Abstract

A route to monitor external refractive indices greater than the core index of the waveguide is presented. Initial application utilizes an integrated optical fibre (IOF) platform due to its potential for use in harsh environment sensing. IOF is fabricated using a bespoke flame hydrolysis deposition process to fuse an optical fibre to a planar substrate achieving an optical quality, ruggedized glass layer between the fibre and substrate was fabricated. The presented refractometer is created by direct UV writing of multiple fibre Bragg gratings into an etched (22 μm diameter) optical fibre post fabrication. Linear regression analysis is applied to quantify propagation loss by monitoring each FBG’s back reflected power. The device operates with a sensitivity of approximately 350 dB/cm/RIU at a refractive index of 1.451 at 1550 nm. Numerical simulations using a transfer matrix method are presented and potential routes for development are discussed.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Evanescent field refractometry in planar optical fiber

Christopher Holmes, Alexander Jantzen, Alan C. Gray, Paul C. Gow, Lewis G. Carpenter, Rex H. S. Bannerman, James C. Gates, and Peter G. R. Smith
Opt. Lett. 43(4) 791-794 (2018)

Multi-channel optical fiber refractometer based on tree topology structure

Panpan Niu, Junfa Zhao, Cheng Zhang, Hua Bai, and Weiguang Shi
Appl. Opt. 57(16) 4696-4700 (2018)

