Abstract

We present a comparative study of electrical measurements of graphene using terahertz time-domain spectroscopy in transmission and reflection mode, and compare the measured sheet conductivity values to electrical van der Pauw measurements made independently in three different laboratories. Overall median conductivity variations of up to 15% were observed between laboratories, which are attributed mainly to the well-known temperature and humidity dependence of non-encapsulated graphene devices. We conclude that terahertz time-domain spectroscopy performed in either reflection mode or transmission modes are indeed very accurate methods for mapping electrical conductivity of graphene, and that both methods are interchangeable within measurement uncertainties. The conductivity obtained via terahertz time-domain spectroscopy were consistently in agreement with electrical van der Pauw measurements, while offering the additional advantages associated with contactless mapping, such as high throughput, no lithography requirement, and with the spatial mapping directly revealing the presence of any inhomogeneities or isolating defects. The confirmation of the accuracy of reflection-mode removes the requirement of a specialized THz-transparent substrate to accurately measure the conductivity.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Conductivity mapping of graphene on polymeric films by terahertz time-domain spectroscopy

Patrick R. Whelan, Deping Huang, David Mackenzie, Sara A. Messina, Zhancheng Li, Xin Li, Yunqing Li, Timothy J. Booth, Peter U. Jepsen, Haofei Shi, and Peter Bøggild
Opt. Express 26(14) 17748-17754 (2018)

Terahertz wafer-scale mobility mapping of graphene on insulating substrates without a gate

Jonas D. Buron, David M. A. Mackenzie, Dirch. H. Petersen, Amaia Pesquera, Alba Centeno, Peter Bøggild, Amaia Zurutuza, and Peter U. Jepsen
Opt. Express 23(24) 30721-30729 (2015)

Robust mapping of electrical properties of graphene from terahertz time-domain spectroscopy with timing jitter correction

Patrick R. Whelan, Krzysztof Iwaszczuk, Ruizhi Wang, Stephan Hofmann, Peter Bøggild, and Peter Uhd Jepsen
Opt. Express 25(3) 2725-2732 (2017)

References

  • View by:
  • |
  • |
  • |

  1. H. J. Yoon, D. H. Jun, J. H. Yang, Z. Zhou, S. S. Yang, and M. M. C. Cheng, “Carbon dioxide gas sensor using a graphene sheet,” Sens. Actuators B Chem. 157(1), 310–313 (2011).
    [Crossref]
  2. F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
    [Crossref] [PubMed]
  3. A. Cagliani, D. M. A. Mackenzie, L. K. Tschammer, F. Pizzocchero, K. Almdal, and P. Bøggild, “Large-area nanopatterned graphene for ultrasensitive gas sensing,” Nano Res. 7(5), 743–754 (2014).
    [Crossref]
  4. Y.-M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer, and P. Avouris, “Operation of graphene transistors at gigahertz frequencies,” Nano Lett. 9(1), 422–426 (2009).
    [Crossref] [PubMed]
  5. D. M. A. Mackenzie, A. Cagliani, L. Gammelgaard, B. S. Jessen, D. H. Petersen, and P. Bøggild, “Graphene antidot lattice transport measurements,” Int. J. Nanotechnol. 14(1–6), 226 (2017).
  6. F. Schwierz, “Graphene transistors,” Nat. Nanotechnol. 5(7), 487–496 (2010).
    [Crossref] [PubMed]
  7. J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes,” ACS Nano 4(1), 43–48 (2010).
    [Crossref] [PubMed]
  8. T.-H. Han, Y. Lee, M.-R. Choi, S.-H. Woo, S.-H. Bae, B. H. Hong, J.-H. Ahn, and T.-W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
    [Crossref]
  9. T. Sun, Z. L. Wang, Z. J. Shi, G. Z. Ran, W. J. Xu, Z. Y. Wang, Y. Z. Li, L. Dai, and G. G. Qin, “Multilayered graphene used as anode of organic light emitting devices,” Appl. Phys. Lett. 96(13), 133301 (2010).
    [Crossref]
  10. M. Galbiati, A. C. Stoot, D. M. A. Mackenzie, P. Bøggild, and L. Camilli, “Real-time oxide evolution of copper protected by graphene and boron nitride barriers,” Sci. Rep. 7(2), 39770 (2017).
    [Crossref] [PubMed]
  11. N. T. Kirkland, T. Schiller, N. Medhekar, and N. Birbilis, “Exploring graphene as a corrosion protection barrier,” Corros. Sci. 56, 1–4 (2012).
    [Crossref]
  12. F. Yu, L. Camilli, T. Wang, D. M. A. Mackenzie, M. Curioni, R. Akid, and P. Bøggild, “Complete long-term corrosion protection with chemical vapor deposited graphene,” Carbon 132, 78–84 (2018).
    [Crossref]
  13. F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: A platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
    [Crossref] [PubMed]
  14. Q. Wang, C. Z. Li, S. Ge, J. G. Li, W. Lu, J. Lai, X. Liu, J. Ma, D. P. Yu, Z. M. Liao, and D. Sun, “Ultrafast Broadband Photodetectors Based on Three-Dimensional Dirac Semimetal Cd3As2,” Nano Lett. 17(2), 834–841 (2017).
    [Crossref] [PubMed]
  15. X. Guo, W. Wang, H. Nan, Y. Yu, J. Jiang, W. Zhao, J. Li, Z. Zafar, N. Xiang, Z. Ni, W. Hu, Y. You, and Z. Ni, “High-performance graphene photodetector using interfacial gating,” Optica 3(10), 1066 (2016).
    [Crossref]
  16. V. Miseikis, D. Convertino, N. Mishra, M. Gemmi, T. Mashoff, S. Heun, N. Haghighian, F. Bisio, M. Canepa, V. Piazza, and C. Coletti, “Rapid CVD growth of millimetre-sized single crystal graphene using a cold-wall reactor,” 2D Mater. 2(1), 014006 (2015).
  17. B. Luo, J. M. Caridad, P. R. Whelan, J. D. Thomsen, D. M. A. Mackenzie, A. Grubišić Čabo, S. K. Mahatha, M. Bianchi, P. Hofmann, P. U. Jepsen, P. Bøggild, and T. J. Booth, “Sputtering an exterior metal coating on copper enclosure for large-scale growth of single-crystalline graphene,” 2D Mater. 4(4), 045017 (2017).
  18. S. Dhingra, J. F. Hsu, I. Vlassiouk, and B. D’Urso, “Chemical vapor deposition of graphene on large-domain ultra-flat copper,” Carbon 69, 188–193 (2014).
    [Crossref]
  19. M. Kim, A. Shah, C. Li, P. Mustonen, J. Susoma, F. Manoocheri, J. Riikonen, and H. Lipsanen, “Direct transfer of Wafer-scale graphene films,” 2D Mater. 4(3), 035004 (2017).
  20. P. R. Whelan, B. S. Jessen, R. Wang, B. Luo, A. C. Stoot, D. M. A. Mackenzie, P. Braeuninger-Weimer, A. Jouvray, L. Prager, L. Camilli, S. Hofmann, P. Bøggild, and T. J. Booth, “Raman spectral indicators of catalyst decoupling for transfer of CVD grown 2D materials,” Carbon 117, 75–81 (2017).
    [Crossref]
  21. T. Yager, A. Lartsev, R. Yakimova, S. Lara-Avila, and S. Kubatkin, “Wafer-scale homogeneity of transport properties in epitaxial graphene on SiC,” Carbon 87(C), 409–414 (2015).
    [Crossref]
  22. P. Bøggild, D. M. A. Mackenzie, P. R. Whelan, D. H. Petersen, J. D. Buron, A. Zurutuza, J. Gallop, L. Hao, and P. U. Jepsen, “Mapping the electrical properties of large-area graphene,” 2D Mater. 4(4), 042003 (2017).
  23. L. Gammelgaard, J. M. Caridad, A. Cagliani, D. M. A. MacKenzie, D. H. Petersen, T. J. Booth, and P. Bøggild, “Graphene transport properties upon exposure to PMMA processing and heat treatments,” 2D Mater. 1(3), 1–6 (2014).
  24. J. D. Buron, F. Pizzocchero, P. U. Jepsen, D. H. Petersen, J. M. Caridad, B. S. Jessen, T. J. Booth, and P. Bøggild, “Graphene mobility mapping,” Sci. Rep. 5(1), 12305 (2015).
    [Crossref] [PubMed]
  25. J. D. Buron, D. M. A. Mackenzie, D. H. Petersen, A. Pesquera, A. Centeno, P. Bøggild, A. Zurutuza, and P. U. Jepsen, “Terahertz wafer-scale mobility mapping of graphene on insulating substrates without a gate,” Opt. Express 23(24), 30721–30729 (2015).
    [Crossref] [PubMed]
  26. D. M. A. Mackenzie, J. D. Buron, P. R. Whelan, B. S. Jessen, A. Silajdźić, A. Pesquera, A. Centeno, A. Zurutuza, P. Bøggild, and D. H. Petersen, “Fabrication of CVD graphene-based devices via laser ablation for wafer-scale characterization,” 2D Mater. 2(4), 045003 (2015).
  27. J. D. Buron, D. H. Petersen, P. Bøggild, D. G. Cooke, M. Hilke, J. Sun, E. Whiteway, P. F. Nielsen, O. Hansen, A. Yurgens, and P. U. Jepsen, “Graphene conductance uniformity mapping,” Nano Lett. 12(10), 5074–5081 (2012).
    [Crossref] [PubMed]
  28. P. R. Whelan, K. Iwaszczuk, R. Wang, S. Hofmann, P. Bøggild, and P. U. Jepsen, “Robust mapping of electrical properties of graphene from terahertz time-domain spectroscopy with timing jitter correction,” Opt. Express 25(3), 2725–2732 (2017).
    [Crossref] [PubMed]
  29. R. E. Glover and M. Tinkham, “Conductivity of superconducting films for photon energies between 0.3 and 40kTc,” Phys. Rev. 108(2), 243–256 (1957).
    [Crossref]
  30. D. M. A. Mackenzie, J. D. Buron, P. Boaggild, P. U. Jepsen, and D. H. Petersen, “Contactless graphene conductance measurements: the effect of device fabrication on terahertz time-domain spectroscopy,” Int. J. Nanotechnol. 13(8/9), 591 (2016).
    [Crossref]
  31. D. M. A. Mackenzie, J. D. Buron, P. R. Whelan, J. M. Caridad, M. Bjergfelt, B. Luo, A. Shivayogimath, A. L. Smitshuysen, J. D. Thomsen, T. J. Booth, L. Gammelgaard, J. Zultak, B. S. Jessen, P. Bøggild, and D. H. Petersen, “Quality assessment of graphene: Continuity, uniformity, and accuracy of mobility measurements,” Nano Res. 10(10), 3596–3605 (2017).
    [Crossref]
  32. L. J. van der Pauw, “A meothd of measuring the resistivity and Hall coefficent of lamellae of arbitrary shape,” Phillips Tech. Rev. 20(I), 220–224 (1958).
  33. J. Náhlík, I. Kašpárková, and P. Fitl, “Study of quantitative influence of sample defects on measurements of resistivity of thin films using van der Pauw method,” Meas. J. Int. Meas. Confed. 44(10), 1968–1979 (2011).
    [Crossref]
  34. J. Heo, H. J. Chung, S.-H. Lee, H. Yang, D. H. Seo, J. K. Shin, U.-I. Chung, S. Seo, E. H. Hwang, and S. Das Sarma, “Nonmonotonic temperature dependent transport in graphene grown by chemical vapor deposition,” Phys. Rev. B 84(3), 035421 (2011).
    [Crossref]
  35. D. M. A. Mackenzie, K. Smistrup, P. R. Whelan, B. Luo, A. Shivayogimath, T. Nielsen, D. H. Petersen, S. A. Messina, and P. Bøggild, “Batch fabrication of nanopatterned graphene devices via nanoimprint lithography,” Appl. Phys. Lett. 111(19), 193103 (2017).
    [Crossref]
  36. A. D. Smith, K. Elgammal, F. Niklaus, A. Delin, A. C. Fischer, S. Vaziri, F. Forsberg, M. Råsander, H. Hugosson, L. Bergqvist, S. Schröder, S. Kataria, M. Östling, and M. C. Lemme, “Resistive graphene humidity sensors with rapid and direct electrical readout,” Nanoscale 7(45), 19099–19109 (2015).
    [Crossref] [PubMed]
  37. M. B. B. S. Larsen, D. M. A. Mackenzie, J. M. Caridad, P. Bøggild, and T. J. Booth, “Transfer induced compressive strain in graphene: Evidence from Raman spectroscopic mapping,” Microelectron. Eng. 121, 113–117 (2014).
    [Crossref]
  38. A. C. Ferrari and D. M. Basko, “Raman spectroscopy as a versatile tool for studying the properties of graphene,” Nat. Nanotechnol. 8(4), 235–246 (2013).
    [Crossref] [PubMed]
  39. W. Yuan and G. Shi, “Graphene-based gas sensors,” J. Mater. Chem. A Mater. Energy Sustain. 1(35), 10078 (2013).
    [Crossref]
  40. I. Childres, L. A. Jauregui, J. Tian, and Y. P. Chen, “Effect of oxygen plasma etching on graphene studied using Raman spectroscopy and electronic transport measurements,” New J. Phys. 13(2), 025008 (2011).
    [Crossref]
  41. D. W. Koon, F. Wang, D. H. Petersen, and O. Hansen, “Sensitivity of resistive and Hall measurements to local inhomogeneities: Finite-field, intensity, and area corrections,” J. Appl. Phys. 116(13), 133706 (2014).
    [Crossref]

2018 (1)

F. Yu, L. Camilli, T. Wang, D. M. A. Mackenzie, M. Curioni, R. Akid, and P. Bøggild, “Complete long-term corrosion protection with chemical vapor deposited graphene,” Carbon 132, 78–84 (2018).
[Crossref]

2017 (10)

M. Galbiati, A. C. Stoot, D. M. A. Mackenzie, P. Bøggild, and L. Camilli, “Real-time oxide evolution of copper protected by graphene and boron nitride barriers,” Sci. Rep. 7(2), 39770 (2017).
[Crossref] [PubMed]

Q. Wang, C. Z. Li, S. Ge, J. G. Li, W. Lu, J. Lai, X. Liu, J. Ma, D. P. Yu, Z. M. Liao, and D. Sun, “Ultrafast Broadband Photodetectors Based on Three-Dimensional Dirac Semimetal Cd3As2,” Nano Lett. 17(2), 834–841 (2017).
[Crossref] [PubMed]

B. Luo, J. M. Caridad, P. R. Whelan, J. D. Thomsen, D. M. A. Mackenzie, A. Grubišić Čabo, S. K. Mahatha, M. Bianchi, P. Hofmann, P. U. Jepsen, P. Bøggild, and T. J. Booth, “Sputtering an exterior metal coating on copper enclosure for large-scale growth of single-crystalline graphene,” 2D Mater. 4(4), 045017 (2017).

D. M. A. Mackenzie, A. Cagliani, L. Gammelgaard, B. S. Jessen, D. H. Petersen, and P. Bøggild, “Graphene antidot lattice transport measurements,” Int. J. Nanotechnol. 14(1–6), 226 (2017).

M. Kim, A. Shah, C. Li, P. Mustonen, J. Susoma, F. Manoocheri, J. Riikonen, and H. Lipsanen, “Direct transfer of Wafer-scale graphene films,” 2D Mater. 4(3), 035004 (2017).

