc. SPIE 9677, 96772F (2015).

A. B. Mateo and Z. W. Barber, “Precision and accuracy testing of FMCW ladar-based length metrology,” Appl. Opt. 54(19), 6019–6024 (2015).
[Crossref] [PubMed]

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning, ” CIRP Ann. – Manufa. Techn. 64(2), 773–796 (2015).

P. Hu, Y. Bai, J. Zhao, G. Wu, and J. Tan, “Toward a nonlinearity model for a heterodyne interferometer: not based on double-frequency mixing,” Opt. Express 23(20), 25935–25941 (2015).
[Crossref] [PubMed]

Y. Kawata, K. Hyashi, and T. Aoto, “Two-wavelength interferometer based on sinusoidal phase modulation with an acetylene stabilized laser and a second harmonic generation,” Opt. Express 23(12), 16024–16034 (2015).
[Crossref] [PubMed]

2013 (2)

2010 (1)

S. Azouigui, T. Badr, J. P. Wallerand, M. Himbert, J. Salgado, and P. Juncar, “Transportable distance measurement system based on superheterodyne interferometry using two phase-locked frequency-doubled Nd:YAG lasers,” Rev. Sci. Instrum. 81(5), 053112 (2010).
[Crossref] [PubMed]

2009 (2)

S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, and S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20(9), 095302 (2009).
[Crossref]

F. Pollinger, K. Meiners-Hagen, M. Wedde, and A. Abou-Zeid, “Diode-laser-based high-precision absolute distance interferometer of 20 m range,” Appl. Opt. 48(32), 6188–6194 (2009).
[Crossref] [PubMed]

2008 (2)

Y. Salvadé, N. Schuhler, S. Lévêque, and S. Le Floch, “High-accuracy absolute distance measurement using frequency comb referenced multiwavelength source,” Appl. Opt. 47(14), 2715–2720 (2008).
[Crossref] [PubMed]

L. Hartmann, K. Meiners-Hagen, and A. Abou-Zeid, “An absolute distance interferometer with two external cavity diode lasers,” Meas. Sci. Technol. 19(4), 045307 (2008).
[Crossref]

2007 (1)

A. Cabral, “Accuracy of frequency-sweeping interferometry for absolute distance metrology,” Opt. Eng. 46(7), 073602 (2007).
[Crossref]

2006 (3)

J. L. Hall, “Nobel Lecture: Defining and measuring optical frequencies,” Rev. Mod. Phys. 78(4), 1279–1295 (2006).
[Crossref] [PubMed]

T. W. Hänsch, “Nobel Lecture: Passion for precision,” Rev. Mod. Phys. 78(4), 1297–1309 (2006).
[Crossref]

J. Jin, Y.-J. Kim, Y. Kim, S.-W. Kim, and C.-S. Kang, “Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser,” Opt. Express 14(13), 5968–5974 (2006).
[Crossref] [PubMed]

2005 (2)

J. E. Decker, A. Cabral, G.-S. Peng, and J. Rebordao, “Absolute distance metrology with frequency sweeping interferometry,” Proc. SPIE 5879, 58790L (2005).
[Crossref]

B. L. Swinkels, N. Bhattacharya, and J. J. M. Braat, “Correcting movement errors in frequency-sweeping interferometry,” Opt. Lett. 30(17), 2242–2244 (2005).
[Crossref] [PubMed]

2004 (1)

2003 (1)

2002 (3)

S.-H. Lu, C.-I. Chiueh, and C.-C. Lee, “Differential wavelength-scanning heterodyne interferometer for measuring large step height,” Appl. Opt. 41(28), 5866–5871 (2002).
[Crossref] [PubMed]

L. Sheng-Hua and L. Cheng-Chung, “Measuring large step heights by variable synthetic wavelength interferometry,” Meas. Sci. Technol. 13(9), 1382–1387 (2002).
[Crossref]

S. J. A. G. Cosijns, H. Haitjema, and P. H. J. Schellekens, “Modeling and verifying non-linearities in heterodyne displacement interferometry,” Precis. Eng. 26(4), 448–455 (2002).
[Crossref]

2001 (1)

R. Schneider, P. Thuermel, and M. Stockmann, “Distance measurement of moving objects by frequency modulated laser radar,” Opt. Eng. 40(1), 33–38 (2001).
[Crossref]

1997 (1)

T. Suzuki, T. Okada, O. Sasaki, and T. Maruyama, “Real-time vibration measurement using a feedback type of laser diode interferometer with an optical fiber,” Opt. Eng. 36(9), 2496–2502 (1997).
[Crossref]

Abou-Zeid, A.