Nanoscale roughness micromilled silica evanescent refractometer

Lewis G. Carpenter, Peter A. Cooper, Christopher Holmes, Corin B. E. Gawith, James C. Gates, and Peter G. R. Smith
Opt. Express 23(2) 1005-1014 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Q. Wang and G. Farrell, “All-fiber multimode-interference-based refractometer sensor: proposal and design,” Opt. Lett. 31(3), 317–319 (2006).
    [Crossref] [PubMed]
  2. G. J. Veldhuis, L. E. W. van der Veen, and P. V. Lambeck, “Integrated optical refractometer based on waveguide bend loss,” J. Lightwave Technol. 17(5), 857–864 (1999).
    [Crossref]
  3. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
    [Crossref]
  4. C. Gouveia, P. A. S. Jorge, J. M. Baptista, and O. Frazao, “Fabry-perot cavity based on a high-birefringent fiber Bragg grating for refractive index and temperature measurement,” IEEE Sensors J. 12(1), 17–21 (2012).
    [Crossref]
  5. K. R. Daly, C. Holmes, J. C. Gates, P. G. R. Smith, and G. D’Alessandro, “Complete mode structure analysis of tilted Bragg grating refractometers in planar waveguides toward absolute index measurement,” IEEE Photon. J. 3(5), 861–8871 (2011).
    [Crossref]
  6. J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photon Rev. 7(1), 83–108 (2013).
    [Crossref]
  7. X. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20(2), 255 (2002).
    [Crossref]
  8. F. Shen, C. Wang, Z. Sun, K. Zhou, L. Zhang, and X. Shu, “Small-period long-period fiber grating with improved refractive index sensitivity and dual-parameter sensing ability,” Opt. Lett. 42(2), 199–202 (2017).
    [Crossref] [PubMed]
  9. P. Chen, X. Shu, H. Cao, and K. Sugden, “Ultra-sensitive refractive index sensor based on an extremely simple femtosecond-laser-induced structure,” Opt. Lett. 42(6), 1157–1160 (2017).
    [Crossref] [PubMed]
  10. M. Konstantaki, P. Childs, M. Sozzi, and S. Pissadakis, “Relief Bragg reflectors inscribed on the capillary walls of solid-core photonic crystal fibers,” Laser Photon Rev. 7(3), 439–443 (2013).
    [Crossref]
  11. H. W. Yarranton, J. C. Okafor, D. P. Ortiz, and F. G. A. van den Berg, “Density and refractive index of petroleum, cuts, and mixtures,” Energy Fuels 29(9), 5723–5736 (2015).
    [Crossref]
  12. A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
    [Crossref]
  13. K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol. 12(7), 757 (2001).
    [Crossref]
  14. Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17(5), 1129 (2006).
    [Crossref]
  15. X. Zhang and W. Peng, “Fiber optic refractometer based on leaky-mode interference of bent fiber,” IEEE Photon. Technol. Lett. 27(1), 11–14 (2015).
    [Crossref]
  16. I. Sparrow, G. Emmerson, C. B. E. Gawith, and P. G. R. Smith, “Planar waveguide hygrometer and state sensor demonstrating supercooled water recognition,” Sens. Actuat. B 107(2), 856–860 (2005).
    [Crossref]
  17. C. Holmes, A. Jantzen, A. C. Gray, P. C. Gow, L. G. Carpenter, R. H. S. Bannerman, J. C. Gates, and P. G. R. Smith, “Evanescent field refractometry in planar optical fiber,” Opt. Lett. 43(4), 791–794 (2018).
    [Crossref] [PubMed]
  18. C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. M. Adikan, C. B. E. Gawith, and P. G. R. Smith, “Direct UV-written planar Bragg grating sensors,” Meas. Sci. Technol. 26(11), 112001 (2015).
    [Crossref]
  19. C. Holmes, P. A. Cooper, H. N. J. Fernando, A. Stroll, J. C. Gates, C. Krishnan, R. Haynes, P. L. Mennea, L. G. Carpenter, C. B. E. Gawith, M. M. Roth, M. D. Charlton, and P. G. R. Smith, “Direct UV written planar Bragg gratings that feature zero fluence induced birefringence,” Meas. Sci. Technol. 26(12), 125006 (2015).
    [Crossref]
  20. C. Sima, J. C. Gates, H. L. Rogers, P. L. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, “Ultra-wide detuning planar Bragg grating fabrication technique based on direct UV grating writing with electro-optic phase modulation,” Opt. Express 21(13), 15747–15754 (2013).
    [Crossref] [PubMed]
  21. H. L. Rogers, S. Ambran, C. Holmes, P. G. R. Smith, and J. C. Gates, “In situ loss measurement of direct UV-written waveguides using integrated Bragg gratings,” Opt. Lett. 35(17), 2849–2851 (2010).
    [Crossref] [PubMed]
  22. F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall soi waveguides,” IEEE Photon. Technol. Lett. 16(7), 1661–1663 (2004).
    [Crossref]
  23. S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4), 359–371 (2001).
    [Crossref]
  24. H. P. Uranus and H. Hoekstra, “Modelling of microstructured waveguides using a finite-element-based vectorial mode solver with transparent boundary conditions,” Opt. Express 12(12), 2795–2809 (2004).
    [Crossref] [PubMed]
  25. G. B. Hocker and W. K. Burns, “Mode dispersion in diffused channel waveguides by the effective index method,” Appl. Opt. 16(1), 113–118 (1977).
    [Crossref] [PubMed]
  26. L. C. Andreani and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,” Phys. Rev. B 73(23), 235114 (2006).
    [Crossref]
  27. W. P. Huang and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Quantum Electron. 29(10), 2639–2649 (1993).
    [Crossref]
  28. K. Saitoh and M. Koshiba, “Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides,” J. Lightwave Technol. 19(3), 405 (2001).
    [Crossref]
  29. A. Ghatak, K. Thyagarajan, and M. Shenoy, “Numerical analysis of planar optical waveguides using matrix approach,” J. Lightwave Technol. 5(5), 660–667 (1987).
    [Crossref]
  30. M. R. Ramadas, A. K. Ghatak, K. Thyagarajan, E. Garmire, and M. R. Shenoy, “Analysis of absorbing and leaky planar waveguides: a novel method,” Opt. Lett. 14(7), 376–378 (1989).
    [Crossref] [PubMed]
  31. J. Pendry, “Photonic band structures,” J. Mod. Opt. 41(2), 209–229 (1994).
    [Crossref]
  32. L. L. Lin, Z. Y. Li, and K. M. Ho, “Lattice symmetry applied in transfer-matrix methods for photonic crystals,” J. Appl. Phys. 94(2), 811–821 (2003).
    [Crossref]
  33. P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modelling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9), 731–759 (2006).
    [Crossref]
  34. B. Hooda and V. Rastogi, “Low cost highly sensitive miniaturized refractive index sensor based on planar waveguide,” Optik Int. J. Light. Electron. Opt. 143, 158–166 (2017).
    [Crossref]