P. R. Whelan, B. S. Jessen, R. Wang, B. Luo, A. C. Stoot, D. M. A. Mackenzie, P. Braeuninger-Weimer, A. Jouvray, L. Prager, L. Camilli, S. Hofmann, P. Bøggild, and T. J. Booth, “Raman spectral indicators of catalyst decoupling for transfer of CVD grown 2D materials,” Carbon 117, 75–81 (2017).
[Crossref]

P. Bøggild, D. M. A. Mackenzie, P. R. Whelan, D. H. Petersen, J. D. Buron, A. Zurutuza, J. Gallop, L. Hao, and P. U. Jepsen, “Mapping the electrical properties of large-area graphene,” 2D Mater. 4(4), 042003 (2017).

P. R. Whelan, K. Iwaszczuk, R. Wang, S. Hofmann, P. Bøggild, and P. U. Jepsen, “Robust mapping of electrical properties of graphene from terahertz time-domain spectroscopy with timing jitter correction,” Opt. Express 25(3), 2725–2732 (2017).
[Crossref] [PubMed]

D. M. A. Mackenzie, J. D. Buron, P. R. Whelan, J. M. Caridad, M. Bjergfelt, B. Luo, A. Shivayogimath, A. L. Smitshuysen, J. D. Thomsen, T. J. Booth, L. Gammelgaard, J. Zultak, B. S. Jessen, P. Bøggild, and D. H. Petersen, “Quality assessment of graphene: Continuity, uniformity, and accuracy of mobility measurements,” Nano Res. 10(10), 3596–3605 (2017).
[Crossref]

D. M. A. Mackenzie, K. Smistrup, P. R. Whelan, B. Luo, A. Shivayogimath, T. Nielsen, D. H. Petersen, S. A. Messina, and P. Bøggild, “Batch fabrication of nanopatterned graphene devices via nanoimprint lithography,” Appl. Phys. Lett. 111(19), 193103 (2017).
[Crossref]

2016 (2)

X. Guo, W. Wang, H. Nan, Y. Yu, J. Jiang, W. Zhao, J. Li, Z. Zafar, N. Xiang, Z. Ni, W. Hu, Y. You, and Z. Ni, “High-performance graphene photodetector using interfacial gating,” Optica 3(10), 1066 (2016).
[Crossref]

D. M. A. Mackenzie, J. D. Buron, P. Boaggild, P. U. Jepsen, and D. H. Petersen, “Contactless graphene conductance measurements: the effect of device fabrication on terahertz time-domain spectroscopy,” Int. J. Nanotechnol. 13(8/9), 591 (2016).
[Crossref]

2015 (6)

V. Miseikis, D. Convertino, N. Mishra, M. Gemmi, T. Mashoff, S. Heun, N. Haghighian, F. Bisio, M. Canepa, V. Piazza, and C. Coletti, “Rapid CVD growth of millimetre-sized single crystal graphene using a cold-wall reactor,” 2D Mater. 2(1), 014006 (2015).

A. D. Smith, K. Elgammal, F. Niklaus, A. Delin, A. C. Fischer, S. Vaziri, F. Forsberg, M. Råsander, H. Hugosson, L. Bergqvist, S. Schröder, S. Kataria, M. Östling, and M. C. Lemme, “Resistive graphene humidity sensors with rapid and direct electrical readout,” Nanoscale 7(45), 19099–19109 (2015).
[Crossref] [PubMed]

T. Yager, A. Lartsev, R. Yakimova, S. Lara-Avila, and S. Kubatkin, “Wafer-scale homogeneity of transport properties in epitaxial graphene on SiC,” Carbon 87(C), 409–414 (2015).
[Crossref]

J. D. Buron, F. Pizzocchero, P. U. Jepsen, D. H. Petersen, J. M. Caridad, B. S. Jessen, T. J. Booth, and P. Bøggild, “Graphene mobility mapping,” Sci. Rep. 5(1), 12305 (2015).
[Crossref] [PubMed]

J. D. Buron, D. M. A. Mackenzie, D. H. Petersen, A. Pesquera, A. Centeno, P. Bøggild, A. Zurutuza, and P. U. Jepsen, “Terahertz wafer-scale mobility mapping of graphene on insulating substrates without a gate,” Opt. Express 23(24), 30721–30729 (2015).
[Crossref] [PubMed]

D. M. A. Mackenzie, J. D. Buron, P. R. Whelan, B. S. Jessen, A. Silajdźić, A. Pesquera, A. Centeno, A. Zurutuza, P. Bøggild, and D. H. Petersen, “Fabrication of CVD graphene-based devices via laser ablation for wafer-scale characterization,” 2D Mater. 2(4), 045003 (2015).

2014 (5)

L. Gammelgaard, J. M. Caridad, A. Cagliani, D. M. A. MacKenzie, D. H. Petersen, T. J. Booth, and P. Bøggild, “Graphene transport properties upon exposure to PMMA processing and heat treatments,” 2D Mater. 1(3), 1–6 (2014).

M. B. B. S. Larsen, D. M. A. Mackenzie, J. M. Caridad, P. Bøggild, and T. J. Booth, “Transfer induced compressive strain in graphene: Evidence from Raman spectroscopic mapping,” Microelectron. Eng. 121, 113–117 (2014).
[Crossref]

S. Dhingra, J. F. Hsu, I. Vlassiouk, and B. D’Urso, “Chemical vapor deposition of graphene on large-domain ultra-flat copper,” Carbon 69, 188–193 (2014).
[Crossref]

A. Cagliani, D. M. A. Mackenzie, L. K. Tschammer, F. Pizzocchero, K. Almdal, and P. Bøggild, “Large-area nanopatterned graphene for ultrasensitive gas sensing,” Nano Res. 7(5), 743–754 (2014).
[Crossref]

D. W. Koon, F. Wang, D. H. Petersen, and O. Hansen, “Sensitivity of resistive and Hall measurements to local inhomogeneities: Finite-field, intensity, and area corrections,” J. Appl. Phys. 116(13), 133706 (2014).
[Crossref]

2013 (2)

A. C. Ferrari and D. M. Basko, “Raman spectroscopy as a versatile tool for studying the properties of graphene,” Nat. Nanotechnol. 8(4), 235–246 (2013).
[Crossref] [PubMed]

W. Yuan and G. Shi, “Graphene-based gas sensors,” J. Mater. Chem. A Mater. Energy Sustain. 1(35), 10078 (2013).
[Crossref]

2012 (3)

J. D. Buron, D. H. Petersen, P. Bøggild, D. G. Cooke, M. Hilke, J. Sun, E. Whiteway, P. F. Nielsen, O. Hansen, A. Yurgens, and P. U. Jepsen, “Graphene conductance uniformity mapping,” Nano Lett. 12(10), 5074–5081 (2012).
[Crossref] [PubMed]

T.-H. Han, Y. Lee, M.-R. Choi, S.-H. Woo, S.-H. Bae, B. H. Hong, J.-H. Ahn, and T.-W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

N. T. Kirkland, T. Schiller, N. Medhekar, and N. Birbilis, “Exploring graphene as a corrosion protection barrier,” Corros. Sci. 56, 1–4 (2012).
[Crossref]

2011 (5)

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: A platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

H. J. Yoon, D. H. Jun, J. H. Yang, Z. Zhou, S. S. Yang, and M. M. C. Cheng, “Carbon dioxide gas sensor using a graphene sheet,” Sens. Actuators B Chem. 157(1), 310–313 (2011).
[Crossref]

I. Childres, L. A. Jauregui, J. Tian, and Y. P. Chen, “Effect of oxygen plasma etching on graphene studied using Raman spectroscopy and electronic transport measurements,” New J. Phys. 13(2), 025008 (2011).
[Crossref]

J. Náhlík, I. Kašpárková, and P. Fitl, “Study of quantitative influence of sample defects on measurements of resistivity of thin films using van der Pauw method,” Meas. J. Int. Meas. Confed. 44(10), 1968–1979 (2011).
[Crossref]

J. Heo, H. J. Chung, S.-H. Lee, H. Yang, D. H. Seo, J. K. Shin, U.-I. Chung, S. Seo, E. H. Hwang, and S. Das Sarma, “Nonmonotonic temperature dependent transport in graphene grown by chemical vapor deposition,” Phys. Rev. B 84(3), 035421 (2011).
[Crossref]

2010 (3)

T. Sun, Z. L. Wang, Z. J. Shi, G. Z. Ran, W. J. Xu, Z. Y. Wang, Y. Z. Li, L. Dai, and G. G. Qin, “Multilayered graphene used as anode of organic light emitting devices,” Appl. Phys. Lett. 96(13), 133301 (2010).
[Crossref]

F. Schwierz, “Graphene transistors,” Nat. Nanotechnol. 5(7), 487–496 (2010).
[Crossref] [PubMed]

J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes,” ACS Nano 4(1), 43–48 (2010).
[Crossref] [PubMed]

2009 (1)

Y.-M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer, and P. Avouris, “Operation of graphene transistors at gigahertz frequencies,” Nano Lett. 9(1), 422–426 (2009).
[Crossref] [PubMed]

2007 (1)

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

1958 (1)

L. J. van der Pauw, “A meothd of measuring the resistivity and Hall coefficent of lamellae of arbitrary shape,” Phillips Tech. Rev. 20(I), 220–224 (1958).

1957 (1)

R. E. Glover and M. Tinkham, “Conductivity of superconducting films for photon energies between 0.3 and 40kTc,” Phys. Rev. 108(2), 243–256 (1957).
[Crossref]

Agrawal, M.

J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes,” ACS Nano 4(1), 43–48 (2010).
[Crossref] [PubMed]

Ahn, J.-H.

T.-H. Han, Y. Lee, M.-R. Choi, S.-H. Woo, S.-H. Bae, B. H. Hong, J.-H. Ahn, and T.-W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

Akid, R.

F. Yu, L. Camilli, T. Wang, D. M. A. Mackenzie, M. Curioni, R. Akid, and P. Bøggild, “Complete long-term corrosion protection with chemical vapor deposited graphene,” Carbon 132, 78–84 (2018).
[Crossref]

Almdal, K.

A. Cagliani, D. M. A. Mackenzie, L. K. Tschammer, F. Pizzocchero, K. Almdal, and P. Bøggild, “Large-area nanopatterned graphene for ultrasensitive gas sensing,” Nano Res. 7(5), 743–754 (2014).
[Crossref]

Avouris, P.

Y.-M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer, and P. Avouris, “Operation of graphene transistors at gigahertz frequencies,” Nano Lett. 9(1), 422–426 (2009).
[Crossref] [PubMed]

Bae, S.-H.

T.-H. Han, Y. Lee, M.-R. Choi, S.-H. Woo, S.-H. Bae, B. H. Hong, J.-H. Ahn, and T.-W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

Bao, Z.

J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes,” ACS Nano 4(1), 43–48 (2010).
[Crossref] [PubMed]

Basko, D. M.

A. C. Ferrari and D. M. Basko, “Raman spectroscopy as a versatile tool for studying the properties of graphene,” Nat. Nanotechnol. 8(4), 235–246 (2013).
[Crossref] [PubMed]

Becerril, H. A.

J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes,” ACS Nano 4(1), 43–48 (2010).
[Crossref] [PubMed]

Bergqvist, L.

A. D. Smith, K. Elgammal, F. Niklaus, A. Delin, A. C. Fischer, S. Vaziri, F. Forsberg, M. Råsander, H. Hugosson, L. Bergqvist, S. Schröder, S. Kataria, M. Östling, and M. C. Lemme, “Resistive graphene humidity sensors with rapid and direct electrical readout,” Nanoscale 7(45), 19099–19109 (2015).
[Crossref] [PubMed]

Bianchi, M.

B. Luo, J. M. Caridad, P. R. Whelan, J. D. Thomsen, D. M. A. Mackenzie, A. Grubišić Čabo, S. K. Mahatha, M. Bianchi, P. Hofmann, P. U. Jepsen, P. Bøggild, and T. J. Booth, “Sputtering an exterior metal coating on copper enclosure for large-scale growth of single-crystalline graphene,” 2D Mater. 4(4), 045017 (2017).

Birbilis, N.

N. T. Kirkland, T. Schiller, N. Medhekar, and N. Birbilis, “Exploring graphene as a corrosion protection barrier,” Corros. Sci. 56, 1–4 (2012).
[Crossref]

Bisio, F.

V. Miseikis, D. Convertino, N. Mishra, M. Gemmi, T. Mashoff, S. Heun, N. Haghighian, F. Bisio, M. Canepa, V. Piazza, and C. Coletti, “Rapid CVD growth of millimetre-sized single crystal graphene using a cold-wall reactor,” 2D Mater. 2(1), 014006 (2015).

Bjergfelt, M.

D. M. A. Mackenzie, J. D. Buron, P. R. Whelan, J. M. Caridad, M. Bjergfelt, B. Luo, A. Shivayogimath, A. L. Smitshuysen, J. D. Thomsen, T. J. Booth, L. Gammelgaard, J. Zultak, B. S. Jessen, P. Bøggild, and D. H. Petersen, “Quality assessment of graphene: Continuity, uniformity, and accuracy of mobility measurements,” Nano Res. 10(10), 3596–3605 (2017).
[Crossref]

Blake, P.

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

Boaggild, P.

D. M. A. Mackenzie, J. D. Buron, P. Boaggild, P. U. Jepsen, and D. H. Petersen, “Contactless graphene conductance measurements: the effect of device fabrication on terahertz time-domain spectroscopy,” Int. J. Nanotechnol. 13(8/9), 591 (2016).
[Crossref]

Bøggild, P.

F. Yu, L. Camilli, T. Wang, D. M. A. Mackenzie, M. Curioni, R. Akid, and P. Bøggild, “Complete long-term corrosion protection with chemical vapor deposited graphene,” Carbon 132, 78–84 (2018).
[Crossref]

B. Luo, J. M. Caridad, P. R. Whelan, J. D. Thomsen, D. M. A. Mackenzie, A. Grubišić Čabo, S. K. Mahatha, M. Bianchi, P. Hofmann, P. U. Jepsen, P. Bøggild, and T. J. Booth, “Sputtering an exterior metal coating on copper enclosure for large-scale growth of single-crystalline graphene,” 2D Mater. 4(4), 045017 (2017).

P. R. Whelan, B. S. Jessen, R. Wang, B. Luo, A. C. Stoot, D. M. A. Mackenzie, P. Braeuninger-Weimer, A. Jouvray, L. Prager, L. Camilli, S. Hofmann, P. Bøggild, and T. J. Booth, “Raman spectral indicators of catalyst decoupling for transfer of CVD grown 2D materials,” Carbon 117, 75–81 (2017).
[Crossref]

P. Bøggild, D. M. A. Mackenzie, P. R. Whelan, D. H. Petersen, J. D. Buron, A. Zurutuza, J. Gallop, L. Hao, and P. U. Jepsen, “Mapping the electrical properties of large-area graphene,” 2D Mater. 4(4), 042003 (2017).

D. M. A. Mackenzie, A. Cagliani, L. Gammelgaard, B. S. Jessen, D. H. Petersen, and P. Bøggild, “Graphene antidot lattice transport measurements,” Int. J. Nanotechnol. 14(1–6), 226 (2017).