F. Pollinger, K. Meiners-Hagen, M. Wedde, and A. Abou-Zeid, “Diode-laser-based high-precision absolute distance interferometer of 20 m range,” Appl. Opt. 48(32), 6188–6194 (2009).
[Crossref] [PubMed]

L. Hartmann, K. Meiners-Hagen, and A. Abou-Zeid, “An absolute distance interferometer with two external cavity diode lasers,” Meas. Sci. Technol. 19(4), 045307 (2008).
[Crossref]

Aoto, T.

Azouigui, S.

S. Azouigui, T. Badr, J. P. Wallerand, M. Himbert, J. Salgado, and P. Juncar, “Transportable distance measurement system based on superheterodyne interferometry using two phase-locked frequency-doubled Nd:YAG lasers,” Rev. Sci. Instrum. 81(5), 053112 (2010).
[Crossref] [PubMed]

Badr, T.

S. Azouigui, T. Badr, J. P. Wallerand, M. Himbert, J. Salgado, and P. Juncar, “Transportable distance measurement system based on superheterodyne interferometry using two phase-locked frequency-doubled Nd:YAG lasers,” Rev. Sci. Instrum. 81(5), 053112 (2010).
[Crossref] [PubMed]

Bai, Y.

Barber, Z. W.

Baumann, E.

Bhattacharya, N.

Bosse, H.

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning, ” CIRP Ann. – Manufa. Techn. 64(2), 773–796 (2015).

Braat, J. J. M.

Bustraan, K.

Cabral, A.

A. Cabral, “Accuracy of frequency-sweeping interferometry for absolute distance metrology,” Opt. Eng. 46(7), 073602 (2007).
[Crossref]

J. E. Decker, A. Cabral, G.-S. Peng, and J. Rebordao, “Absolute distance metrology with frequency sweeping interferometry,” Proc. SPIE 5879, 58790L (2005).
[Crossref]

Chen, B.

Chen, F.

S. Han, J. D. Ellis, J. Guo, Y. Guo, C. Lu, G. Liu, B. Liu, F. Chen, Z. Zhuang, X. Xu, and Y. Gan, “The correction of vibration in frequency scanning interferometry based absolute distance measurement system for dynamic measurements,” Proc. SPIE 9677, 96772F (2015).

Chen, Y. L.

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning, ” CIRP Ann. – Manufa. Techn. 64(2), 773–796 (2015).

Cheng-Chung, L.

L. Sheng-Hua and L. Cheng-Chung, “Measuring large step heights by variable synthetic wavelength interferometry,” Meas. Sci. Technol. 13(9), 1382–1387 (2002).
[Crossref]

Chiueh, C.-I.

Choi, S.

O. Sasaki, J. Xin, S. Choi, and T. Suzuki, “Profile measurement of thin films by backpropagation of multiple-wavelength optical fields with two sinusoidal phase-modulating interferometers,” Opt. Commun. 356, 578–581 (2015).
[Crossref]

Chun, B. J.

Coddington, I.

Cosijns, S. J. A. G.

S. J. A. G. Cosijns, H. Haitjema, and P. H. J. Schellekens, “Modeling and verifying non-linearities in heterodyne displacement interferometry,” Precis. Eng. 26(4), 448–455 (2002).
[Crossref]

de Bonth, S.

Decker, J. E.

Deng, Z.

Ellis, J. D.

S. Han, J. D. Ellis, J. Guo, Y. Guo, C. Lu, G. Liu, B. Liu, F. Chen, Z. Zhuang, X. Xu, and Y. Gan, “The correction of vibration in frequency scanning interferometry based absolute distance measurement system for dynamic measurements,” Proc. SPIE 9677, 96772F (2015).

Estler, W. T.

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning, ” CIRP Ann. – Manufa. Techn. 64(2), 773–796 (2015).

Gan, Y.

S. Han, J. D. Ellis, J. Guo, Y. Guo, C. Lu, G. Liu, B. Liu, F. Chen, Z. Zhuang, X. Xu, and Y. Gan, “The correction of vibration in frequency scanning interferometry based absolute distance measurement system for dynamic measurements,” Proc. SPIE 9677, 96772F (2015).