2018 (1)

2017 (3)

2015 (4)

X. Zhang and W. Peng, “Fiber optic refractometer based on leaky-mode interference of bent fiber,” IEEE Photon. Technol. Lett. 27(1), 11–14 (2015).
[Crossref]

C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. M. Adikan, C. B. E. Gawith, and P. G. R. Smith, “Direct UV-written planar Bragg grating sensors,” Meas. Sci. Technol. 26(11), 112001 (2015).
[Crossref]

C. Holmes, P. A. Cooper, H. N. J. Fernando, A. Stroll, J. C. Gates, C. Krishnan, R. Haynes, P. L. Mennea, L. G. Carpenter, C. B. E. Gawith, M. M. Roth, M. D. Charlton, and P. G. R. Smith, “Direct UV written planar Bragg gratings that feature zero fluence induced birefringence,” Meas. Sci. Technol. 26(12), 125006 (2015).
[Crossref]

H. W. Yarranton, J. C. Okafor, D. P. Ortiz, and F. G. A. van den Berg, “Density and refractive index of petroleum, cuts, and mixtures,” Energy Fuels 29(9), 5723–5736 (2015).
[Crossref]

2013 (3)

C. Sima, J. C. Gates, H. L. Rogers, P. L. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, “Ultra-wide detuning planar Bragg grating fabrication technique based on direct UV grating writing with electro-optic phase modulation,” Opt. Express 21(13), 15747–15754 (2013).
[Crossref] [PubMed]

M. Konstantaki, P. Childs, M. Sozzi, and S. Pissadakis, “Relief Bragg reflectors inscribed on the capillary walls of solid-core photonic crystal fibers,” Laser Photon Rev. 7(3), 439–443 (2013).
[Crossref]

J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photon Rev. 7(1), 83–108 (2013).
[Crossref]

2012 (1)

C. Gouveia, P. A. S. Jorge, J. M. Baptista, and O. Frazao, “Fabry-perot cavity based on a high-birefringent fiber Bragg grating for refractive index and temperature measurement,” IEEE Sensors J. 12(1), 17–21 (2012).
[Crossref]

2011 (1)

K. R. Daly, C. Holmes, J. C. Gates, P. G. R. Smith, and G. D’Alessandro, “Complete mode structure analysis of tilted Bragg grating refractometers in planar waveguides toward absolute index measurement,” IEEE Photon. J. 3(5), 861–8871 (2011).
[Crossref]

2010 (1)

2006 (4)

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17(5), 1129 (2006).
[Crossref]

Q. Wang and G. Farrell, “All-fiber multimode-interference-based refractometer sensor: proposal and design,” Opt. Lett. 31(3), 317–319 (2006).
[Crossref] [PubMed]

L. C. Andreani and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,” Phys. Rev. B 73(23), 235114 (2006).
[Crossref]

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modelling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9), 731–759 (2006).
[Crossref]

2005 (2)

I. Sparrow, G. Emmerson, C. B. E. Gawith, and P. G. R. Smith, “Planar waveguide hygrometer and state sensor demonstrating supercooled water recognition,” Sens. Actuat. B 107(2), 856–860 (2005).
[Crossref]

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

2004 (3)

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall soi waveguides,” IEEE Photon. Technol. Lett. 16(7), 1661–1663 (2004).
[Crossref]