M. Galbiati, A. C. Stoot, D. M. A. Mackenzie, P. Bøggild, and L. Camilli, “Real-time oxide evolution of copper protected by graphene and boron nitride barriers,” Sci. Rep. 7(2), 39770 (2017).
[Crossref] [PubMed]

D. M. A. Mackenzie, K. Smistrup, P. R. Whelan, B. Luo, A. Shivayogimath, T. Nielsen, D. H. Petersen, S. A. Messina, and P. Bøggild, “Batch fabrication of nanopatterned graphene devices via nanoimprint lithography,” Appl. Phys. Lett. 111(19), 193103 (2017).
[Crossref]

D. M. A. Mackenzie, J. D. Buron, P. R. Whelan, J. M. Caridad, M. Bjergfelt, B. Luo, A. Shivayogimath, A. L. Smitshuysen, J. D. Thomsen, T. J. Booth, L. Gammelgaard, J. Zultak, B. S. Jessen, P. Bøggild, and D. H. Petersen, “Quality assessment of graphene: Continuity, uniformity, and accuracy of mobility measurements,” Nano Res. 10(10), 3596–3605 (2017).
[Crossref]

P. R. Whelan, K. Iwaszczuk, R. Wang, S. Hofmann, P. Bøggild, and P. U. Jepsen, “Robust mapping of electrical properties of graphene from terahertz time-domain spectroscopy with timing jitter correction,” Opt. Express 25(3), 2725–2732 (2017).
[Crossref] [PubMed]

J. D. Buron, D. M. A. Mackenzie, D. H. Petersen, A. Pesquera, A. Centeno, P. Bøggild, A. Zurutuza, and P. U. Jepsen, “Terahertz wafer-scale mobility mapping of graphene on insulating substrates without a gate,” Opt. Express 23(24), 30721–30729 (2015).
[Crossref] [PubMed]

D. M. A. Mackenzie, J. D. Buron, P. R. Whelan, B. S. Jessen, A. Silajdźić, A. Pesquera, A. Centeno, A. Zurutuza, P. Bøggild, and D. H. Petersen, “Fabrication of CVD graphene-based devices via laser ablation for wafer-scale characterization,” 2D Mater. 2(4), 045003 (2015).

J. D. Buron, F. Pizzocchero, P. U. Jepsen, D. H. Petersen, J. M. Caridad, B. S. Jessen, T. J. Booth, and P. Bøggild, “Graphene mobility mapping,” Sci. Rep. 5(1), 12305 (2015).
[Crossref] [PubMed]

L. Gammelgaard, J. M. Caridad, A. Cagliani, D. M. A. MacKenzie, D. H. Petersen, T. J. Booth, and P. Bøggild, “Graphene transport properties upon exposure to PMMA processing and heat treatments,” 2D Mater. 1(3), 1–6 (2014).

M. B. B. S. Larsen, D. M. A. Mackenzie, J. M. Caridad, P. Bøggild, and T. J. Booth, “Transfer induced compressive strain in graphene: Evidence from Raman spectroscopic mapping,” Microelectron. Eng. 121, 113–117 (2014).
[Crossref]

A. Cagliani, D. M. A. Mackenzie, L. K. Tschammer, F. Pizzocchero, K. Almdal, and P. Bøggild, “Large-area nanopatterned graphene for ultrasensitive gas sensing,” Nano Res. 7(5), 743–754 (2014).
[Crossref]

J. D. Buron, D. H. Petersen, P. Bøggild, D. G. Cooke, M. Hilke, J. Sun, E. Whiteway, P. F. Nielsen, O. Hansen, A. Yurgens, and P. U. Jepsen, “Graphene conductance uniformity mapping,” Nano Lett. 12(10), 5074–5081 (2012).
[Crossref] [PubMed]

Booth, T. J.

D. M. A. Mackenzie, J. D. Buron, P. R. Whelan, J. M. Caridad, M. Bjergfelt, B. Luo, A. Shivayogimath, A. L. Smitshuysen, J. D. Thomsen, T. J. Booth, L. Gammelgaard, J. Zultak, B. S. Jessen, P. Bøggild, and D. H. Petersen, “Quality assessment of graphene: Continuity, uniformity, and accuracy of mobility measurements,” Nano Res. 10(10), 3596–3605 (2017).
[Crossref]

P. R. Whelan, B. S. Jessen, R. Wang, B. Luo, A. C. Stoot, D. M. A. Mackenzie, P. Braeuninger-Weimer, A. Jouvray, L. Prager, L. Camilli, S. Hofmann, P. Bøggild, and T. J. Booth, “Raman spectral indicators of catalyst decoupling for transfer of CVD grown 2D materials,” Carbon 117, 75–81 (2017).
[Crossref]

B. Luo, J. M. Caridad, P. R. Whelan, J. D. Thomsen, D. M. A. Mackenzie, A. Grubišić Čabo, S. K. Mahatha, M. Bianchi, P. Hofmann, P. U. Jepsen, P. Bøggild, and T. J. Booth, “Sputtering an exterior metal coating on copper enclosure for large-scale growth of single-crystalline graphene,” 2D Mater. 4(4), 045017 (2017).

J. D. Buron, F. Pizzocchero, P. U. Jepsen, D. H. Petersen, J. M. Caridad, B. S. Jessen, T. J. Booth, and P. Bøggild, “Graphene mobility mapping,” Sci. Rep. 5(1), 12305 (2015).
[Crossref] [PubMed]

L. Gammelgaard, J. M. Caridad, A. Cagliani, D. M. A. MacKenzie, D. H. Petersen, T. J. Booth, and P. Bøggild, “Graphene transport properties upon exposure to PMMA processing and heat treatments,” 2D Mater. 1(3), 1–6 (2014).

M. B. B. S. Larsen, D. M. A. Mackenzie, J. M. Caridad, P. Bøggild, and T. J. Booth, “Transfer induced compressive strain in graphene: Evidence from Raman spectroscopic mapping,” Microelectron. Eng. 121, 113–117 (2014).
[Crossref]

Braeuninger-Weimer, P.

P. R. Whelan, B. S. Jessen, R. Wang, B. Luo, A. C. Stoot, D. M. A. Mackenzie, P. Braeuninger-Weimer, A. Jouvray, L. Prager, L. Camilli, S. Hofmann, P. Bøggild, and T. J. Booth, “Raman spectral indicators of catalyst decoupling for transfer of CVD grown 2D materials,” Carbon 117, 75–81 (2017).
[Crossref]

Buron, J. D.

P. Bøggild, D. M. A. Mackenzie, P. R. Whelan, D. H. Petersen, J. D. Buron, A. Zurutuza, J. Gallop, L. Hao, and P. U. Jepsen, “Mapping the electrical properties of large-area graphene,” 2D Mater. 4(4), 042003 (2017).

D. M. A. Mackenzie, J. D. Buron, P. R. Whelan, J. M. Caridad, M. Bjergfelt, B. Luo, A. Shivayogimath, A. L. Smitshuysen, J. D. Thomsen, T. J. Booth, L. Gammelgaard, J. Zultak, B. S. Jessen, P. Bøggild, and D. H. Petersen, “Quality assessment of graphene: Continuity, uniformity, and accuracy of mobility measurements,” Nano Res. 10(10), 3596–3605 (2017).
[Crossref]

D. M. A. Mackenzie, J. D. Buron, P. Boaggild, P. U. Jepsen, and D. H. Petersen, “Contactless graphene conductance measurements: the effect of device fabrication on terahertz time-domain spectroscopy,” Int. J. Nanotechnol. 13(8/9), 591 (2016).
[Crossref]

J. D. Buron, F. Pizzocchero, P. U. Jepsen, D. H. Petersen, J. M. Caridad, B. S. Jessen, T. J. Booth, and P. Bøggild, “Graphene mobility mapping,” Sci. Rep. 5(1), 12305 (2015).
[Crossref] [PubMed]

D. M. A. Mackenzie, J. D. Buron, P. R. Whelan, B. S. Jessen, A. Silajdźić, A. Pesquera, A. Centeno, A. Zurutuza, P. Bøggild, and D. H. Petersen, “Fabrication of CVD graphene-based devices via laser ablation for wafer-scale characterization,” 2D Mater. 2(4), 045003 (2015).

J. D. Buron, D. M. A. Mackenzie, D. H. Petersen, A. Pesquera, A. Centeno, P. Bøggild, A. Zurutuza, and P. U. Jepsen, “Terahertz wafer-scale mobility mapping of graphene on insulating substrates without a gate,” Opt. Express 23(24), 30721–30729 (2015).
[Crossref] [PubMed]

J. D. Buron, D. H. Petersen, P. Bøggild, D. G. Cooke, M. Hilke, J. Sun, E. Whiteway, P. F. Nielsen, O. Hansen, A. Yurgens, and P. U. Jepsen, “Graphene conductance uniformity mapping,” Nano Lett. 12(10), 5074–5081 (2012).
[Crossref] [PubMed]

Cagliani, A.

D. M. A. Mackenzie, A. Cagliani, L. Gammelgaard, B. S. Jessen, D. H. Petersen, and P. Bøggild, “Graphene antidot lattice transport measurements,” Int. J. Nanotechnol. 14(1–6), 226 (2017).

A. Cagliani, D. M. A. Mackenzie, L. K. Tschammer, F. Pizzocchero, K. Almdal, and P. Bøggild, “Large-area nanopatterned graphene for ultrasensitive gas sensing,” Nano Res. 7(5), 743–754 (2014).
[Crossref]

L. Gammelgaard, J. M. Caridad, A. Cagliani, D. M. A. MacKenzie, D. H. Petersen, T. J. Booth, and P. Bøggild, “Graphene transport properties upon exposure to PMMA processing and heat treatments,” 2D Mater. 1(3), 1–6 (2014).

Camilli, L.

F. Yu, L. Camilli, T. Wang, D. M. A. Mackenzie, M. Curioni, R. Akid, and P. Bøggild, “Complete long-term corrosion protection with chemical vapor deposited graphene,” Carbon 132, 78–84 (2018).
[Crossref]

M. Galbiati, A. C. Stoot, D. M. A. Mackenzie, P. Bøggild, and L. Camilli, “Real-time oxide evolution of copper protected by graphene and boron nitride barriers,” Sci. Rep. 7(2), 39770 (2017).
[Crossref] [PubMed]

P. R. Whelan, B. S. Jessen, R. Wang, B. Luo, A. C. Stoot, D. M. A. Mackenzie, P. Braeuninger-Weimer, A. Jouvray, L. Prager, L. Camilli, S. Hofmann, P. Bøggild, and T. J. Booth, “Raman spectral indicators of catalyst decoupling for transfer of CVD grown 2D materials,” Carbon 117, 75–81 (2017).
[Crossref]

Canepa, M.

V. Miseikis, D. Convertino, N. Mishra, M. Gemmi, T. Mashoff, S. Heun, N. Haghighian, F. Bisio, M. Canepa, V. Piazza, and C. Coletti, “Rapid CVD growth of millimetre-sized single crystal graphene using a cold-wall reactor,” 2D Mater. 2(1), 014006 (2015).

Caridad, J. M.

B. Luo, J. M. Caridad, P. R. Whelan, J. D. Thomsen, D. M. A. Mackenzie, A. Grubišić Čabo, S. K. Mahatha, M. Bianchi, P. Hofmann, P. U. Jepsen, P. Bøggild, and T. J. Booth, “Sputtering an exterior metal coating on copper enclosure for large-scale growth of single-crystalline graphene,” 2D Mater. 4(4), 045017 (2017).

D. M. A. Mackenzie, J. D. Buron, P. R. Whelan, J. M. Caridad, M. Bjergfelt, B. Luo, A. Shivayogimath, A. L. Smitshuysen, J. D. Thomsen, T. J. Booth, L. Gammelgaard, J. Zultak, B. S. Jessen, P. Bøggild, and D. H. Petersen, “Quality assessment of graphene: Continuity, uniformity, and accuracy of mobility measurements,” Nano Res. 10(10), 3596–3605 (2017).
[Crossref]

J. D. Buron, F. Pizzocchero, P. U. Jepsen, D. H. Petersen, J. M. Caridad, B. S. Jessen, T. J. Booth, and P. Bøggild, “Graphene mobility mapping,” Sci. Rep. 5(1), 12305 (2015).
[Crossref] [PubMed]

L. Gammelgaard, J. M. Caridad, A. Cagliani, D. M. A. MacKenzie, D. H. Petersen, T. J. Booth, and P. Bøggild, “Graphene transport properties upon exposure to PMMA processing and heat treatments,” 2D Mater. 1(3), 1–6 (2014).

M. B. B. S. Larsen, D. M. A. Mackenzie, J. M. Caridad, P. Bøggild, and T. J. Booth, “Transfer induced compressive strain in graphene: Evidence from Raman spectroscopic mapping,” Microelectron. Eng. 121, 113–117 (2014).
[Crossref]

Centeno, A.

D. M. A. Mackenzie, J. D. Buron, P. R. Whelan, B. S. Jessen, A. Silajdźić, A. Pesquera, A. Centeno, A. Zurutuza, P. Bøggild, and D. H. Petersen, “Fabrication of CVD graphene-based devices via laser ablation for wafer-scale characterization,” 2D Mater. 2(4), 045003 (2015).

J. D. Buron, D. M. A. Mackenzie, D. H. Petersen, A. Pesquera, A. Centeno, P. Bøggild, A. Zurutuza, and P. U. Jepsen, “Terahertz wafer-scale mobility mapping of graphene on insulating substrates without a gate,” Opt. Express 23(24), 30721–30729 (2015).
[Crossref] [PubMed]

Chang, D. E.

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: A platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

Chen, Y.

J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes,” ACS Nano 4(1), 43–48 (2010).
[Crossref] [PubMed]

Chen, Y. P.

I. Childres, L. A. Jauregui, J. Tian, and Y. P. Chen, “Effect of oxygen plasma etching on graphene studied using Raman spectroscopy and electronic transport measurements,” New J. Phys. 13(2), 025008 (2011).
[Crossref]

Cheng, M. M. C.

H. J. Yoon, D. H. Jun, J. H. Yang, Z. Zhou, S. S. Yang, and M. M. C. Cheng, “Carbon dioxide gas sensor using a graphene sheet,” Sens. Actuators B Chem. 157(1), 310–313 (2011).
[Crossref]

Childres, I.

I. Childres, L. A. Jauregui, J. Tian, and Y. P. Chen, “Effect of oxygen plasma etching on graphene studied using Raman spectroscopy and electronic transport measurements,” New J. Phys. 13(2), 025008 (2011).
[Crossref]

Choi, M.-R.

T.-H. Han, Y. Lee, M.-R. Choi, S.-H. Woo, S.-H. Bae, B. H. Hong, J.-H. Ahn, and T.-W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

Chung, H. J.

J. Heo, H. J. Chung, S.-H. Lee, H. Yang, D. H. Seo, J. K. Shin, U.-I. Chung, S. Seo, E. H. Hwang, and S. Das Sarma, “Nonmonotonic temperature dependent transport in graphene grown by chemical vapor deposition,” Phys. Rev. B 84(3), 035421 (2011).
[Crossref]

Chung, U.-I.

J. Heo, H. J. Chung, S.-H. Lee, H. Yang, D. H. Seo, J. K. Shin, U.-I. Chung, S. Seo, E. H. Hwang, and S. Das Sarma, “Nonmonotonic temperature dependent transport in graphene grown by chemical vapor deposition,” Phys. Rev. B 84(3), 035421 (2011).
[Crossref]

Coletti, C.

V. Miseikis, D. Convertino, N. Mishra, M. Gemmi, T. Mashoff, S. Heun, N. Haghighian, F. Bisio, M. Canepa, V. Piazza, and C. Coletti, “Rapid CVD growth of millimetre-sized single crystal graphene using a cold-wall reactor,” 2D Mater. 2(1), 014006 (2015).

Convertino, D.

V. Miseikis, D. Convertino, N. Mishra, M. Gemmi, T. Mashoff, S. Heun, N. Haghighian, F. Bisio, M. Canepa, V. Piazza, and C. Coletti, “Rapid CVD growth of millimetre-sized single crystal graphene using a cold-wall reactor,” 2D Mater. 2(1), 014006 (2015).

Cooke, D. G.

J. D. Buron, D. H. Petersen, P. Bøggild, D. G. Cooke, M. Hilke, J. Sun, E. Whiteway, P. F. Nielsen, O. Hansen, A. Yurgens, and P. U. Jepsen, “Graphene conductance uniformity mapping,” Nano Lett. 12(10), 5074–5081 (2012).
[Crossref] [PubMed]

Curioni, M.