Gao, W.

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning, ” CIRP Ann. – Manufa. Techn. 64(2), 773–796 (2015).

Giorgetta, F. R.

Guo, J.

S. Han, J. D. Ellis, J. Guo, Y. Guo, C. Lu, G. Liu, B. Liu, F. Chen, Z. Zhuang, X. Xu, and Y. Gan, “The correction of vibration in frequency scanning interferometry based absolute distance measurement system for dynamic measurements,” Proc. SPIE 9677, 96772F (2015).

Guo, Y.

S. Han, J. D. Ellis, J. Guo, Y. Guo, C. Lu, G. Liu, B. Liu, F. Chen, Z. Zhuang, X. Xu, and Y. Gan, “The correction of vibration in frequency scanning interferometry based absolute distance measurement system for dynamic measurements,” Proc. SPIE 9677, 96772F (2015).

Haitjema, H.

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning, ” CIRP Ann. – Manufa. Techn. 64(2), 773–796 (2015).

S. J. A. G. Cosijns, H. Haitjema, and P. H. J. Schellekens, “Modeling and verifying non-linearities in heterodyne displacement interferometry,” Precis. Eng. 26(4), 448–455 (2002).
[Crossref]

Hall, J. L.

J. L. Hall, “Nobel Lecture: Defining and measuring optical frequencies,” Rev. Mod. Phys. 78(4), 1279–1295 (2006).
[Crossref] [PubMed]

Han, S.

S. Han, J. D. Ellis, J. Guo, Y. Guo, C. Lu, G. Liu, B. Liu, F. Chen, Z. Zhuang, X. Xu, and Y. Gan, “The correction of vibration in frequency scanning interferometry based absolute distance measurement system for dynamic measurements,” Proc. SPIE 9677, 96772F (2015).

Hänsch, T. W.

T. W. Hänsch, “Nobel Lecture: Passion for precision,” Rev. Mod. Phys. 78(4), 1297–1309 (2006).
[Crossref]

Hartmann, L.

L. Hartmann, K. Meiners-Hagen, and A. Abou-Zeid, “An absolute distance interferometer with two external cavity diode lasers,” Meas. Sci. Technol. 19(4), 045307 (2008).
[Crossref]

Himbert, M.

S. Azouigui, T. Badr, J. P. Wallerand, M. Himbert, J. Salgado, and P. Juncar, “Transportable distance measurement system based on superheterodyne interferometry using two phase-locked frequency-doubled Nd:YAG lasers,” Rev. Sci. Instrum. 81(5), 053112 (2010).
[Crossref] [PubMed]

Hu, P.

Hyashi, K.

Hyun, S.

Jang, Y. S.

Jia, X.

Jin, J.

S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, and S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20(9), 095302 (2009).
[Crossref]

J. Jin, Y.-J. Kim, Y. Kim, S.-W. Kim, and C.-S. Kang, “Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser,” Opt. Express 14(13), 5968–5974 (2006).
[Crossref] [PubMed]

Juncar, P.

S. Azouigui, T. Badr, J. P. Wallerand, M. Himbert, J. Salgado, and P. Juncar, “Transportable distance measurement system based on superheterodyne interferometry using two phase-locked frequency-doubled Nd:YAG lasers,” Rev. Sci. Instrum. 81(5), 053112 (2010).
[Crossref] [PubMed]

Kang, C.-S.

Kang, H. J.

Kawata, Y.

Kim, S. W.

G. Wang, Y. S. Jang, S. Hyun, B. J. Chun, H. J. Kang, S. Yan, S. W. Kim, and Y. J. Kim, “Absolute positioning by multi-wavelength interferometry referenced to the frequency comb of a femtosecond laser,” Opt. Express 23(7), 9121–9129 (2015).
[Crossref] [PubMed]

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning, ” CIRP Ann. – Manufa. Techn. 64(2), 773–796 (2015).

Kim, S.-W.

S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, and S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20(9), 095302 (2009).
[Crossref]

J. Jin, Y.-J. Kim, Y. Kim, S.-W. Kim, and C.-S. Kang, “Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser,” Opt. Express 14(13), 5968–5974 (2006).
[Crossref] [PubMed]

Kim, Y.

S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, and S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20(9), 095302 (2009).
[Crossref]

J. Jin, Y.-J. Kim, Y. Kim, S.-W. Kim, and C.-S. Kang, “Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser,” Opt. Express 14(13), 5968–5974 (2006).
[Crossref] [PubMed]

Kim, Y. J.