H. P. Uranus and H. Hoekstra, “Modelling of microstructured waveguides using a finite-element-based vectorial mode solver with transparent boundary conditions,” Opt. Express 12(12), 2795–2809 (2004).
[Crossref] [PubMed]

2003 (1)

L. L. Lin, Z. Y. Li, and K. M. Ho, “Lattice symmetry applied in transfer-matrix methods for photonic crystals,” J. Appl. Phys. 94(2), 811–821 (2003).
[Crossref]

2002 (1)

2001 (3)

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4), 359–371 (2001).
[Crossref]

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol. 12(7), 757 (2001).
[Crossref]

K. Saitoh and M. Koshiba, “Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides,” J. Lightwave Technol. 19(3), 405 (2001).
[Crossref]

1999 (1)

1994 (1)

J. Pendry, “Photonic band structures,” J. Mod. Opt. 41(2), 209–229 (1994).
[Crossref]

1993 (1)

W. P. Huang and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Quantum Electron. 29(10), 2639–2649 (1993).
[Crossref]

1989 (1)

1987 (1)

A. Ghatak, K. Thyagarajan, and M. Shenoy, “Numerical analysis of planar optical waveguides using matrix approach,” J. Lightwave Technol. 5(5), 660–667 (1987).
[Crossref]

1977 (1)

Adikan, F. R. M.

C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. M. Adikan, C. B. E. Gawith, and P. G. R. Smith, “Direct UV-written planar Bragg grating sensors,” Meas. Sci. Technol. 26(11), 112001 (2015).
[Crossref]

Albert, J.

J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photon Rev. 7(1), 83–108 (2013).
[Crossref]

Ambran, S.

Andreani, L. C.

L. C. Andreani and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,” Phys. Rev. B 73(23), 235114 (2006).
[Crossref]

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modelling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9), 731–759 (2006).
[Crossref]

Andreev, A.

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol. 12(7), 757 (2001).
[Crossref]

Bannerman, R. H. S.

Baptista, J. M.

C. Gouveia, P. A. S. Jorge, J. M. Baptista, and O. Frazao, “Fabry-perot cavity based on a high-birefringent fiber Bragg grating for refractive index and temperature measurement,” IEEE Sensors J. 12(1), 17–21 (2012).
[Crossref]

Bennion, I.

Bernini, R.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

Bienstman, P.

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modelling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9), 731–759 (2006).
[Crossref]

Burns, W. K.

Cao, H.

Carpenter, L. G.

C. Holmes, A. Jantzen, A. C. Gray, P. C. Gow, L. G. Carpenter, R. H. S. Bannerman, J. C. Gates, and P. G. R. Smith, “Evanescent field refractometry in planar optical fiber,” Opt. Lett. 43(4), 791–794 (2018).
[Crossref] [PubMed]

C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. M. Adikan, C. B. E. Gawith, and P. G. R. Smith, “Direct UV-written planar Bragg grating sensors,” Meas. Sci. Technol. 26(11), 112001 (2015).
[Crossref]

C. Holmes, P. A. Cooper, H. N. J. Fernando, A. Stroll, J. C. Gates, C. Krishnan, R. Haynes, P. L. Mennea, L. G. Carpenter, C. B. E. Gawith, M. M. Roth, M. D. Charlton, and P. G. R. Smith, “Direct UV written planar Bragg gratings that feature zero fluence induced birefringence,” Meas. Sci. Technol. 26(12), 125006 (2015).
[Crossref]

Cassan, E.

F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall soi waveguides,” IEEE Photon. Technol. Lett. 16(7), 1661–1663 (2004).
[Crossref]

Caucheteur, C.

J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photon Rev. 7(1), 83–108 (2013).
[Crossref]

Chaotan, S.

C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. M. Adikan, C. B. E. Gawith, and P. G. R. Smith, “Direct UV-written planar Bragg grating sensors,” Meas. Sci. Technol. 26(11), 112001 (2015).
[Crossref]

Charlton, M. D.