F. Yu, L. Camilli, T. Wang, D. M. A. Mackenzie, M. Curioni, R. Akid, and P. Bøggild, “Complete long-term corrosion protection with chemical vapor deposited graphene,” Carbon 132, 78–84 (2018).
[Crossref]

D’Urso, B.

S. Dhingra, J. F. Hsu, I. Vlassiouk, and B. D’Urso, “Chemical vapor deposition of graphene on large-domain ultra-flat copper,” Carbon 69, 188–193 (2014).
[Crossref]

Dai, L.

T. Sun, Z. L. Wang, Z. J. Shi, G. Z. Ran, W. J. Xu, Z. Y. Wang, Y. Z. Li, L. Dai, and G. G. Qin, “Multilayered graphene used as anode of organic light emitting devices,” Appl. Phys. Lett. 96(13), 133301 (2010).
[Crossref]

Das Sarma, S.

J. Heo, H. J. Chung, S.-H. Lee, H. Yang, D. H. Seo, J. K. Shin, U.-I. Chung, S. Seo, E. H. Hwang, and S. Das Sarma, “Nonmonotonic temperature dependent transport in graphene grown by chemical vapor deposition,” Phys. Rev. B 84(3), 035421 (2011).
[Crossref]

Delin, A.

A. D. Smith, K. Elgammal, F. Niklaus, A. Delin, A. C. Fischer, S. Vaziri, F. Forsberg, M. Råsander, H. Hugosson, L. Bergqvist, S. Schröder, S. Kataria, M. Östling, and M. C. Lemme, “Resistive graphene humidity sensors with rapid and direct electrical readout,” Nanoscale 7(45), 19099–19109 (2015).
[Crossref] [PubMed]

Dhingra, S.

S. Dhingra, J. F. Hsu, I. Vlassiouk, and B. D’Urso, “Chemical vapor deposition of graphene on large-domain ultra-flat copper,” Carbon 69, 188–193 (2014).
[Crossref]

Elgammal, K.

A. D. Smith, K. Elgammal, F. Niklaus, A. Delin, A. C. Fischer, S. Vaziri, F. Forsberg, M. Råsander, H. Hugosson, L. Bergqvist, S. Schröder, S. Kataria, M. Östling, and M. C. Lemme, “Resistive graphene humidity sensors with rapid and direct electrical readout,” Nanoscale 7(45), 19099–19109 (2015).
[Crossref] [PubMed]

Farmer, D. B.

Y.-M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer, and P. Avouris, “Operation of graphene transistors at gigahertz frequencies,” Nano Lett. 9(1), 422–426 (2009).
[Crossref] [PubMed]

Ferrari, A. C.

A. C. Ferrari and D. M. Basko, “Raman spectroscopy as a versatile tool for studying the properties of graphene,” Nat. Nanotechnol. 8(4), 235–246 (2013).
[Crossref] [PubMed]

Fischer, A. C.

A. D. Smith, K. Elgammal, F. Niklaus, A. Delin, A. C. Fischer, S. Vaziri, F. Forsberg, M. Råsander, H. Hugosson, L. Bergqvist, S. Schröder, S. Kataria, M. Östling, and M. C. Lemme, “Resistive graphene humidity sensors with rapid and direct electrical readout,” Nanoscale 7(45), 19099–19109 (2015).
[Crossref] [PubMed]

Fitl, P.

J. Náhlík, I. Kašpárková, and P. Fitl, “Study of quantitative influence of sample defects on measurements of resistivity of thin films using van der Pauw method,” Meas. J. Int. Meas. Confed. 44(10), 1968–1979 (2011).
[Crossref]

Forsberg, F.

A. D. Smith, K. Elgammal, F. Niklaus, A. Delin, A. C. Fischer, S. Vaziri, F. Forsberg, M. Råsander, H. Hugosson, L. Bergqvist, S. Schröder, S. Kataria, M. Östling, and M. C. Lemme, “Resistive graphene humidity sensors with rapid and direct electrical readout,” Nanoscale 7(45), 19099–19109 (2015).
[Crossref] [PubMed]

Galbiati, M.

M. Galbiati, A. C. Stoot, D. M. A. Mackenzie, P. Bøggild, and L. Camilli, “Real-time oxide evolution of copper protected by graphene and boron nitride barriers,” Sci. Rep. 7(2), 39770 (2017).
[Crossref] [PubMed]

Gallop, J.

P. Bøggild, D. M. A. Mackenzie, P. R. Whelan, D. H. Petersen, J. D. Buron, A. Zurutuza, J. Gallop, L. Hao, and P. U. Jepsen, “Mapping the electrical properties of large-area graphene,” 2D Mater. 4(4), 042003 (2017).

Gammelgaard, L.

D. M. A. Mackenzie, J. D. Buron, P. R. Whelan, J. M. Caridad, M. Bjergfelt, B. Luo, A. Shivayogimath, A. L. Smitshuysen, J. D. Thomsen, T. J. Booth, L. Gammelgaard, J. Zultak, B. S. Jessen, P. Bøggild, and D. H. Petersen, “Quality assessment of graphene: Continuity, uniformity, and accuracy of mobility measurements,” Nano Res. 10(10), 3596–3605 (2017).
[Crossref]

D. M. A. Mackenzie, A. Cagliani, L. Gammelgaard, B. S. Jessen, D. H. Petersen, and P. Bøggild, “Graphene antidot lattice transport measurements,” Int. J. Nanotechnol. 14(1–6), 226 (2017).

L. Gammelgaard, J. M. Caridad, A. Cagliani, D. M. A. MacKenzie, D. H. Petersen, T. J. Booth, and P. Bøggild, “Graphene transport properties upon exposure to PMMA processing and heat treatments,” 2D Mater. 1(3), 1–6 (2014).

García de Abajo, F. J.

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: A platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

Ge, S.

Q. Wang, C. Z. Li, S. Ge, J. G. Li, W. Lu, J. Lai, X. Liu, J. Ma, D. P. Yu, Z. M. Liao, and D. Sun, “Ultrafast Broadband Photodetectors Based on Three-Dimensional Dirac Semimetal Cd3As2,” Nano Lett. 17(2), 834–841 (2017).
[Crossref] [PubMed]

Geim, A. K.

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

Gemmi, M.

V. Miseikis, D. Convertino, N. Mishra, M. Gemmi, T. Mashoff, S. Heun, N. Haghighian, F. Bisio, M. Canepa, V. Piazza, and C. Coletti, “Rapid CVD growth of millimetre-sized single crystal graphene using a cold-wall reactor,” 2D Mater. 2(1), 014006 (2015).

Glover, R. E.

R. E. Glover and M. Tinkham, “Conductivity of superconducting films for photon energies between 0.3 and 40kTc,” Phys. Rev. 108(2), 243–256 (1957).
[Crossref]

Grubišic Cabo, A.

B. Luo, J. M. Caridad, P. R. Whelan, J. D. Thomsen, D. M. A. Mackenzie, A. Grubišić Čabo, S. K. Mahatha, M. Bianchi, P. Hofmann, P. U. Jepsen, P. Bøggild, and T. J. Booth, “Sputtering an exterior metal coating on copper enclosure for large-scale growth of single-crystalline graphene,” 2D Mater. 4(4), 045017 (2017).

Guo, X.

Haghighian, N.

V. Miseikis, D. Convertino, N. Mishra, M. Gemmi, T. Mashoff, S. Heun, N. Haghighian, F. Bisio, M. Canepa, V. Piazza, and C. Coletti, “Rapid CVD growth of millimetre-sized single crystal graphene using a cold-wall reactor,” 2D Mater. 2(1), 014006 (2015).

Han, T.-H.

T.-H. Han, Y. Lee, M.-R. Choi, S.-H. Woo, S.-H. Bae, B. H. Hong, J.-H. Ahn, and T.-W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

Hansen, O.

D. W. Koon, F. Wang, D. H. Petersen, and O. Hansen, “Sensitivity of resistive and Hall measurements to local inhomogeneities: Finite-field, intensity, and area corrections,” J. Appl. Phys. 116(13), 133706 (2014).
[Crossref]

J. D. Buron, D. H. Petersen, P. Bøggild, D. G. Cooke, M. Hilke, J. Sun, E. Whiteway, P. F. Nielsen, O. Hansen, A. Yurgens, and P. U. Jepsen, “Graphene conductance uniformity mapping,” Nano Lett. 12(10), 5074–5081 (2012).
[Crossref] [PubMed]

Hao, L.

P. Bøggild, D. M. A. Mackenzie, P. R. Whelan, D. H. Petersen, J. D. Buron, A. Zurutuza, J. Gallop, L. Hao, and P. U. Jepsen, “Mapping the electrical properties of large-area graphene,” 2D Mater. 4(4), 042003 (2017).

Heo, J.

J. Heo, H. J. Chung, S.-H. Lee, H. Yang, D. H. Seo, J. K. Shin, U.-I. Chung, S. Seo, E. H. Hwang, and S. Das Sarma, “Nonmonotonic temperature dependent transport in graphene grown by chemical vapor deposition,” Phys. Rev. B 84(3), 035421 (2011).
[Crossref]

Heun, S.

V. Miseikis, D. Convertino, N. Mishra, M. Gemmi, T. Mashoff, S. Heun, N. Haghighian, F. Bisio, M. Canepa, V. Piazza, and C. Coletti, “Rapid CVD growth of millimetre-sized single crystal graphene using a cold-wall reactor,” 2D Mater. 2(1), 014006 (2015).

Hilke, M.

J. D. Buron, D. H. Petersen, P. Bøggild, D. G. Cooke, M. Hilke, J. Sun, E. Whiteway, P. F. Nielsen, O. Hansen, A. Yurgens, and P. U. Jepsen, “Graphene conductance uniformity mapping,” Nano Lett. 12(10), 5074–5081 (2012).
[Crossref] [PubMed]

Hill, E. W.

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

Hofmann, P.

B. Luo, J. M. Caridad, P. R. Whelan, J. D. Thomsen, D. M. A. Mackenzie, A. Grubišić Čabo, S. K. Mahatha, M. Bianchi, P. Hofmann, P. U. Jepsen, P. Bøggild, and T. J. Booth, “Sputtering an exterior metal coating on copper enclosure for large-scale growth of single-crystalline graphene,” 2D Mater. 4(4), 045017 (2017).

Hofmann, S.

P. R. Whelan, B. S. Jessen, R. Wang, B. Luo, A. C. Stoot, D. M. A. Mackenzie, P. Braeuninger-Weimer, A. Jouvray, L. Prager, L. Camilli, S. Hofmann, P. Bøggild, and T. J. Booth, “Raman spectral indicators of catalyst decoupling for transfer of CVD grown 2D materials,” Carbon 117, 75–81 (2017).
[Crossref]

P. R. Whelan, K. Iwaszczuk, R. Wang, S. Hofmann, P. Bøggild, and P. U. Jepsen, “Robust mapping of electrical properties of graphene from terahertz time-domain spectroscopy with timing jitter correction,” Opt. Express 25(3), 2725–2732 (2017).
[Crossref] [PubMed]

Hong, B. H.

T.-H. Han, Y. Lee, M.-R. Choi, S.-H. Woo, S.-H. Bae, B. H. Hong, J.-H. Ahn, and T.-W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

Hsu, J. F.

S. Dhingra, J. F. Hsu, I. Vlassiouk, and B. D’Urso, “Chemical vapor deposition of graphene on large-domain ultra-flat copper,” Carbon 69, 188–193 (2014).
[Crossref]

Hu, W.

Hugosson, H.

A. D. Smith, K. Elgammal, F. Niklaus, A. Delin, A. C. Fischer, S. Vaziri, F. Forsberg, M. Råsander, H. Hugosson, L. Bergqvist, S. Schröder, S. Kataria, M. Östling, and M. C. Lemme, “Resistive graphene humidity sensors with rapid and direct electrical readout,” Nanoscale 7(45), 19099–19109 (2015).
[Crossref] [PubMed]

Hwang, E. H.

J. Heo, H. J. Chung, S.-H. Lee, H. Yang, D. H. Seo, J. K. Shin, U.-I. Chung, S. Seo, E. H. Hwang, and S. Das Sarma, “Nonmonotonic temperature dependent transport in graphene grown by chemical vapor deposition,” Phys. Rev. B 84(3), 035421 (2011).
[Crossref]

Iwaszczuk, K.

Jauregui, L. A.

I. Childres, L. A. Jauregui, J. Tian, and Y. P. Chen, “Effect of oxygen plasma etching on graphene studied using Raman spectroscopy and electronic transport measurements,” New J. Phys. 13(2), 025008 (2011).
[Crossref]

Jenkins, K. A.

Y.-M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer, and P. Avouris, “Operation of graphene transistors at gigahertz frequencies,” Nano Lett. 9(1), 422–426 (2009).
[Crossref] [PubMed]

Jepsen, P. U.

B. Luo, J. M. Caridad, P. R. Whelan, J. D. Thomsen, D. M. A. Mackenzie, A. Grubišić Čabo, S. K. Mahatha, M. Bianchi, P. Hofmann, P. U. Jepsen, P. Bøggild, and T. J. Booth, “Sputtering an exterior metal coating on copper enclosure for large-scale growth of single-crystalline graphene,” 2D Mater. 4(4), 045017 (2017).

P. R. Whelan, K. Iwaszczuk, R. Wang, S. Hofmann, P. Bøggild, and P. U. Jepsen, “Robust mapping of electrical properties of graphene from terahertz time-domain spectroscopy with timing jitter correction,” Opt. Express 25(3), 2725–2732 (2017).
[Crossref] [PubMed]

P. Bøggild, D. M. A. Mackenzie, P. R. Whelan, D. H. Petersen, J. D. Buron, A. Zurutuza, J. Gallop, L. Hao, and P. U. Jepsen, “Mapping the electrical properties of large-area graphene,” 2D Mater. 4(4), 042003 (2017).

D. M. A. Mackenzie, J. D. Buron, P. Boaggild, P. U. Jepsen, and D. H. Petersen, “Contactless graphene conductance measurements: the effect of device fabrication on terahertz time-domain spectroscopy,” Int. J. Nanotechnol. 13(8/9), 591 (2016).
[Crossref]

J. D. Buron, F. Pizzocchero, P. U. Jepsen, D. H. Petersen, J. M. Caridad, B. S. Jessen, T. J. Booth, and P. Bøggild, “Graphene mobility mapping,” Sci. Rep. 5(1), 12305 (2015).
[Crossref] [PubMed]

J. D. Buron, D. M. A. Mackenzie, D. H. Petersen, A. Pesquera, A. Centeno, P. Bøggild, A. Zurutuza, and P. U. Jepsen, “Terahertz wafer-scale mobility mapping of graphene on insulating substrates without a gate,” Opt. Express 23(24), 30721–30729 (2015).
[Crossref] [PubMed]

J. D. Buron, D. H. Petersen, P. Bøggild, D. G. Cooke, M. Hilke, J. Sun, E. Whiteway, P. F. Nielsen, O. Hansen, A. Yurgens, and P. U. Jepsen, “Graphene conductance uniformity mapping,” Nano Lett. 12(10), 5074–5081 (2012).
[Crossref] [PubMed]

Jessen, B. S.