Kim, Y.-J.

S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, and S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20(9), 095302 (2009).
[Crossref]

J. Jin, Y.-J. Kim, Y. Kim, S.-W. Kim, and C.-S. Kang, “Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser,” Opt. Express 14(13), 5968–5974 (2006).
[Crossref] [PubMed]

Knabe, K.

Knapp, W.

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning, ” CIRP Ann. – Manufa. Techn. 64(2), 773–796 (2015).

Kunzmann, H.

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning, ” CIRP Ann. – Manufa. Techn. 64(2), 773–796 (2015).

Le Floch, S.

Lee, C.-C.

Lévêque, S.

Li, Y.

Liu, B.

S. Han, J. D. Ellis, J. Guo, Y. Guo, C. Lu, G. Liu, B. Liu, F. Chen, Z. Zhuang, X. Xu, and Y. Gan, “The correction of vibration in frequency scanning interferometry based absolute distance measurement system for dynamic measurements,” Proc. SPIE 9677, 96772F (2015).

Liu, G.

S. Han, J. D. Ellis, J. Guo, Y. Guo, C. Lu, G. Liu, B. Liu, F. Chen, Z. Zhuang, X. Xu, and Y. Gan, “The correction of vibration in frequency scanning interferometry based absolute distance measurement system for dynamic measurements,” Proc. SPIE 9677, 96772F (2015).

Liu, Z.

Lu, C.

S. Han, J. D. Ellis, J. Guo, Y. Guo, C. Lu, G. Liu, B. Liu, F. Chen, Z. Zhuang, X. Xu, and Y. Gan, “The correction of vibration in frequency scanning interferometry based absolute distance measurement system for dynamic measurements,” Proc. SPIE 9677, 96772F (2015).

Lu, S.-H.

Lu, X. D.

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning, ” CIRP Ann. – Manufa. Techn. 64(2), 773–796 (2015).

Madej, A. A.

Maruyama, T.

T. Suzuki, T. Okada, O. Sasaki, and T. Maruyama, “Real-time vibration measurement using a feedback type of laser diode interferometer with an optical fiber,” Opt. Eng. 36(9), 2496–2502 (1997).
[Crossref]

Mateo, A. B.

Meiners-Hagen, K.

G. Prellinger, K. Meiners-Hagen, and F. Pollinger, “Spectroscopicallyin situtraceable heterodyne frequency-scanning interferometry for distances up to 50 m,” Meas. Sci. Technol. 26(8), 084003 (2015).
[Crossref]

F. Pollinger, K. Meiners-Hagen, M. Wedde, and A. Abou-Zeid, “Diode-laser-based high-precision absolute distance interferometer of 20 m range,” Appl. Opt. 48(32), 6188–6194 (2009).
[Crossref] [PubMed]

L. Hartmann, K. Meiners-Hagen, and A. Abou-Zeid, “An absolute distance interferometer with two external cavity diode lasers,” Meas. Sci. Technol. 19(4), 045307 (2008).
[Crossref]

Miles, J. R.

Newbury, N. R.

Ohizumi, T.

Okada, T.

T. Suzuki, T. Okada, O. Sasaki, and T. Maruyama, “Real-time vibration measurement using a feedback type of laser diode interferometer with an optical fiber,” Opt. Eng. 36(9), 2496–2502 (1997).
[Crossref]

Pekelsky, J. R.

Peng, G.-S.

J. E. Decker, A. Cabral, G.-S. Peng, and J. Rebordao, “Absolute distance metrology with frequency sweeping interferometry,” Proc. SPIE 5879, 58790L (2005).
[Crossref]

Pollinger, F.

G. Prellinger, K. Meiners-Hagen, and F. Pollinger, “Spectroscopicallyin situtraceable heterodyne frequency-scanning interferometry for distances up to 50 m,” Meas. Sci. Technol. 26(8), 084003 (2015).
[Crossref]

F. Pollinger, K. Meiners-Hagen, M. Wedde, and A. Abou-Zeid, “Diode-laser-based high-precision absolute distance interferometer of 20 m range,” Appl. Opt. 48(32), 6188–6194 (2009).
[Crossref] [PubMed]

Prellinger, G.