C. Holmes, P. A. Cooper, H. N. J. Fernando, A. Stroll, J. C. Gates, C. Krishnan, R. Haynes, P. L. Mennea, L. G. Carpenter, C. B. E. Gawith, M. M. Roth, M. D. Charlton, and P. G. R. Smith, “Direct UV written planar Bragg gratings that feature zero fluence induced birefringence,” Meas. Sci. Technol. 26(12), 125006 (2015).
[Crossref]

Chen, P.

Childs, P.

M. Konstantaki, P. Childs, M. Sozzi, and S. Pissadakis, “Relief Bragg reflectors inscribed on the capillary walls of solid-core photonic crystal fibers,” Laser Photon Rev. 7(3), 439–443 (2013).
[Crossref]

Cooper, P. A.

C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. M. Adikan, C. B. E. Gawith, and P. G. R. Smith, “Direct UV-written planar Bragg grating sensors,” Meas. Sci. Technol. 26(11), 112001 (2015).
[Crossref]

C. Holmes, P. A. Cooper, H. N. J. Fernando, A. Stroll, J. C. Gates, C. Krishnan, R. Haynes, P. L. Mennea, L. G. Carpenter, C. B. E. Gawith, M. M. Roth, M. D. Charlton, and P. G. R. Smith, “Direct UV written planar Bragg gratings that feature zero fluence induced birefringence,” Meas. Sci. Technol. 26(12), 125006 (2015).
[Crossref]

Costa, R.

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modelling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9), 731–759 (2006).
[Crossref]

Cucinotta, A.

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4), 359–371 (2001).
[Crossref]

Cusano, A.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

Cutolo, A.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

D’Alessandro, G.

K. R. Daly, C. Holmes, J. C. Gates, P. G. R. Smith, and G. D’Alessandro, “Complete mode structure analysis of tilted Bragg grating refractometers in planar waveguides toward absolute index measurement,” IEEE Photon. J. 3(5), 861–8871 (2011).
[Crossref]

Daly, K. R.

K. R. Daly, C. Holmes, J. C. Gates, P. G. R. Smith, and G. D’Alessandro, “Complete mode structure analysis of tilted Bragg grating refractometers in planar waveguides toward absolute index measurement,” IEEE Photon. J. 3(5), 861–8871 (2011).
[Crossref]

Dems, M.

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modelling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9), 731–759 (2006).
[Crossref]

Ecke, W.

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol. 12(7), 757 (2001).
[Crossref]

Emmerson, G.

I. Sparrow, G. Emmerson, C. B. E. Gawith, and P. G. R. Smith, “Planar waveguide hygrometer and state sensor demonstrating supercooled water recognition,” Sens. Actuat. B 107(2), 856–860 (2005).
[Crossref]

Farrell, G.

Fernando, H. N. J.

C. Holmes, P. A. Cooper, H. N. J. Fernando, A. Stroll, J. C. Gates, C. Krishnan, R. Haynes, P. L. Mennea, L. G. Carpenter, C. B. E. Gawith, M. M. Roth, M. D. Charlton, and P. G. R. Smith, “Direct UV written planar Bragg gratings that feature zero fluence induced birefringence,” Meas. Sci. Technol. 26(12), 125006 (2015).
[Crossref]

Frazao, O.

C. Gouveia, P. A. S. Jorge, J. M. Baptista, and O. Frazao, “Fabry-perot cavity based on a high-birefringent fiber Bragg grating for refractive index and temperature measurement,” IEEE Sensors J. 12(1), 17–21 (2012).
[Crossref]

Garmire, E.

Gates, J. C.