D. M. A. Mackenzie, J. D. Buron, P. R. Whelan, J. M. Caridad, M. Bjergfelt, B. Luo, A. Shivayogimath, A. L. Smitshuysen, J. D. Thomsen, T. J. Booth, L. Gammelgaard, J. Zultak, B. S. Jessen, P. Bøggild, and D. H. Petersen, “Quality assessment of graphene: Continuity, uniformity, and accuracy of mobility measurements,” Nano Res. 10(10), 3596–3605 (2017).
[Crossref]

P. R. Whelan, B. S. Jessen, R. Wang, B. Luo, A. C. Stoot, D. M. A. Mackenzie, P. Braeuninger-Weimer, A. Jouvray, L. Prager, L. Camilli, S. Hofmann, P. Bøggild, and T. J. Booth, “Raman spectral indicators of catalyst decoupling for transfer of CVD grown 2D materials,” Carbon 117, 75–81 (2017).
[Crossref]

D. M. A. Mackenzie, A. Cagliani, L. Gammelgaard, B. S. Jessen, D. H. Petersen, and P. Bøggild, “Graphene antidot lattice transport measurements,” Int. J. Nanotechnol. 14(1–6), 226 (2017).

J. D. Buron, F. Pizzocchero, P. U. Jepsen, D. H. Petersen, J. M. Caridad, B. S. Jessen, T. J. Booth, and P. Bøggild, “Graphene mobility mapping,” Sci. Rep. 5(1), 12305 (2015).
[Crossref] [PubMed]

D. M. A. Mackenzie, J. D. Buron, P. R. Whelan, B. S. Jessen, A. Silajdźić, A. Pesquera, A. Centeno, A. Zurutuza, P. Bøggild, and D. H. Petersen, “Fabrication of CVD graphene-based devices via laser ablation for wafer-scale characterization,” 2D Mater. 2(4), 045003 (2015).

Jiang, J.

Jouvray, A.

P. R. Whelan, B. S. Jessen, R. Wang, B. Luo, A. C. Stoot, D. M. A. Mackenzie, P. Braeuninger-Weimer, A. Jouvray, L. Prager, L. Camilli, S. Hofmann, P. Bøggild, and T. J. Booth, “Raman spectral indicators of catalyst decoupling for transfer of CVD grown 2D materials,” Carbon 117, 75–81 (2017).
[Crossref]

Jun, D. H.

H. J. Yoon, D. H. Jun, J. H. Yang, Z. Zhou, S. S. Yang, and M. M. C. Cheng, “Carbon dioxide gas sensor using a graphene sheet,” Sens. Actuators B Chem. 157(1), 310–313 (2011).
[Crossref]

Kašpárková, I.

J. Náhlík, I. Kašpárková, and P. Fitl, “Study of quantitative influence of sample defects on measurements of resistivity of thin films using van der Pauw method,” Meas. J. Int. Meas. Confed. 44(10), 1968–1979 (2011).
[Crossref]

Kataria, S.

A. D. Smith, K. Elgammal, F. Niklaus, A. Delin, A. C. Fischer, S. Vaziri, F. Forsberg, M. Råsander, H. Hugosson, L. Bergqvist, S. Schröder, S. Kataria, M. Östling, and M. C. Lemme, “Resistive graphene humidity sensors with rapid and direct electrical readout,” Nanoscale 7(45), 19099–19109 (2015).
[Crossref] [PubMed]

Katsnelson, M. I.

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

Kim, M.

M. Kim, A. Shah, C. Li, P. Mustonen, J. Susoma, F. Manoocheri, J. Riikonen, and H. Lipsanen, “Direct transfer of Wafer-scale graphene films,” 2D Mater. 4(3), 035004 (2017).

Kirkland, N. T.

N. T. Kirkland, T. Schiller, N. Medhekar, and N. Birbilis, “Exploring graphene as a corrosion protection barrier,” Corros. Sci. 56, 1–4 (2012).
[Crossref]

Koon, D. W.

D. W. Koon, F. Wang, D. H. Petersen, and O. Hansen, “Sensitivity of resistive and Hall measurements to local inhomogeneities: Finite-field, intensity, and area corrections,” J. Appl. Phys. 116(13), 133706 (2014).
[Crossref]

Koppens, F. H. L.

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: A platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

Kubatkin, S.

T. Yager, A. Lartsev, R. Yakimova, S. Lara-Avila, and S. Kubatkin, “Wafer-scale homogeneity of transport properties in epitaxial graphene on SiC,” Carbon 87(C), 409–414 (2015).
[Crossref]

Lai, J.

Q. Wang, C. Z. Li, S. Ge, J. G. Li, W. Lu, J. Lai, X. Liu, J. Ma, D. P. Yu, Z. M. Liao, and D. Sun, “Ultrafast Broadband Photodetectors Based on Three-Dimensional Dirac Semimetal Cd3As2,” Nano Lett. 17(2), 834–841 (2017).
[Crossref] [PubMed]

Lara-Avila, S.

T. Yager, A. Lartsev, R. Yakimova, S. Lara-Avila, and S. Kubatkin, “Wafer-scale homogeneity of transport properties in epitaxial graphene on SiC,” Carbon 87(C), 409–414 (2015).
[Crossref]

Larsen, M. B. B. S.

M. B. B. S. Larsen, D. M. A. Mackenzie, J. M. Caridad, P. Bøggild, and T. J. Booth, “Transfer induced compressive strain in graphene: Evidence from Raman spectroscopic mapping,” Microelectron. Eng. 121, 113–117 (2014).
[Crossref]

Lartsev, A.

T. Yager, A. Lartsev, R. Yakimova, S. Lara-Avila, and S. Kubatkin, “Wafer-scale homogeneity of transport properties in epitaxial graphene on SiC,” Carbon 87(C), 409–414 (2015).
[Crossref]

Lee, S.-H.

J. Heo, H. J. Chung, S.-H. Lee, H. Yang, D. H. Seo, J. K. Shin, U.-I. Chung, S. Seo, E. H. Hwang, and S. Das Sarma, “Nonmonotonic temperature dependent transport in graphene grown by chemical vapor deposition,” Phys. Rev. B 84(3), 035421 (2011).
[Crossref]

Lee, T.-W.

T.-H. Han, Y. Lee, M.-R. Choi, S.-H. Woo, S.-H. Bae, B. H. Hong, J.-H. Ahn, and T.-W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

Lee, Y.

T.-H. Han, Y. Lee, M.-R. Choi, S.-H. Woo, S.-H. Bae, B. H. Hong, J.-H. Ahn, and T.-W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

Lemme, M. C.

A. D. Smith, K. Elgammal, F. Niklaus, A. Delin, A. C. Fischer, S. Vaziri, F. Forsberg, M. Råsander, H. Hugosson, L. Bergqvist, S. Schröder, S. Kataria, M. Östling, and M. C. Lemme, “Resistive graphene humidity sensors with rapid and direct electrical readout,” Nanoscale 7(45), 19099–19109 (2015).
[Crossref] [PubMed]

Li, C.

M. Kim, A. Shah, C. Li, P. Mustonen, J. Susoma, F. Manoocheri, J. Riikonen, and H. Lipsanen, “Direct transfer of Wafer-scale graphene films,” 2D Mater. 4(3), 035004 (2017).

Li, C. Z.

Q. Wang, C. Z. Li, S. Ge, J. G. Li, W. Lu, J. Lai, X. Liu, J. Ma, D. P. Yu, Z. M. Liao, and D. Sun, “Ultrafast Broadband Photodetectors Based on Three-Dimensional Dirac Semimetal Cd3As2,” Nano Lett. 17(2), 834–841 (2017).
[Crossref] [PubMed]

Li, J.

Li, J. G.

Q. Wang, C. Z. Li, S. Ge, J. G. Li, W. Lu, J. Lai, X. Liu, J. Ma, D. P. Yu, Z. M. Liao, and D. Sun, “Ultrafast Broadband Photodetectors Based on Three-Dimensional Dirac Semimetal Cd3As2,” Nano Lett. 17(2), 834–841 (2017).
[Crossref] [PubMed]

Li, Y. Z.

T. Sun, Z. L. Wang, Z. J. Shi, G. Z. Ran, W. J. Xu, Z. Y. Wang, Y. Z. Li, L. Dai, and G. G. Qin, “Multilayered graphene used as anode of organic light emitting devices,” Appl. Phys. Lett. 96(13), 133301 (2010).
[Crossref]

Liao, Z. M.

Q. Wang, C. Z. Li, S. Ge, J. G. Li, W. Lu, J. Lai, X. Liu, J. Ma, D. P. Yu, Z. M. Liao, and D. Sun, “Ultrafast Broadband Photodetectors Based on Three-Dimensional Dirac Semimetal Cd3As2,” Nano Lett. 17(2), 834–841 (2017).
[Crossref] [PubMed]

Lin, Y.-M.

Y.-M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer, and P. Avouris, “Operation of graphene transistors at gigahertz frequencies,” Nano Lett. 9(1), 422–426 (2009).
[Crossref] [PubMed]

Lipsanen, H.

M. Kim, A. Shah, C. Li, P. Mustonen, J. Susoma, F. Manoocheri, J. Riikonen, and H. Lipsanen, “Direct transfer of Wafer-scale graphene films,” 2D Mater. 4(3), 035004 (2017).

Liu, X.

Q. Wang, C. Z. Li, S. Ge, J. G. Li, W. Lu, J. Lai, X. Liu, J. Ma, D. P. Yu, Z. M. Liao, and D. Sun, “Ultrafast Broadband Photodetectors Based on Three-Dimensional Dirac Semimetal Cd3As2,” Nano Lett. 17(2), 834–841 (2017).
[Crossref] [PubMed]

Liu, Z.

J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes,” ACS Nano 4(1), 43–48 (2010).
[Crossref] [PubMed]

Lu, W.

Q. Wang, C. Z. Li, S. Ge, J. G. Li, W. Lu, J. Lai, X. Liu, J. Ma, D. P. Yu, Z. M. Liao, and D. Sun, “Ultrafast Broadband Photodetectors Based on Three-Dimensional Dirac Semimetal Cd3As2,” Nano Lett. 17(2), 834–841 (2017).
[Crossref] [PubMed]

Luo, B.

B. Luo, J. M. Caridad, P. R. Whelan, J. D. Thomsen, D. M. A. Mackenzie, A. Grubišić Čabo, S. K. Mahatha, M. Bianchi, P. Hofmann, P. U. Jepsen, P. Bøggild, and T. J. Booth, “Sputtering an exterior metal coating on copper enclosure for large-scale growth of single-crystalline graphene,” 2D Mater. 4(4), 045017 (2017).

P. R. Whelan, B. S. Jessen, R. Wang, B. Luo, A. C. Stoot, D. M. A. Mackenzie, P. Braeuninger-Weimer, A. Jouvray, L. Prager, L. Camilli, S. Hofmann, P. Bøggild, and T. J. Booth, “Raman spectral indicators of catalyst decoupling for transfer of CVD grown 2D materials,” Carbon 117, 75–81 (2017).
[Crossref]

D. M. A. Mackenzie, K. Smistrup, P. R. Whelan, B. Luo, A. Shivayogimath, T. Nielsen, D. H. Petersen, S. A. Messina, and P. Bøggild, “Batch fabrication of nanopatterned graphene devices via nanoimprint lithography,” Appl. Phys. Lett. 111(19), 193103 (2017).
[Crossref]

D. M. A. Mackenzie, J. D. Buron, P. R. Whelan, J. M. Caridad, M. Bjergfelt, B. Luo, A. Shivayogimath, A. L. Smitshuysen, J. D. Thomsen, T. J. Booth, L. Gammelgaard, J. Zultak, B. S. Jessen, P. Bøggild, and D. H. Petersen, “Quality assessment of graphene: Continuity, uniformity, and accuracy of mobility measurements,” Nano Res. 10(10), 3596–3605 (2017).
[Crossref]

Ma, J.

Q. Wang, C. Z. Li, S. Ge, J. G. Li, W. Lu, J. Lai, X. Liu, J. Ma, D. P. Yu, Z. M. Liao, and D. Sun, “Ultrafast Broadband Photodetectors Based on Three-Dimensional Dirac Semimetal Cd3As2,” Nano Lett. 17(2), 834–841 (2017).
[Crossref] [PubMed]

Mackenzie, D. M. A.

F. Yu, L. Camilli, T. Wang, D. M. A. Mackenzie, M. Curioni, R. Akid, and P. Bøggild, “Complete long-term corrosion protection with chemical vapor deposited graphene,” Carbon 132, 78–84 (2018).
[Crossref]

M. Galbiati, A. C. Stoot, D. M. A. Mackenzie, P. Bøggild, and L. Camilli, “Real-time oxide evolution of copper protected by graphene and boron nitride barriers,” Sci. Rep. 7(2), 39770 (2017).
[Crossref] [PubMed]

D. M. A. Mackenzie, A. Cagliani, L. Gammelgaard, B. S. Jessen, D. H. Petersen, and P. Bøggild, “Graphene antidot lattice transport measurements,” Int. J. Nanotechnol. 14(1–6), 226 (2017).

P. Bøggild, D. M. A. Mackenzie, P. R. Whelan, D. H. Petersen, J. D. Buron, A. Zurutuza, J. Gallop, L. Hao, and P. U. Jepsen, “Mapping the electrical properties of large-area graphene,” 2D Mater. 4(4), 042003 (2017).

B. Luo, J. M. Caridad, P. R. Whelan, J. D. Thomsen, D. M. A. Mackenzie, A. Grubišić Čabo, S. K. Mahatha, M. Bianchi, P. Hofmann, P. U. Jepsen, P. Bøggild, and T. J. Booth, “Sputtering an exterior metal coating on copper enclosure for large-scale growth of single-crystalline graphene,” 2D Mater. 4(4), 045017 (2017).

P. R. Whelan, B. S. Jessen, R. Wang, B. Luo, A. C. Stoot, D. M. A. Mackenzie, P. Braeuninger-Weimer, A. Jouvray, L. Prager, L. Camilli, S. Hofmann, P. Bøggild, and T. J. Booth, “Raman spectral indicators of catalyst decoupling for transfer of CVD grown 2D materials,” Carbon 117, 75–81 (2017).
[Crossref]

D. M. A. Mackenzie, J. D. Buron, P. R. Whelan, J. M. Caridad, M. Bjergfelt, B. Luo, A. Shivayogimath, A. L. Smitshuysen, J. D. Thomsen, T. J. Booth, L. Gammelgaard, J. Zultak, B. S. Jessen, P. Bøggild, and D. H. Petersen, “Quality assessment of graphene: Continuity, uniformity, and accuracy of mobility measurements,” Nano Res. 10(10), 3596–3605 (2017).
[Crossref]

D. M. A. Mackenzie, K. Smistrup, P. R. Whelan, B. Luo, A. Shivayogimath, T. Nielsen, D. H. Petersen, S. A. Messina, and P. Bøggild, “Batch fabrication of nanopatterned graphene devices via nanoimprint lithography,” Appl. Phys. Lett. 111(19), 193103 (2017).
[Crossref]

D. M. A. Mackenzie, J. D. Buron, P. Boaggild, P. U. Jepsen, and D. H. Petersen, “Contactless graphene conductance measurements: the effect of device fabrication on terahertz time-domain spectroscopy,” Int. J. Nanotechnol. 13(8/9), 591 (2016).
[Crossref]

J. D. Buron, D. M. A. Mackenzie, D. H. Petersen, A. Pesquera, A. Centeno, P. Bøggild, A. Zurutuza, and P. U. Jepsen, “Terahertz wafer-scale mobility mapping of graphene on insulating substrates without a gate,” Opt. Express 23(24), 30721–30729 (2015).
[Crossref] [PubMed]

D. M. A. Mackenzie, J. D. Buron, P. R. Whelan, B. S. Jessen, A. Silajdźić, A. Pesquera, A. Centeno, A. Zurutuza, P. Bøggild, and D. H. Petersen, “Fabrication of CVD graphene-based devices via laser ablation for wafer-scale characterization,” 2D Mater. 2(4), 045003 (2015).