G. Prellinger, K. Meiners-Hagen, and F. Pollinger, “Spectroscopicallyin situtraceable heterodyne frequency-scanning interferometry for distances up to 50 m,” Meas. Sci. Technol. 26(8), 084003 (2015).
[Crossref]

Rebordao, J.

J. E. Decker, A. Cabral, G.-S. Peng, and J. Rebordao, “Absolute distance metrology with frequency sweeping interferometry,” Proc. SPIE 5879, 58790L (2005).
[Crossref]

Ren, L.

Salgado, J.

S. Azouigui, T. Badr, J. P. Wallerand, M. Himbert, J. Salgado, and P. Juncar, “Transportable distance measurement system based on superheterodyne interferometry using two phase-locked frequency-doubled Nd:YAG lasers,” Rev. Sci. Instrum. 81(5), 053112 (2010).
[Crossref] [PubMed]

Salvadé, Y.

Sasaki, O.

O. Sasaki, J. Xin, S. Choi, and T. Suzuki, “Profile measurement of thin films by backpropagation of multiple-wavelength optical fields with two sinusoidal phase-modulating interferometers,” Opt. Commun. 356, 578–581 (2015).
[Crossref]

T. Suzuki, T. Ohizumi, T. Sekimoto, and O. Sasaki, “Disturbance-free distributed Bragg reflector laser-diode interferometer with a double sinusoidal phase-modulating technique for measurement of absolute distance,” Appl. Opt. 43(23), 4482–4487 (2004).
[Crossref] [PubMed]

T. Suzuki, T. Okada, O. Sasaki, and T. Maruyama, “Real-time vibration measurement using a feedback type of laser diode interferometer with an optical fiber,” Opt. Eng. 36(9), 2496–2502 (1997).
[Crossref]

Schellekens, P. H. J.

S. J. A. G. Cosijns, H. Haitjema, and P. H. J. Schellekens, “Modeling and verifying non-linearities in heterodyne displacement interferometry,” Precis. Eng. 26(4), 448–455 (2002).
[Crossref]

Schneider, R.

R. Schneider, P. Thuermel, and M. Stockmann, “Distance measurement of moving objects by frequency modulated laser radar,” Opt. Eng. 40(1), 33–38 (2001).
[Crossref]

Schuhler, N.

Sekimoto, T.

Sheng-Hua, L.

L. Sheng-Hua and L. Cheng-Chung, “Measuring large step heights by variable synthetic wavelength interferometry,” Meas. Sci. Technol. 13(9), 1382–1387 (2002).
[Crossref]

Siemsen, K. J.

Siemsen, R. F.

Sinclair, L. C.

Stockmann, M.

R. Schneider, P. Thuermel, and M. Stockmann, “Distance measurement of moving objects by frequency modulated laser radar,” Opt. Eng. 40(1), 33–38 (2001).
[Crossref]

Suzuki, T.

O. Sasaki, J. Xin, S. Choi, and T. Suzuki, “Profile measurement of thin films by backpropagation of multiple-wavelength optical fields with two sinusoidal phase-modulating interferometers,” Opt. Commun. 356, 578–581 (2015).
[Crossref]

T. Suzuki, T. Ohizumi, T. Sekimoto, and O. Sasaki, “Disturbance-free distributed Bragg reflector laser-diode interferometer with a double sinusoidal phase-modulating technique for measurement of absolute distance,” Appl. Opt. 43(23), 4482–4487 (2004).
[Crossref] [PubMed]

T. Suzuki, T. Okada, O. Sasaki, and T. Maruyama, “Real-time vibration measurement using a feedback type of laser diode interferometer with an optical fiber,” Opt. Eng. 36(9), 2496–2502 (1997).
[Crossref]

Swann, W. C.

Swinkels, B. L.

Tan, J.

Tao, L.

Temple, S.

Thuermel, P.

R. Schneider, P. Thuermel, and M. Stockmann, “Distance measurement of moving objects by frequency modulated laser radar,” Opt. Eng. 40(1), 33–38 (2001).
[Crossref]

Wallerand, J. P.

S. Azouigui, T. Badr, J. P. Wallerand, M. Himbert, J. Salgado, and P. Juncar, “Transportable distance measurement system based on superheterodyne interferometry using two phase-locked frequency-doubled Nd:YAG lasers,” Rev. Sci. Instrum. 81(5), 053112 (2010).
[Crossref] [PubMed]

Wang, G.

Weckenmann, A.