C. Holmes, A. Jantzen, A. C. Gray, P. C. Gow, L. G. Carpenter, R. H. S. Bannerman, J. C. Gates, and P. G. R. Smith, “Evanescent field refractometry in planar optical fiber,” Opt. Lett. 43(4), 791–794 (2018).
[Crossref] [PubMed]

C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. M. Adikan, C. B. E. Gawith, and P. G. R. Smith, “Direct UV-written planar Bragg grating sensors,” Meas. Sci. Technol. 26(11), 112001 (2015).
[Crossref]

C. Holmes, P. A. Cooper, H. N. J. Fernando, A. Stroll, J. C. Gates, C. Krishnan, R. Haynes, P. L. Mennea, L. G. Carpenter, C. B. E. Gawith, M. M. Roth, M. D. Charlton, and P. G. R. Smith, “Direct UV written planar Bragg gratings that feature zero fluence induced birefringence,” Meas. Sci. Technol. 26(12), 125006 (2015).
[Crossref]

C. Sima, J. C. Gates, H. L. Rogers, P. L. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, “Ultra-wide detuning planar Bragg grating fabrication technique based on direct UV grating writing with electro-optic phase modulation,” Opt. Express 21(13), 15747–15754 (2013).
[Crossref] [PubMed]

K. R. Daly, C. Holmes, J. C. Gates, P. G. R. Smith, and G. D’Alessandro, “Complete mode structure analysis of tilted Bragg grating refractometers in planar waveguides toward absolute index measurement,” IEEE Photon. J. 3(5), 861–8871 (2011).
[Crossref]

H. L. Rogers, S. Ambran, C. Holmes, P. G. R. Smith, and J. C. Gates, “In situ loss measurement of direct UV-written waveguides using integrated Bragg gratings,” Opt. Lett. 35(17), 2849–2851 (2010).
[Crossref] [PubMed]

Gawith, C. B. E.

C. Holmes, P. A. Cooper, H. N. J. Fernando, A. Stroll, J. C. Gates, C. Krishnan, R. Haynes, P. L. Mennea, L. G. Carpenter, C. B. E. Gawith, M. M. Roth, M. D. Charlton, and P. G. R. Smith, “Direct UV written planar Bragg gratings that feature zero fluence induced birefringence,” Meas. Sci. Technol. 26(12), 125006 (2015).
[Crossref]

C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. M. Adikan, C. B. E. Gawith, and P. G. R. Smith, “Direct UV-written planar Bragg grating sensors,” Meas. Sci. Technol. 26(11), 112001 (2015).
[Crossref]

I. Sparrow, G. Emmerson, C. B. E. Gawith, and P. G. R. Smith, “Planar waveguide hygrometer and state sensor demonstrating supercooled water recognition,” Sens. Actuat. B 107(2), 856–860 (2005).
[Crossref]

Gerace, D.

L. C. Andreani and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,” Phys. Rev. B 73(23), 235114 (2006).
[Crossref]

Ghatak, A.

A. Ghatak, K. Thyagarajan, and M. Shenoy, “Numerical analysis of planar optical waveguides using matrix approach,” J. Lightwave Technol. 5(5), 660–667 (1987).
[Crossref]

Ghatak, A. K.

Giordano, M.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

Gouveia, C.

C. Gouveia, P. A. S. Jorge, J. M. Baptista, and O. Frazao, “Fabry-perot cavity based on a high-birefringent fiber Bragg grating for refractive index and temperature measurement,” IEEE Sensors J. 12(1), 17–21 (2012).
[Crossref]

Gow, P. C.

Gray, A. C.

Grillot, F.

F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall soi waveguides,” IEEE Photon. Technol. Lett. 16(7), 1661–1663 (2004).
[Crossref]

Haynes, R.

C. Holmes, P. A. Cooper, H. N. J. Fernando, A. Stroll, J. C. Gates, C. Krishnan, R. Haynes, P. L. Mennea, L. G. Carpenter, C. B. E. Gawith, M. M. Roth, M. D. Charlton, and P. G. R. Smith, “Direct UV written planar Bragg gratings that feature zero fluence induced birefringence,” Meas. Sci. Technol. 26(12), 125006 (2015).
[Crossref]

Ho, K. M.