M. B. B. S. Larsen, D. M. A. Mackenzie, J. M. Caridad, P. Bøggild, and T. J. Booth, “Transfer induced compressive strain in graphene: Evidence from Raman spectroscopic mapping,” Microelectron. Eng. 121, 113–117 (2014).
[Crossref]

L. Gammelgaard, J. M. Caridad, A. Cagliani, D. M. A. MacKenzie, D. H. Petersen, T. J. Booth, and P. Bøggild, “Graphene transport properties upon exposure to PMMA processing and heat treatments,” 2D Mater. 1(3), 1–6 (2014).

A. Cagliani, D. M. A. Mackenzie, L. K. Tschammer, F. Pizzocchero, K. Almdal, and P. Bøggild, “Large-area nanopatterned graphene for ultrasensitive gas sensing,” Nano Res. 7(5), 743–754 (2014).
[Crossref]

Mahatha, S. K.

B. Luo, J. M. Caridad, P. R. Whelan, J. D. Thomsen, D. M. A. Mackenzie, A. Grubišić Čabo, S. K. Mahatha, M. Bianchi, P. Hofmann, P. U. Jepsen, P. Bøggild, and T. J. Booth, “Sputtering an exterior metal coating on copper enclosure for large-scale growth of single-crystalline graphene,” 2D Mater. 4(4), 045017 (2017).

Manoocheri, F.

M. Kim, A. Shah, C. Li, P. Mustonen, J. Susoma, F. Manoocheri, J. Riikonen, and H. Lipsanen, “Direct transfer of Wafer-scale graphene films,” 2D Mater. 4(3), 035004 (2017).

Mashoff, T.

V. Miseikis, D. Convertino, N. Mishra, M. Gemmi, T. Mashoff, S. Heun, N. Haghighian, F. Bisio, M. Canepa, V. Piazza, and C. Coletti, “Rapid CVD growth of millimetre-sized single crystal graphene using a cold-wall reactor,” 2D Mater. 2(1), 014006 (2015).

Medhekar, N.

N. T. Kirkland, T. Schiller, N. Medhekar, and N. Birbilis, “Exploring graphene as a corrosion protection barrier,” Corros. Sci. 56, 1–4 (2012).
[Crossref]

Messina, S. A.

D. M. A. Mackenzie, K. Smistrup, P. R. Whelan, B. Luo, A. Shivayogimath, T. Nielsen, D. H. Petersen, S. A. Messina, and P. Bøggild, “Batch fabrication of nanopatterned graphene devices via nanoimprint lithography,” Appl. Phys. Lett. 111(19), 193103 (2017).
[Crossref]

Miseikis, V.

V. Miseikis, D. Convertino, N. Mishra, M. Gemmi, T. Mashoff, S. Heun, N. Haghighian, F. Bisio, M. Canepa, V. Piazza, and C. Coletti, “Rapid CVD growth of millimetre-sized single crystal graphene using a cold-wall reactor,” 2D Mater. 2(1), 014006 (2015).

Mishra, N.

V. Miseikis, D. Convertino, N. Mishra, M. Gemmi, T. Mashoff, S. Heun, N. Haghighian, F. Bisio, M. Canepa, V. Piazza, and C. Coletti, “Rapid CVD growth of millimetre-sized single crystal graphene using a cold-wall reactor,” 2D Mater. 2(1), 014006 (2015).

Morozov, S. V.

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

Mustonen, P.

M. Kim, A. Shah, C. Li, P. Mustonen, J. Susoma, F. Manoocheri, J. Riikonen, and H. Lipsanen, “Direct transfer of Wafer-scale graphene films,” 2D Mater. 4(3), 035004 (2017).

Náhlík, J.

J. Náhlík, I. Kašpárková, and P. Fitl, “Study of quantitative influence of sample defects on measurements of resistivity of thin films using van der Pauw method,” Meas. J. Int. Meas. Confed. 44(10), 1968–1979 (2011).
[Crossref]

Nan, H.

Ni, Z.

Nielsen, P. F.

J. D. Buron, D. H. Petersen, P. Bøggild, D. G. Cooke, M. Hilke, J. Sun, E. Whiteway, P. F. Nielsen, O. Hansen, A. Yurgens, and P. U. Jepsen, “Graphene conductance uniformity mapping,” Nano Lett. 12(10), 5074–5081 (2012).
[Crossref] [PubMed]

Nielsen, T.

D. M. A. Mackenzie, K. Smistrup, P. R. Whelan, B. Luo, A. Shivayogimath, T. Nielsen, D. H. Petersen, S. A. Messina, and P. Bøggild, “Batch fabrication of nanopatterned graphene devices via nanoimprint lithography,” Appl. Phys. Lett. 111(19), 193103 (2017).
[Crossref]

Niklaus, F.

A. D. Smith, K. Elgammal, F. Niklaus, A. Delin, A. C. Fischer, S. Vaziri, F. Forsberg, M. Råsander, H. Hugosson, L. Bergqvist, S. Schröder, S. Kataria, M. Östling, and M. C. Lemme, “Resistive graphene humidity sensors with rapid and direct electrical readout,” Nanoscale 7(45), 19099–19109 (2015).
[Crossref] [PubMed]

Novoselov, K. S.

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

Östling, M.

A. D. Smith, K. Elgammal, F. Niklaus, A. Delin, A. C. Fischer, S. Vaziri, F. Forsberg, M. Råsander, H. Hugosson, L. Bergqvist, S. Schröder, S. Kataria, M. Östling, and M. C. Lemme, “Resistive graphene humidity sensors with rapid and direct electrical readout,” Nanoscale 7(45), 19099–19109 (2015).
[Crossref] [PubMed]

Pesquera, A.

D. M. A. Mackenzie, J. D. Buron, P. R. Whelan, B. S. Jessen, A. Silajdźić, A. Pesquera, A. Centeno, A. Zurutuza, P. Bøggild, and D. H. Petersen, “Fabrication of CVD graphene-based devices via laser ablation for wafer-scale characterization,” 2D Mater. 2(4), 045003 (2015).

J. D. Buron, D. M. A. Mackenzie, D. H. Petersen, A. Pesquera, A. Centeno, P. Bøggild, A. Zurutuza, and P. U. Jepsen, “Terahertz wafer-scale mobility mapping of graphene on insulating substrates without a gate,” Opt. Express 23(24), 30721–30729 (2015).
[Crossref] [PubMed]

Petersen, D. H.

D. M. A. Mackenzie, K. Smistrup, P. R. Whelan, B. Luo, A. Shivayogimath, T. Nielsen, D. H. Petersen, S. A. Messina, and P. Bøggild, “Batch fabrication of nanopatterned graphene devices via nanoimprint lithography,” Appl. Phys. Lett. 111(19), 193103 (2017).
[Crossref]

D. M. A. Mackenzie, J. D. Buron, P. R. Whelan, J. M. Caridad, M. Bjergfelt, B. Luo, A. Shivayogimath, A. L. Smitshuysen, J. D. Thomsen, T. J. Booth, L. Gammelgaard, J. Zultak, B. S. Jessen, P. Bøggild, and D. H. Petersen, “Quality assessment of graphene: Continuity, uniformity, and accuracy of mobility measurements,” Nano Res. 10(10), 3596–3605 (2017).
[Crossref]

P. Bøggild, D. M. A. Mackenzie, P. R. Whelan, D. H. Petersen, J. D. Buron, A. Zurutuza, J. Gallop, L. Hao, and P. U. Jepsen, “Mapping the electrical properties of large-area graphene,” 2D Mater. 4(4), 042003 (2017).

D. M. A. Mackenzie, A. Cagliani, L. Gammelgaard, B. S. Jessen, D. H. Petersen, and P. Bøggild, “Graphene antidot lattice transport measurements,” Int. J. Nanotechnol. 14(1–6), 226 (2017).

D. M. A. Mackenzie, J. D. Buron, P. Boaggild, P. U. Jepsen, and D. H. Petersen, “Contactless graphene conductance measurements: the effect of device fabrication on terahertz time-domain spectroscopy,” Int. J. Nanotechnol. 13(8/9), 591 (2016).
[Crossref]

J. D. Buron, F. Pizzocchero, P. U. Jepsen, D. H. Petersen, J. M. Caridad, B. S. Jessen, T. J. Booth, and P. Bøggild, “Graphene mobility mapping,” Sci. Rep. 5(1), 12305 (2015).
[Crossref] [PubMed]

J. D. Buron, D. M. A. Mackenzie, D. H. Petersen, A. Pesquera, A. Centeno, P. Bøggild, A. Zurutuza, and P. U. Jepsen, “Terahertz wafer-scale mobility mapping of graphene on insulating substrates without a gate,” Opt. Express 23(24), 30721–30729 (2015).
[Crossref] [PubMed]

D. M. A. Mackenzie, J. D. Buron, P. R. Whelan, B. S. Jessen, A. Silajdźić, A. Pesquera, A. Centeno, A. Zurutuza, P. Bøggild, and D. H. Petersen, “Fabrication of CVD graphene-based devices via laser ablation for wafer-scale characterization,” 2D Mater. 2(4), 045003 (2015).

D. W. Koon, F. Wang, D. H. Petersen, and O. Hansen, “Sensitivity of resistive and Hall measurements to local inhomogeneities: Finite-field, intensity, and area corrections,” J. Appl. Phys. 116(13), 133706 (2014).
[Crossref]

L. Gammelgaard, J. M. Caridad, A. Cagliani, D. M. A. MacKenzie, D. H. Petersen, T. J. Booth, and P. Bøggild, “Graphene transport properties upon exposure to PMMA processing and heat treatments,” 2D Mater. 1(3), 1–6 (2014).

J. D. Buron, D. H. Petersen, P. Bøggild, D. G. Cooke, M. Hilke, J. Sun, E. Whiteway, P. F. Nielsen, O. Hansen, A. Yurgens, and P. U. Jepsen, “Graphene conductance uniformity mapping,” Nano Lett. 12(10), 5074–5081 (2012).
[Crossref] [PubMed]

Peumans, P.

J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes,” ACS Nano 4(1), 43–48 (2010).
[Crossref] [PubMed]

Piazza, V.

V. Miseikis, D. Convertino, N. Mishra, M. Gemmi, T. Mashoff, S. Heun, N. Haghighian, F. Bisio, M. Canepa, V. Piazza, and C. Coletti, “Rapid CVD growth of millimetre-sized single crystal graphene using a cold-wall reactor,” 2D Mater. 2(1), 014006 (2015).

Pizzocchero, F.

J. D. Buron, F. Pizzocchero, P. U. Jepsen, D. H. Petersen, J. M. Caridad, B. S. Jessen, T. J. Booth, and P. Bøggild, “Graphene mobility mapping,” Sci. Rep. 5(1), 12305 (2015).
[Crossref] [PubMed]

A. Cagliani, D. M. A. Mackenzie, L. K. Tschammer, F. Pizzocchero, K. Almdal, and P. Bøggild, “Large-area nanopatterned graphene for ultrasensitive gas sensing,” Nano Res. 7(5), 743–754 (2014).
[Crossref]

Prager, L.

P. R. Whelan, B. S. Jessen, R. Wang, B. Luo, A. C. Stoot, D. M. A. Mackenzie, P. Braeuninger-Weimer, A. Jouvray, L. Prager, L. Camilli, S. Hofmann, P. Bøggild, and T. J. Booth, “Raman spectral indicators of catalyst decoupling for transfer of CVD grown 2D materials,” Carbon 117, 75–81 (2017).
[Crossref]

Qin, G. G.

T. Sun, Z. L. Wang, Z. J. Shi, G. Z. Ran, W. J. Xu, Z. Y. Wang, Y. Z. Li, L. Dai, and G. G. Qin, “Multilayered graphene used as anode of organic light emitting devices,” Appl. Phys. Lett. 96(13), 133301 (2010).
[Crossref]

Ran, G. Z.

T. Sun, Z. L. Wang, Z. J. Shi, G. Z. Ran, W. J. Xu, Z. Y. Wang, Y. Z. Li, L. Dai, and G. G. Qin, “Multilayered graphene used as anode of organic light emitting devices,” Appl. Phys. Lett. 96(13), 133301 (2010).
[Crossref]

Råsander, M.

A. D. Smith, K. Elgammal, F. Niklaus, A. Delin, A. C. Fischer, S. Vaziri, F. Forsberg, M. Råsander, H. Hugosson, L. Bergqvist, S. Schröder, S. Kataria, M. Östling, and M. C. Lemme, “Resistive graphene humidity sensors with rapid and direct electrical readout,” Nanoscale 7(45), 19099–19109 (2015).
[Crossref] [PubMed]

Riikonen, J.

M. Kim, A. Shah, C. Li, P. Mustonen, J. Susoma, F. Manoocheri, J. Riikonen, and H. Lipsanen, “Direct transfer of Wafer-scale graphene films,” 2D Mater. 4(3), 035004 (2017).

Schedin, F.

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

Schiller, T.

N. T. Kirkland, T. Schiller, N. Medhekar, and N. Birbilis, “Exploring graphene as a corrosion protection barrier,” Corros. Sci. 56, 1–4 (2012).
[Crossref]

Schröder, S.

A. D. Smith, K. Elgammal, F. Niklaus, A. Delin, A. C. Fischer, S. Vaziri, F. Forsberg, M. Råsander, H. Hugosson, L. Bergqvist, S. Schröder, S. Kataria, M. Östling, and M. C. Lemme, “Resistive graphene humidity sensors with rapid and direct electrical readout,” Nanoscale 7(45), 19099–19109 (2015).
[Crossref] [PubMed]

Schwierz, F.

F. Schwierz, “Graphene transistors,” Nat. Nanotechnol. 5(7), 487–496 (2010).
[Crossref] [PubMed]

Seo, D. H.

J. Heo, H. J. Chung, S.-H. Lee, H. Yang, D. H. Seo, J. K. Shin, U.-I. Chung, S. Seo, E. H. Hwang, and S. Das Sarma, “Nonmonotonic temperature dependent transport in graphene grown by chemical vapor deposition,” Phys. Rev. B 84(3), 035421 (2011).
[Crossref]

Seo, S.

J. Heo, H. J. Chung, S.-H. Lee, H. Yang, D. H. Seo, J. K. Shin, U.-I. Chung, S. Seo, E. H. Hwang, and S. Das Sarma, “Nonmonotonic temperature dependent transport in graphene grown by chemical vapor deposition,” Phys. Rev. B 84(3), 035421 (2011).
[Crossref]

Shah, A.

M. Kim, A. Shah, C. Li, P. Mustonen, J. Susoma, F. Manoocheri, J. Riikonen, and H. Lipsanen, “Direct transfer of Wafer-scale graphene films,” 2D Mater. 4(3), 035004 (2017).

Shi, G.

W. Yuan and G. Shi, “Graphene-based gas sensors,” J. Mater. Chem. A Mater. Energy Sustain. 1(35), 10078 (2013).
[Crossref]

Shi, Z. J.

T. Sun, Z. L. Wang, Z. J. Shi, G. Z. Ran, W. J. Xu, Z. Y. Wang, Y. Z. Li, L. Dai, and G. G. Qin, “Multilayered graphene used as anode of organic light emitting devices,” Appl. Phys. Lett. 96(13), 133301 (2010).
[Crossref]

Shin, J. K.

J. Heo, H. J. Chung, S.-H. Lee, H. Yang, D. H. Seo, J. K. Shin, U.-I. Chung, S. Seo, E. H. Hwang, and S. Das Sarma, “Nonmonotonic temperature dependent transport in graphene grown by chemical vapor deposition,” Phys. Rev. B 84(3), 035421 (2011).
[Crossref]

Shivayogimath, A.