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning, ” CIRP Ann. – Manufa. Techn. 64(2), 773–796 (2015).

Wedde, M.

Wei, H.

Wu, G.

Wu, X.

Xie, J.

Xin, J.

O. Sasaki, J. Xin, S. Choi, and T. Suzuki, “Profile measurement of thin films by backpropagation of multiple-wavelength optical fields with two sinusoidal phase-modulating interferometers,” Opt. Commun. 356, 578–581 (2015).
[Crossref]

Xu, X.

S. Han, J. D. Ellis, J. Guo, Y. Guo, C. Lu, G. Liu, B. Liu, F. Chen, Z. Zhuang, X. Xu, and Y. Gan, “The correction of vibration in frequency scanning interferometry based absolute distance measurement system for dynamic measurements,” Proc. SPIE 9677, 96772F (2015).

Xu, Z.

Yan, L.

Yan, S.

Zhang, H.

Zhang, J.

Zhang, S.

Zhao, J.

Zhuang, Z.

S. Han, J. D. Ellis, J. Guo, Y. Guo, C. Lu, G. Liu, B. Liu, F. Chen, Z. Zhuang, X. Xu, and Y. Gan, “The correction of vibration in frequency scanning interferometry based absolute distance measurement system for dynamic measurements,” Proc. SPIE 9677, 96772F (2015).

Appl. Opt. (7)

J. E. Decker, J. R. Miles, A. A. Madej, R. F. Siemsen, K. J. Siemsen, S. de Bonth, K. Bustraan, S. Temple, and J. R. Pekelsky, “Increasing the range of unambiguity in step-height measurement with multiple-wavelength interferometry--application to absolute long gauge block measurement,” Appl. Opt. 42(28), 5670–5678 (2003).
[Crossref] [PubMed]

Y. Salvadé, N. Schuhler, S. Lévêque, and S. Le Floch, “High-accuracy absolute distance measurement using frequency comb referenced multiwavelength source,” Appl. Opt. 47(14), 2715–2720 (2008).
[Crossref] [PubMed]

S.-H. Lu, C.-I. Chiueh, and C.-C. Lee, “Differential wavelength-scanning heterodyne interferometer for measuring large step height,” Appl. Opt. 41(28), 5866–5871 (2002).
[Crossref] [PubMed]

X. Wu, H. Wei, H. Zhang, L. Ren, Y. Li, and J. Zhang, “Absolute distance measurement using frequency-sweeping heterodyne interferometer calibrated by an optical frequency comb,” Appl. Opt. 52(10), 2042–2048 (2013).
[Crossref] [PubMed]

A. B. Mateo and Z. W. Barber, “Precision and accuracy testing of FMCW ladar-based length metrology,” Appl. Opt. 54(19), 6019–6024 (2015).
[Crossref] [PubMed]

T. Suzuki, T. Ohizumi, T. Sekimoto, and O. Sasaki, “Disturbance-free distributed Bragg reflector laser-diode interferometer with a double sinusoidal phase-modulating technique for measurement of absolute distance,” Appl. Opt. 43(23), 4482–4487 (2004).
[Crossref] [PubMed]

F. Pollinger, K. Meiners-Hagen, M. Wedde, and A. Abou-Zeid, “Diode-laser-based high-precision absolute distance interferometer of 20 m range,” Appl. Opt. 48(32), 6188–6194 (2009).
[Crossref] [PubMed]

CIRP Ann. – Manufa. Techn. (1)

W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning, ” CIRP Ann. – Manufa. Techn. 64(2), 773–796 (2015).

Meas. Sci. Technol. (4)

L. Hartmann, K. Meiners-Hagen, and A. Abou-Zeid, “An absolute distance interferometer with two external cavity diode lasers,” Meas. Sci. Technol. 19(4), 045307 (2008).
[Crossref]

G. Prellinger, K. Meiners-Hagen, and F. Pollinger, “Spectroscopicallyin situtraceable heterodyne frequency-scanning interferometry for distances up to 50 m,” Meas. Sci. Technol. 26(8), 084003 (2015).
[Crossref]

S. Hyun, Y.-J. Kim, Y. Kim, J. Jin, and S.-W. Kim, “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. 20(9), 095302 (2009).
[Crossref]

L. Sheng-Hua and L. Cheng-Chung, “Measuring large step heights by variable synthetic wavelength interferometry,” Meas. Sci. Technol. 13(9), 1382–1387 (2002).
[Crossref]