L. L. Lin, Z. Y. Li, and K. M. Ho, “Lattice symmetry applied in transfer-matrix methods for photonic crystals,” J. Appl. Phys. 94(2), 811–821 (2003).
[Crossref]

Hocker, G. B.

Hoekstra, H.

Holmes, C.

C. Holmes, A. Jantzen, A. C. Gray, P. C. Gow, L. G. Carpenter, R. H. S. Bannerman, J. C. Gates, and P. G. R. Smith, “Evanescent field refractometry in planar optical fiber,” Opt. Lett. 43(4), 791–794 (2018).
[Crossref] [PubMed]

C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. M. Adikan, C. B. E. Gawith, and P. G. R. Smith, “Direct UV-written planar Bragg grating sensors,” Meas. Sci. Technol. 26(11), 112001 (2015).
[Crossref]

C. Holmes, P. A. Cooper, H. N. J. Fernando, A. Stroll, J. C. Gates, C. Krishnan, R. Haynes, P. L. Mennea, L. G. Carpenter, C. B. E. Gawith, M. M. Roth, M. D. Charlton, and P. G. R. Smith, “Direct UV written planar Bragg gratings that feature zero fluence induced birefringence,” Meas. Sci. Technol. 26(12), 125006 (2015).
[Crossref]

C. Sima, J. C. Gates, H. L. Rogers, P. L. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, “Ultra-wide detuning planar Bragg grating fabrication technique based on direct UV grating writing with electro-optic phase modulation,” Opt. Express 21(13), 15747–15754 (2013).
[Crossref] [PubMed]

K. R. Daly, C. Holmes, J. C. Gates, P. G. R. Smith, and G. D’Alessandro, “Complete mode structure analysis of tilted Bragg grating refractometers in planar waveguides toward absolute index measurement,” IEEE Photon. J. 3(5), 861–8871 (2011).
[Crossref]

H. L. Rogers, S. Ambran, C. Holmes, P. G. R. Smith, and J. C. Gates, “In situ loss measurement of direct UV-written waveguides using integrated Bragg gratings,” Opt. Lett. 35(17), 2849–2851 (2010).
[Crossref] [PubMed]

Hooda, B.

B. Hooda and V. Rastogi, “Low cost highly sensitive miniaturized refractive index sensor based on planar waveguide,” Optik Int. J. Light. Electron. Opt. 143, 158–166 (2017).
[Crossref]

Hopman, W. C. L.

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modelling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9), 731–759 (2006).
[Crossref]

Huang, W. P.

W. P. Huang and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Quantum Electron. 29(10), 2639–2649 (1993).
[Crossref]

Huang, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Hugonin, J. P.

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modelling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9), 731–759 (2006).
[Crossref]

Iadicicco, A.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

Jantzen, A.

Jorge, P. A. S.

C. Gouveia, P. A. S. Jorge, J. M. Baptista, and O. Frazao, “Fabry-perot cavity based on a high-birefringent fiber Bragg grating for refractive index and temperature measurement,” IEEE Sensors J. 12(1), 17–21 (2012).
[Crossref]

Jung, Y.

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17(5), 1129 (2006).
[Crossref]

Kim, S.

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17(5), 1129 (2006).
[Crossref]

Konstantaki, M.

M. Konstantaki, P. Childs, M. Sozzi, and S. Pissadakis, “Relief Bragg reflectors inscribed on the capillary walls of solid-core photonic crystal fibers,” Laser Photon Rev. 7(3), 439–443 (2013).
[Crossref]

Koshiba, M.

Krishnan, C.

C. Holmes, P. A. Cooper, H. N. J. Fernando, A. Stroll, J. C. Gates, C. Krishnan, R. Haynes, P. L. Mennea, L. G. Carpenter, C. B. E. Gawith, M. M. Roth, M. D. Charlton, and P. G. R. Smith, “Direct UV written planar Bragg gratings that feature zero fluence induced birefringence,” Meas. Sci. Technol. 26(12), 125006 (2015).
[Crossref]

Lalanne, P.