D. M. A. Mackenzie, K. Smistrup, P. R. Whelan, B. Luo, A. Shivayogimath, T. Nielsen, D. H. Petersen, S. A. Messina, and P. Bøggild, “Batch fabrication of nanopatterned graphene devices via nanoimprint lithography,” Appl. Phys. Lett. 111(19), 193103 (2017).
[Crossref]

D. M. A. Mackenzie, J. D. Buron, P. R. Whelan, J. M. Caridad, M. Bjergfelt, B. Luo, A. Shivayogimath, A. L. Smitshuysen, J. D. Thomsen, T. J. Booth, L. Gammelgaard, J. Zultak, B. S. Jessen, P. Bøggild, and D. H. Petersen, “Quality assessment of graphene: Continuity, uniformity, and accuracy of mobility measurements,” Nano Res. 10(10), 3596–3605 (2017).
[Crossref]

Silajdzic, A.

D. M. A. Mackenzie, J. D. Buron, P. R. Whelan, B. S. Jessen, A. Silajdźić, A. Pesquera, A. Centeno, A. Zurutuza, P. Bøggild, and D. H. Petersen, “Fabrication of CVD graphene-based devices via laser ablation for wafer-scale characterization,” 2D Mater. 2(4), 045003 (2015).

Small, J. P.

Y.-M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer, and P. Avouris, “Operation of graphene transistors at gigahertz frequencies,” Nano Lett. 9(1), 422–426 (2009).
[Crossref] [PubMed]

Smistrup, K.

D. M. A. Mackenzie, K. Smistrup, P. R. Whelan, B. Luo, A. Shivayogimath, T. Nielsen, D. H. Petersen, S. A. Messina, and P. Bøggild, “Batch fabrication of nanopatterned graphene devices via nanoimprint lithography,” Appl. Phys. Lett. 111(19), 193103 (2017).
[Crossref]

Smith, A. D.

A. D. Smith, K. Elgammal, F. Niklaus, A. Delin, A. C. Fischer, S. Vaziri, F. Forsberg, M. Råsander, H. Hugosson, L. Bergqvist, S. Schröder, S. Kataria, M. Östling, and M. C. Lemme, “Resistive graphene humidity sensors with rapid and direct electrical readout,” Nanoscale 7(45), 19099–19109 (2015).
[Crossref] [PubMed]

Smitshuysen, A. L.

D. M. A. Mackenzie, J. D. Buron, P. R. Whelan, J. M. Caridad, M. Bjergfelt, B. Luo, A. Shivayogimath, A. L. Smitshuysen, J. D. Thomsen, T. J. Booth, L. Gammelgaard, J. Zultak, B. S. Jessen, P. Bøggild, and D. H. Petersen, “Quality assessment of graphene: Continuity, uniformity, and accuracy of mobility measurements,” Nano Res. 10(10), 3596–3605 (2017).
[Crossref]

Stoot, A. C.

M. Galbiati, A. C. Stoot, D. M. A. Mackenzie, P. Bøggild, and L. Camilli, “Real-time oxide evolution of copper protected by graphene and boron nitride barriers,” Sci. Rep. 7(2), 39770 (2017).
[Crossref] [PubMed]

P. R. Whelan, B. S. Jessen, R. Wang, B. Luo, A. C. Stoot, D. M. A. Mackenzie, P. Braeuninger-Weimer, A. Jouvray, L. Prager, L. Camilli, S. Hofmann, P. Bøggild, and T. J. Booth, “Raman spectral indicators of catalyst decoupling for transfer of CVD grown 2D materials,” Carbon 117, 75–81 (2017).
[Crossref]

Sun, D.

Q. Wang, C. Z. Li, S. Ge, J. G. Li, W. Lu, J. Lai, X. Liu, J. Ma, D. P. Yu, Z. M. Liao, and D. Sun, “Ultrafast Broadband Photodetectors Based on Three-Dimensional Dirac Semimetal Cd3As2,” Nano Lett. 17(2), 834–841 (2017).
[Crossref] [PubMed]

Sun, J.

J. D. Buron, D. H. Petersen, P. Bøggild, D. G. Cooke, M. Hilke, J. Sun, E. Whiteway, P. F. Nielsen, O. Hansen, A. Yurgens, and P. U. Jepsen, “Graphene conductance uniformity mapping,” Nano Lett. 12(10), 5074–5081 (2012).
[Crossref] [PubMed]

Sun, T.

T. Sun, Z. L. Wang, Z. J. Shi, G. Z. Ran, W. J. Xu, Z. Y. Wang, Y. Z. Li, L. Dai, and G. G. Qin, “Multilayered graphene used as anode of organic light emitting devices,” Appl. Phys. Lett. 96(13), 133301 (2010).
[Crossref]

Susoma, J.

M. Kim, A. Shah, C. Li, P. Mustonen, J. Susoma, F. Manoocheri, J. Riikonen, and H. Lipsanen, “Direct transfer of Wafer-scale graphene films,” 2D Mater. 4(3), 035004 (2017).

Thomsen, J. D.

B. Luo, J. M. Caridad, P. R. Whelan, J. D. Thomsen, D. M. A. Mackenzie, A. Grubišić Čabo, S. K. Mahatha, M. Bianchi, P. Hofmann, P. U. Jepsen, P. Bøggild, and T. J. Booth, “Sputtering an exterior metal coating on copper enclosure for large-scale growth of single-crystalline graphene,” 2D Mater. 4(4), 045017 (2017).

D. M. A. Mackenzie, J. D. Buron, P. R. Whelan, J. M. Caridad, M. Bjergfelt, B. Luo, A. Shivayogimath, A. L. Smitshuysen, J. D. Thomsen, T. J. Booth, L. Gammelgaard, J. Zultak, B. S. Jessen, P. Bøggild, and D. H. Petersen, “Quality assessment of graphene: Continuity, uniformity, and accuracy of mobility measurements,” Nano Res. 10(10), 3596–3605 (2017).
[Crossref]

Tian, J.

I. Childres, L. A. Jauregui, J. Tian, and Y. P. Chen, “Effect of oxygen plasma etching on graphene studied using Raman spectroscopy and electronic transport measurements,” New J. Phys. 13(2), 025008 (2011).
[Crossref]

Tinkham, M.

R. E. Glover and M. Tinkham, “Conductivity of superconducting films for photon energies between 0.3 and 40kTc,” Phys. Rev. 108(2), 243–256 (1957).
[Crossref]

Tschammer, L. K.

A. Cagliani, D. M. A. Mackenzie, L. K. Tschammer, F. Pizzocchero, K. Almdal, and P. Bøggild, “Large-area nanopatterned graphene for ultrasensitive gas sensing,” Nano Res. 7(5), 743–754 (2014).
[Crossref]

Valdes-Garcia, A.

Y.-M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer, and P. Avouris, “Operation of graphene transistors at gigahertz frequencies,” Nano Lett. 9(1), 422–426 (2009).
[Crossref] [PubMed]

van der Pauw, L. J.

L. J. van der Pauw, “A meothd of measuring the resistivity and Hall coefficent of lamellae of arbitrary shape,” Phillips Tech. Rev. 20(I), 220–224 (1958).

Vaziri, S.

A. D. Smith, K. Elgammal, F. Niklaus, A. Delin, A. C. Fischer, S. Vaziri, F. Forsberg, M. Råsander, H. Hugosson, L. Bergqvist, S. Schröder, S. Kataria, M. Östling, and M. C. Lemme, “Resistive graphene humidity sensors with rapid and direct electrical readout,” Nanoscale 7(45), 19099–19109 (2015).
[Crossref] [PubMed]

Vlassiouk, I.

S. Dhingra, J. F. Hsu, I. Vlassiouk, and B. D’Urso, “Chemical vapor deposition of graphene on large-domain ultra-flat copper,” Carbon 69, 188–193 (2014).
[Crossref]

Wang, F.

D. W. Koon, F. Wang, D. H. Petersen, and O. Hansen, “Sensitivity of resistive and Hall measurements to local inhomogeneities: Finite-field, intensity, and area corrections,” J. Appl. Phys. 116(13), 133706 (2014).
[Crossref]

Wang, Q.

Q. Wang, C. Z. Li, S. Ge, J. G. Li, W. Lu, J. Lai, X. Liu, J. Ma, D. P. Yu, Z. M. Liao, and D. Sun, “Ultrafast Broadband Photodetectors Based on Three-Dimensional Dirac Semimetal Cd3As2,” Nano Lett. 17(2), 834–841 (2017).
[Crossref] [PubMed]

Wang, R.

P. R. Whelan, B. S. Jessen, R. Wang, B. Luo, A. C. Stoot, D. M. A. Mackenzie, P. Braeuninger-Weimer, A. Jouvray, L. Prager, L. Camilli, S. Hofmann, P. Bøggild, and T. J. Booth, “Raman spectral indicators of catalyst decoupling for transfer of CVD grown 2D materials,” Carbon 117, 75–81 (2017).
[Crossref]

P. R. Whelan, K. Iwaszczuk, R. Wang, S. Hofmann, P. Bøggild, and P. U. Jepsen, “Robust mapping of electrical properties of graphene from terahertz time-domain spectroscopy with timing jitter correction,” Opt. Express 25(3), 2725–2732 (2017).
[Crossref] [PubMed]

Wang, T.

F. Yu, L. Camilli, T. Wang, D. M. A. Mackenzie, M. Curioni, R. Akid, and P. Bøggild, “Complete long-term corrosion protection with chemical vapor deposited graphene,” Carbon 132, 78–84 (2018).
[Crossref]

Wang, W.

Wang, Z. L.

T. Sun, Z. L. Wang, Z. J. Shi, G. Z. Ran, W. J. Xu, Z. Y. Wang, Y. Z. Li, L. Dai, and G. G. Qin, “Multilayered graphene used as anode of organic light emitting devices,” Appl. Phys. Lett. 96(13), 133301 (2010).
[Crossref]

Wang, Z. Y.

T. Sun, Z. L. Wang, Z. J. Shi, G. Z. Ran, W. J. Xu, Z. Y. Wang, Y. Z. Li, L. Dai, and G. G. Qin, “Multilayered graphene used as anode of organic light emitting devices,” Appl. Phys. Lett. 96(13), 133301 (2010).
[Crossref]

Whelan, P. R.

P. R. Whelan, B. S. Jessen, R. Wang, B. Luo, A. C. Stoot, D. M. A. Mackenzie, P. Braeuninger-Weimer, A. Jouvray, L. Prager, L. Camilli, S. Hofmann, P. Bøggild, and T. J. Booth, “Raman spectral indicators of catalyst decoupling for transfer of CVD grown 2D materials,” Carbon 117, 75–81 (2017).
[Crossref]

P. Bøggild, D. M. A. Mackenzie, P. R. Whelan, D. H. Petersen, J. D. Buron, A. Zurutuza, J. Gallop, L. Hao, and P. U. Jepsen, “Mapping the electrical properties of large-area graphene,” 2D Mater. 4(4), 042003 (2017).

B. Luo, J. M. Caridad, P. R. Whelan, J. D. Thomsen, D. M. A. Mackenzie, A. Grubišić Čabo, S. K. Mahatha, M. Bianchi, P. Hofmann, P. U. Jepsen, P. Bøggild, and T. J. Booth, “Sputtering an exterior metal coating on copper enclosure for large-scale growth of single-crystalline graphene,” 2D Mater. 4(4), 045017 (2017).

P. R. Whelan, K. Iwaszczuk, R. Wang, S. Hofmann, P. Bøggild, and P. U. Jepsen, “Robust mapping of electrical properties of graphene from terahertz time-domain spectroscopy with timing jitter correction,” Opt. Express 25(3), 2725–2732 (2017).
[Crossref] [PubMed]

D. M. A. Mackenzie, K. Smistrup, P. R. Whelan, B. Luo, A. Shivayogimath, T. Nielsen, D. H. Petersen, S. A. Messina, and P. Bøggild, “Batch fabrication of nanopatterned graphene devices via nanoimprint lithography,” Appl. Phys. Lett. 111(19), 193103 (2017).
[Crossref]

D. M. A. Mackenzie, J. D. Buron, P. R. Whelan, J. M. Caridad, M. Bjergfelt, B. Luo, A. Shivayogimath, A. L. Smitshuysen, J. D. Thomsen, T. J. Booth, L. Gammelgaard, J. Zultak, B. S. Jessen, P. Bøggild, and D. H. Petersen, “Quality assessment of graphene: Continuity, uniformity, and accuracy of mobility measurements,” Nano Res. 10(10), 3596–3605 (2017).
[Crossref]

D. M. A. Mackenzie, J. D. Buron, P. R. Whelan, B. S. Jessen, A. Silajdźić, A. Pesquera, A. Centeno, A. Zurutuza, P. Bøggild, and D. H. Petersen, “Fabrication of CVD graphene-based devices via laser ablation for wafer-scale characterization,” 2D Mater. 2(4), 045003 (2015).

Whiteway, E.

J. D. Buron, D. H. Petersen, P. Bøggild, D. G. Cooke, M. Hilke, J. Sun, E. Whiteway, P. F. Nielsen, O. Hansen, A. Yurgens, and P. U. Jepsen, “Graphene conductance uniformity mapping,” Nano Lett. 12(10), 5074–5081 (2012).
[Crossref] [PubMed]

Woo, S.-H.

T.-H. Han, Y. Lee, M.-R. Choi, S.-H. Woo, S.-H. Bae, B. H. Hong, J.-H. Ahn, and T.-W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

Wu, J.

J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes,” ACS Nano 4(1), 43–48 (2010).
[Crossref] [PubMed]

Xiang, N.

Xu, W. J.

T. Sun, Z. L. Wang, Z. J. Shi, G. Z. Ran, W. J. Xu, Z. Y. Wang, Y. Z. Li, L. Dai, and G. G. Qin, “Multilayered graphene used as anode of organic light emitting devices,” Appl. Phys. Lett. 96(13), 133301 (2010).
[Crossref]

Yager, T.

T. Yager, A. Lartsev, R. Yakimova, S. Lara-Avila, and S. Kubatkin, “Wafer-scale homogeneity of transport properties in epitaxial graphene on SiC,” Carbon 87(C), 409–414 (2015).
[Crossref]

Yakimova, R.

T. Yager, A. Lartsev, R. Yakimova, S. Lara-Avila, and S. Kubatkin, “Wafer-scale homogeneity of transport properties in epitaxial graphene on SiC,” Carbon 87(C), 409–414 (2015).
[Crossref]

Yang, H.

J. Heo, H. J. Chung, S.-H. Lee, H. Yang, D. H. Seo, J. K. Shin, U.-I. Chung, S. Seo, E. H. Hwang, and S. Das Sarma, “Nonmonotonic temperature dependent transport in graphene grown by chemical vapor deposition,” Phys. Rev. B 84(3), 035421 (2011).
[Crossref]

Yang, J. H.

H. J. Yoon, D. H. Jun, J. H. Yang, Z. Zhou, S. S. Yang, and M. M. C. Cheng, “Carbon dioxide gas sensor using a graphene sheet,” Sens. Actuators B Chem. 157(1), 310–313 (2011).
[Crossref]

Yang, S. S.

H. J. Yoon, D. H. Jun, J. H. Yang, Z. Zhou, S. S. Yang, and M. M. C. Cheng, “Carbon dioxide gas sensor using a graphene sheet,” Sens. Actuators B Chem. 157(1), 310–313 (2011).
[Crossref]

Yoon, H. J.

H. J. Yoon, D. H. Jun, J. H. Yang, Z. Zhou, S. S. Yang, and M. M. C. Cheng, “Carbon dioxide gas sensor using a graphene sheet,” Sens. Actuators B Chem. 157(1), 310–313 (2011).
[Crossref]

You, Y.

Yu, D. P.