Opt. Commun. (1)

O. Sasaki, J. Xin, S. Choi, and T. Suzuki, “Profile measurement of thin films by backpropagation of multiple-wavelength optical fields with two sinusoidal phase-modulating interferometers,” Opt. Commun. 356, 578–581 (2015).
[Crossref]

Opt. Eng. (3)

T. Suzuki, T. Okada, O. Sasaki, and T. Maruyama, “Real-time vibration measurement using a feedback type of laser diode interferometer with an optical fiber,” Opt. Eng. 36(9), 2496–2502 (1997).
[Crossref]

R. Schneider, P. Thuermel, and M. Stockmann, “Distance measurement of moving objects by frequency modulated laser radar,” Opt. Eng. 40(1), 33–38 (2001).
[Crossref]

A. Cabral, “Accuracy of frequency-sweeping interferometry for absolute distance metrology,” Opt. Eng. 46(7), 073602 (2007).
[Crossref]

Opt. Express (7)

P. Hu, Y. Bai, J. Zhao, G. Wu, and J. Tan, “Toward a nonlinearity model for a heterodyne interferometer: not based on double-frequency mixing,” Opt. Express 23(20), 25935–25941 (2015).
[Crossref] [PubMed]

Y. Kawata, K. Hyashi, and T. Aoto, “Two-wavelength interferometer based on sinusoidal phase modulation with an acetylene stabilized laser and a second harmonic generation,” Opt. Express 23(12), 16024–16034 (2015).
[Crossref] [PubMed]

S. Zhang, L. Yan, B. Chen, Z. Xu, and J. Xie, “Real-time phase delay compensation of PGC demodulation in sinusoidal phase-modulation interferometer for nanometer displacement measurement,” Opt. Express 25(1), 472–485 (2017).
[Crossref] [PubMed]

S. Zhang, B. Chen, L. Yan, and Z. Xu, “Real-time normalization and nonlinearity evaluation methods of the PGC-arctan demodulation in an EOM-based sinusoidal phase modulating interferometer,” Opt. Express 26(2), 605–616 (2018).
[Crossref] [PubMed]

J. Jin, Y.-J. Kim, Y. Kim, S.-W. Kim, and C.-S. Kang, “Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser,” Opt. Express 14(13), 5968–5974 (2006).
[Crossref] [PubMed]

X. Jia, Z. Liu, L. Tao, and Z. Deng, “Frequency-scanning interferometry using a time-varying Kalman filter for dynamic tracking measurements,” Opt. Express 25(21), 25782–25796 (2017).
[Crossref] [PubMed]

G. Wang, Y. S. Jang, S. Hyun, B. J. Chun, H. J. Kang, S. Yan, S. W. Kim, and Y. J. Kim, “Absolute positioning by multi-wavelength interferometry referenced to the frequency comb of a femtosecond laser,” Opt. Express 23(7), 9121–9129 (2015).
[Crossref] [PubMed]

Opt. Lett. (2)

Precis. Eng. (1)

S. J. A. G. Cosijns, H. Haitjema, and P. H. J. Schellekens, “Modeling and verifying non-linearities in heterodyne displacement interferometry,” Precis. Eng. 26(4), 448–455 (2002).
[Crossref]

Proc. SPIE (2)

S. Han, J. D. Ellis, J. Guo, Y. Guo, C. Lu, G. Liu, B. Liu, F. Chen, Z. Zhuang, X. Xu, and Y. Gan, “The correction of vibration in frequency scanning interferometry based absolute distance measurement system for dynamic measurements,” Proc. SPIE 9677, 96772F (2015).

J. E. Decker, A. Cabral, G.-S. Peng, and J. Rebordao, “Absolute distance metrology with frequency sweeping interferometry,” Proc. SPIE 5879, 58790L (2005).
[Crossref]

Rev. Mod. Phys. (2)

J. L. Hall, “Nobel Lecture: Defining and measuring optical frequencies,” Rev. Mod. Phys. 78(4), 1279–1295 (2006).
[Crossref] [PubMed]

T. W. Hänsch, “Nobel Lecture: Passion for precision,” Rev. Mod. Phys. 78(4), 1297–1309 (2006).
[Crossref]

Rev. Sci. Instrum. (1)