Q. Wang, C. Z. Li, S. Ge, J. G. Li, W. Lu, J. Lai, X. Liu, J. Ma, D. P. Yu, Z. M. Liao, and D. Sun, “Ultrafast Broadband Photodetectors Based on Three-Dimensional Dirac Semimetal Cd3As2,” Nano Lett. 17(2), 834–841 (2017).
[Crossref] [PubMed]

Yu, F.

F. Yu, L. Camilli, T. Wang, D. M. A. Mackenzie, M. Curioni, R. Akid, and P. Bøggild, “Complete long-term corrosion protection with chemical vapor deposited graphene,” Carbon 132, 78–84 (2018).
[Crossref]

Yu, Y.

Yuan, W.

W. Yuan and G. Shi, “Graphene-based gas sensors,” J. Mater. Chem. A Mater. Energy Sustain. 1(35), 10078 (2013).
[Crossref]

Yurgens, A.

J. D. Buron, D. H. Petersen, P. Bøggild, D. G. Cooke, M. Hilke, J. Sun, E. Whiteway, P. F. Nielsen, O. Hansen, A. Yurgens, and P. U. Jepsen, “Graphene conductance uniformity mapping,” Nano Lett. 12(10), 5074–5081 (2012).
[Crossref] [PubMed]

Zafar, Z.

Zhao, W.

Zhou, Z.

H. J. Yoon, D. H. Jun, J. H. Yang, Z. Zhou, S. S. Yang, and M. M. C. Cheng, “Carbon dioxide gas sensor using a graphene sheet,” Sens. Actuators B Chem. 157(1), 310–313 (2011).
[Crossref]

Zultak, J.

D. M. A. Mackenzie, J. D. Buron, P. R. Whelan, J. M. Caridad, M. Bjergfelt, B. Luo, A. Shivayogimath, A. L. Smitshuysen, J. D. Thomsen, T. J. Booth, L. Gammelgaard, J. Zultak, B. S. Jessen, P. Bøggild, and D. H. Petersen, “Quality assessment of graphene: Continuity, uniformity, and accuracy of mobility measurements,” Nano Res. 10(10), 3596–3605 (2017).
[Crossref]

Zurutuza, A.

P. Bøggild, D. M. A. Mackenzie, P. R. Whelan, D. H. Petersen, J. D. Buron, A. Zurutuza, J. Gallop, L. Hao, and P. U. Jepsen, “Mapping the electrical properties of large-area graphene,” 2D Mater. 4(4), 042003 (2017).

J. D. Buron, D. M. A. Mackenzie, D. H. Petersen, A. Pesquera, A. Centeno, P. Bøggild, A. Zurutuza, and P. U. Jepsen, “Terahertz wafer-scale mobility mapping of graphene on insulating substrates without a gate,” Opt. Express 23(24), 30721–30729 (2015).
[Crossref] [PubMed]

D. M. A. Mackenzie, J. D. Buron, P. R. Whelan, B. S. Jessen, A. Silajdźić, A. Pesquera, A. Centeno, A. Zurutuza, P. Bøggild, and D. H. Petersen, “Fabrication of CVD graphene-based devices via laser ablation for wafer-scale characterization,” 2D Mater. 2(4), 045003 (2015).

2D Mater. (6)

V. Miseikis, D. Convertino, N. Mishra, M. Gemmi, T. Mashoff, S. Heun, N. Haghighian, F. Bisio, M. Canepa, V. Piazza, and C. Coletti, “Rapid CVD growth of millimetre-sized single crystal graphene using a cold-wall reactor,” 2D Mater. 2(1), 014006 (2015).

B. Luo, J. M. Caridad, P. R. Whelan, J. D. Thomsen, D. M. A. Mackenzie, A. Grubišić Čabo, S. K. Mahatha, M. Bianchi, P. Hofmann, P. U. Jepsen, P. Bøggild, and T. J. Booth, “Sputtering an exterior metal coating on copper enclosure for large-scale growth of single-crystalline graphene,” 2D Mater. 4(4), 045017 (2017).

M. Kim, A. Shah, C. Li, P. Mustonen, J. Susoma, F. Manoocheri, J. Riikonen, and H. Lipsanen, “Direct transfer of Wafer-scale graphene films,” 2D Mater. 4(3), 035004 (2017).

P. Bøggild, D. M. A. Mackenzie, P. R. Whelan, D. H. Petersen, J. D. Buron, A. Zurutuza, J. Gallop, L. Hao, and P. U. Jepsen, “Mapping the electrical properties of large-area graphene,” 2D Mater. 4(4), 042003 (2017).

L. Gammelgaard, J. M. Caridad, A. Cagliani, D. M. A. MacKenzie, D. H. Petersen, T. J. Booth, and P. Bøggild, “Graphene transport properties upon exposure to PMMA processing and heat treatments,” 2D Mater. 1(3), 1–6 (2014).

D. M. A. Mackenzie, J. D. Buron, P. R. Whelan, B. S. Jessen, A. Silajdźić, A. Pesquera, A. Centeno, A. Zurutuza, P. Bøggild, and D. H. Petersen, “Fabrication of CVD graphene-based devices via laser ablation for wafer-scale characterization,” 2D Mater. 2(4), 045003 (2015).

ACS Nano (1)

J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes,” ACS Nano 4(1), 43–48 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

T. Sun, Z. L. Wang, Z. J. Shi, G. Z. Ran, W. J. Xu, Z. Y. Wang, Y. Z. Li, L. Dai, and G. G. Qin, “Multilayered graphene used as anode of organic light emitting devices,” Appl. Phys. Lett. 96(13), 133301 (2010).
[Crossref]

D. M. A. Mackenzie, K. Smistrup, P. R. Whelan, B. Luo, A. Shivayogimath, T. Nielsen, D. H. Petersen, S. A. Messina, and P. Bøggild, “Batch fabrication of nanopatterned graphene devices via nanoimprint lithography,” Appl. Phys. Lett. 111(19), 193103 (2017).
[Crossref]

Carbon (4)

P. R. Whelan, B. S. Jessen, R. Wang, B. Luo, A. C. Stoot, D. M. A. Mackenzie, P. Braeuninger-Weimer, A. Jouvray, L. Prager, L. Camilli, S. Hofmann, P. Bøggild, and T. J. Booth, “Raman spectral indicators of catalyst decoupling for transfer of CVD grown 2D materials,” Carbon 117, 75–81 (2017).
[Crossref]

T. Yager, A. Lartsev, R. Yakimova, S. Lara-Avila, and S. Kubatkin, “Wafer-scale homogeneity of transport properties in epitaxial graphene on SiC,” Carbon 87(C), 409–414 (2015).
[Crossref]

S. Dhingra, J. F. Hsu, I. Vlassiouk, and B. D’Urso, “Chemical vapor deposition of graphene on large-domain ultra-flat copper,” Carbon 69, 188–193 (2014).
[Crossref]

F. Yu, L. Camilli, T. Wang, D. M. A. Mackenzie, M. Curioni, R. Akid, and P. Bøggild, “Complete long-term corrosion protection with chemical vapor deposited graphene,” Carbon 132, 78–84 (2018).
[Crossref]

Corros. Sci. (1)

N. T. Kirkland, T. Schiller, N. Medhekar, and N. Birbilis, “Exploring graphene as a corrosion protection barrier,” Corros. Sci. 56, 1–4 (2012).
[Crossref]

Int. J. Nanotechnol. (2)

D. M. A. Mackenzie, J. D. Buron, P. Boaggild, P. U. Jepsen, and D. H. Petersen, “Contactless graphene conductance measurements: the effect of device fabrication on terahertz time-domain spectroscopy,” Int. J. Nanotechnol. 13(8/9), 591 (2016).
[Crossref]

D. M. A. Mackenzie, A. Cagliani, L. Gammelgaard, B. S. Jessen, D. H. Petersen, and P. Bøggild, “Graphene antidot lattice transport measurements,” Int. J. Nanotechnol. 14(1–6), 226 (2017).

J. Appl. Phys. (1)

D. W. Koon, F. Wang, D. H. Petersen, and O. Hansen, “Sensitivity of resistive and Hall measurements to local inhomogeneities: Finite-field, intensity, and area corrections,” J. Appl. Phys. 116(13), 133706 (2014).
[Crossref]

J. Mater. Chem. A Mater. Energy Sustain. (1)

W. Yuan and G. Shi, “Graphene-based gas sensors,” J. Mater. Chem. A Mater. Energy Sustain. 1(35), 10078 (2013).
[Crossref]

Meas. J. Int. Meas. Confed. (1)

J. Náhlík, I. Kašpárková, and P. Fitl, “Study of quantitative influence of sample defects on measurements of resistivity of thin films using van der Pauw method,” Meas. J. Int. Meas. Confed. 44(10), 1968–1979 (2011).
[Crossref]

Microelectron. Eng. (1)

M. B. B. S. Larsen, D. M. A. Mackenzie, J. M. Caridad, P. Bøggild, and T. J. Booth, “Transfer induced compressive strain in graphene: Evidence from Raman spectroscopic mapping,” Microelectron. Eng. 121, 113–117 (2014).
[Crossref]

Nano Lett. (4)

J. D. Buron, D. H. Petersen, P. Bøggild, D. G. Cooke, M. Hilke, J. Sun, E. Whiteway, P. F. Nielsen, O. Hansen, A. Yurgens, and P. U. Jepsen, “Graphene conductance uniformity mapping,” Nano Lett. 12(10), 5074–5081 (2012).
[Crossref] [PubMed]

Y.-M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer, and P. Avouris, “Operation of graphene transistors at gigahertz frequencies,” Nano Lett. 9(1), 422–426 (2009).
[Crossref] [PubMed]

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: A platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

Q. Wang, C. Z. Li, S. Ge, J. G. Li, W. Lu, J. Lai, X. Liu, J. Ma, D. P. Yu, Z. M. Liao, and D. Sun, “Ultrafast Broadband Photodetectors Based on Three-Dimensional Dirac Semimetal Cd3As2,” Nano Lett. 17(2), 834–841 (2017).
[Crossref] [PubMed]

Nano Res. (2)

A. Cagliani, D. M. A. Mackenzie, L. K. Tschammer, F. Pizzocchero, K. Almdal, and P. Bøggild, “Large-area nanopatterned graphene for ultrasensitive gas sensing,” Nano Res. 7(5), 743–754 (2014).
[Crossref]

D. M. A. Mackenzie, J. D. Buron, P. R. Whelan, J. M. Caridad, M. Bjergfelt, B. Luo, A. Shivayogimath, A. L. Smitshuysen, J. D. Thomsen, T. J. Booth, L. Gammelgaard, J. Zultak, B. S. Jessen, P. Bøggild, and D. H. Petersen, “Quality assessment of graphene: Continuity, uniformity, and accuracy of mobility measurements,” Nano Res. 10(10), 3596–3605 (2017).
[Crossref]

Nanoscale (1)

A. D. Smith, K. Elgammal, F. Niklaus, A. Delin, A. C. Fischer, S. Vaziri, F. Forsberg, M. Råsander, H. Hugosson, L. Bergqvist, S. Schröder, S. Kataria, M. Östling, and M. C. Lemme, “Resistive graphene humidity sensors with rapid and direct electrical readout,” Nanoscale 7(45), 19099–19109 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

F. Schwierz, “Graphene transistors,” Nat. Nanotechnol. 5(7), 487–496 (2010).
[Crossref] [PubMed]

A. C. Ferrari and D. M. Basko, “Raman spectroscopy as a versatile tool for studying the properties of graphene,” Nat. Nanotechnol. 8(4), 235–246 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

T.-H. Han, Y. Lee, M.-R. Choi, S.-H. Woo, S.-H. Bae, B. H. Hong, J.-H. Ahn, and T.-W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

New J. Phys. (1)

I. Childres, L. A. Jauregui, J. Tian, and Y. P. Chen, “Effect of oxygen plasma etching on graphene studied using Raman spectroscopy and electronic transport measurements,” New J. Phys. 13(2), 025008 (2011).
[Crossref]

Opt. Express (2)

Optica (1)

Phillips Tech. Rev. (1)

L. J. van der Pauw, “A meothd of measuring the resistivity and Hall coefficent of lamellae of arbitrary shape,” Phillips Tech. Rev. 20(I), 220–224 (1958).

Phys. Rev. (1)

R. E. Glover and M. Tinkham, “Conductivity of superconducting films for photon energies between 0.3 and 40kTc,” Phys. Rev. 108(2), 243–256 (1957).
[Crossref]

Phys. Rev. B (1)

J. Heo, H. J. Chung, S.-H. Lee, H. Yang, D. H. Seo, J. K. Shin, U.-I. Chung, S. Seo, E. H. Hwang, and S. Das Sarma, “Nonmonotonic temperature dependent transport in graphene grown by chemical vapor deposition,” Phys. Rev. B 84(3), 035421 (2011).
[Crossref]

Sci. Rep. (2)

J. D. Buron, F. Pizzocchero, P. U. Jepsen, D. H. Petersen, J. M. Caridad, B. S. Jessen, T. J. Booth, and P. Bøggild, “Graphene mobility mapping,” Sci. Rep. 5(1), 12305 (2015).
[Crossref] [PubMed]

M. Galbiati, A. C. Stoot, D. M. A. Mackenzie, P. Bøggild, and L. Camilli, “Real-time oxide evolution of copper protected by graphene and boron nitride barriers,” Sci. Rep. 7(2), 39770 (2017).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

H. J. Yoon, D. H. Jun, J. H. Yang, Z. Zhou, S. S. Yang, and M. M. C. Cheng, “Carbon dioxide gas sensor using a graphene sheet,” Sens. Actuators B Chem. 157(1), 310–313 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 a-d: Schematic showing fabrication of device. a) A silicon substrate with passivation layer of Si3N4 has single-layer graphene transferred to it. b) A shadow mask is used to deposit metal contacts. c) A picosecond pulsed laser is used to selectively ablate the graphene d) Finished device. e) Schematic of THz-TDS in transmission mode. f) Schematic of THz-TDS in reflection mode. g) Schematic of measurement in the A configuration for vdP measurements. h) Schematic of measurement in the C configuration for vdP measurements.
Fig. 2
Fig. 2 THz-TDS conductivity maps for devices 1-4 for transmission (a,d,g,j) and reflection modes (b,e,h,k). Outline of metal contacts location shown in (j). Histograms comparing conductivity of devices 1-4 for transmission and reflection modes (c,f,i,l).
Fig. 3
Fig. 3 Pixel-matched correlation plots of four devices of THz-TDS for transmission and reflection modes from Fig. 1.
Fig. 4
Fig. 4 a) Conductivity values (left) and homogeneity values β (right) for four devices obtained by van der Pauw measurements (black squares) and the median of 100 pixels maps of THz-TDS transmission (blue crosses) and reflection (red diamonds). β values from THz are extracted from a weighted average using to represent each configuration. b-c) Repeatability measurements of THz-TDS measurements of Device 1 for transmission and reflection mode, respectively. Run 1 is as shown in a. Run 2 was performed within two minutes of Run 1. Run 3 was performed immediately after the device was unmounted and remounted.
Fig. 5
Fig. 5 a) Percentage change in vdP sheet conductivity for a range of temperatures at ~35% relative humidity in air. b) Percentage change in sheet conductivity for a range of relative humidities at 30 °C in air.
Fig. 6
Fig. 6 Sensitivity map calculations via finite element simulations. a) Design input showing graphene areas in blue and metal contacts in grey. A configuration defined as Source: Contact 1, Drain: Contact 2, V + probe: 3, V- probe: 4. C configuration defined as Source: Contact 3, Drain: Contact 4, V + probe: 1, V- probe: 2. b) Normalized sensitivity map for the A configuration measurement. c) Normalized sensitivity map for the dual configuration vdP measurement.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

e ( π R A R S ) + e ( π R C R S ) =1
β= R A R C
S= J X J XPrime + J Y J YPrime

Metrics