S. Azouigui, T. Badr, J. P. Wallerand, M. Himbert, J. Salgado, and P. Juncar, “Transportable distance measurement system based on superheterodyne interferometry using two phase-locked frequency-doubled Nd:YAG lasers,” Rev. Sci. Instrum. 81(5), 053112 (2010).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the sinusoidal phase modulating ADM interferometer. OFC: optical frequency comb, ECDL: external cavity diode laser, WM: wavelength meter, BS: beam splitter, C: collimator, DM: dichroic mirror, P: polarizer, M: mirror, R: retro-reflector, EOM: electro-optical modulator, PD: photodetector, F: filter.
Fig. 2
Fig. 2 Experimental setup. (a) Laser sources and measurement system of near end; (b) Measurement system of far end.
Fig. 3
Fig. 3 Frequency stability of the OFC-locked ECDL. (a) Spectrum of the beat frequency. (b) Allan deviation of the optical frequency.
Fig. 4
Fig. 4 Stability test of ADM at the distance of 4.259 m
Fig. 5
Fig. 5 Results of ADM. (a) ADM with an increment of 0.5 m for 8m with an offset distance of 0.25 m; (b)ADM with an increment of 3 μm for 15 μm at an offset distance of 8.25 m

Tables (1)

Tables Icon

Table 1 Selected wavelengths of ECDL

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

V ( t ) = β V ω c ( t ) = β A cos ω c t ,
S j ( t ) = S j 0 + S j 1 cos [ φ j - E O M ( t ) + φ j ( t ) ] = S j 0 + S j 1 cos [ z j cos ω c t + φ j ( t ) ] ,
S j ( t ) = S j 0 + S j 1 cos φ j ( t ) [ J 0 ( z j ) + 2 m = 1 ( 1 ) m J 2 m ( z j ) cos 2 m ( ω c t θ ) ] + S j 1 sin φ j ( t ) [ 2 m = 1 ( 1 ) m J 2 m 1 ( z j ) cos ( 2 m 1 ) ( ω c t θ ) ] ,
P j 1 ( t ) = L P F [ S j ( t ) V ω c ( t ) ] J 1 ( z j ) = S j 1 A sin φ j ( t ) ,
P j 2 ( t ) = L P F [ S j ( t ) V 2 ω c ( t ) ] J 2 ( z j ) = S j 1 A cos φ j ( t ) ,
φ j ( t ) = arc tan P j 1 ( t ) P j 2 ( t ) ,
ε j = φ j ( t ) 2 π , ε j [ 0 , 1 ] .
δ L i 1 < λ S i 4 , i = 2 , 3 , , n ,
L 1 = λ S 1 2 ( Δ N E 1 n E 1 ν E 1 n H ν H Δ N H 1 ) .
m S 2 = f l o o r ( 2 L 1 λ S 2 + 0.5 ε S 2 ) ,
Δ N E 20 = n E 2 ν E 2 n H ν H Δ N H 2 .
ε E 2 = { ε E 2 f r a c ( Δ N E 20 ) , ε E 2 f r a c ( Δ N E 20 ) 0 ε E 2 f r a c ( Δ N E 20 ) + 1 , ε E 2 f r a c ( Δ N E 20 ) < 0
ε S 2 = { ε E 2 ε E 0 , ε E 2 ε E 0 0 ε E 2 ε E 0 + 1 , ε E 2 ε E 0 < 0
L 2 = λ S 2 2 ( m S 2 + ε S 2 ) .
L i = λ S i 2 ( m S i + ε S i ) , i =2,3, ... , n
L 1 = λ S 1 2 ( m S 1 + ε S 1 ) ,
m S 1 = f l o o r ( Δ N E 1 n E 1 ν E 1 n H ν H Δ N H 1 ) ,
ε S 1 = { ε S 1 , ε S 1 > 0 ε S 1 + 1 , ε S 1 < 0 , ε S 1 = ε E 1 ε E 0 f r a c ( n E 1 ν E 1 n H ν H Δ N H 1 ) ,
u 2 ( L i ) = ( L i λ S i u ( λ S i ) ) 2 + ( L i ε S i u ( ε S i ) ) 2 = ( L i u ( n E ) n E ) 2 + 2 ( L i λ S i λ E u ( λ E ) λ E ) 2 + ( λ S i 2 u ( ε S i ) ) 2 .
[ ( 1.89 × 10 8 L ) 2 + ( 0.28 μ m ) 2 ] 1 2 ( μ m ) .

Metrics