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modelling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9), 731–759 (2006).
[Crossref]

Lambeck, P. V.

Laval, S.

F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall soi waveguides,” IEEE Photon. Technol. Lett. 16(7), 1661–1663 (2004).
[Crossref]

Lee, D.

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17(5), 1129 (2006).
[Crossref]

Lee, R. K.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Li, Z. Y.

L. L. Lin, Z. Y. Li, and K. M. Ho, “Lattice symmetry applied in transfer-matrix methods for photonic crystals,” J. Appl. Phys. 94(2), 811–821 (2003).
[Crossref]

Liang, W.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Lin, L. L.

L. L. Lin, Z. Y. Li, and K. M. Ho, “Lattice symmetry applied in transfer-matrix methods for photonic crystals,” J. Appl. Phys. 94(2), 811–821 (2003).
[Crossref]

Melloni, A.

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modelling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9), 731–759 (2006).
[Crossref]

Mennea, P. L.

C. Holmes, P. A. Cooper, H. N. J. Fernando, A. Stroll, J. C. Gates, C. Krishnan, R. Haynes, P. L. Mennea, L. G. Carpenter, C. B. E. Gawith, M. M. Roth, M. D. Charlton, and P. G. R. Smith, “Direct UV written planar Bragg gratings that feature zero fluence induced birefringence,” Meas. Sci. Technol. 26(12), 125006 (2015).
[Crossref]

C. Sima, J. C. Gates, H. L. Rogers, P. L. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, “Ultra-wide detuning planar Bragg grating fabrication technique based on direct UV grating writing with electro-optic phase modulation,” Opt. Express 21(13), 15747–15754 (2013).
[Crossref] [PubMed]

Mueller, R.

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol. 12(7), 757 (2001).
[Crossref]

Obayya, S. S. A.

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modelling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9), 731–759 (2006).
[Crossref]

Oh, K.

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17(5), 1129 (2006).
[Crossref]

Okafor, J. C.

H. W. Yarranton, J. C. Okafor, D. P. Ortiz, and F. G. A. van den Berg, “Density and refractive index of petroleum, cuts, and mixtures,” Energy Fuels 29(9), 5723–5736 (2015).
[Crossref]

Ortiz, D. P.

H. W. Yarranton, J. C. Okafor, D. P. Ortiz, and F. G. A. van den Berg, “Density and refractive index of petroleum, cuts, and mixtures,” Energy Fuels 29(9), 5723–5736 (2015).
[Crossref]

Panajotov, K.

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modelling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9), 731–759 (2006).
[Crossref]

Parker, R. M.

C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. M. Adikan, C. B. E. Gawith, and P. G. R. Smith, “Direct UV-written planar Bragg grating sensors,” Meas. Sci. Technol. 26(11), 112001 (2015).
[Crossref]

Pascal, D.

F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall soi waveguides,” IEEE Photon. Technol. Lett. 16(7), 1661–1663 (2004).
[Crossref]

Pendry, J.

J. Pendry, “Photonic band structures,” J. Mod. Opt. 41(2), 209–229 (1994).
[Crossref]

Peng, W.

X. Zhang and W. Peng, “Fiber optic refractometer based on leaky-mode interference of bent fiber,” IEEE Photon. Technol. Lett. 27(1), 11–14 (2015).
[Crossref]

Pinto, D.

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modelling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9), 731–759 (2006).
[Crossref]

Pissadakis, S.

M. Konstantaki, P. Childs, M. Sozzi, and S. Pissadakis, “Relief Bragg reflectors inscribed on the capillary walls of solid-core photonic crystal fibers,” Laser Photon Rev. 7(3), 439–443 (2013).
[Crossref]

Ramadas, M. R.

Rastogi, V.

B. Hooda and V. Rastogi, “Low cost highly sensitive miniaturized refractive index sensor based on planar waveguide,” Optik Int. J. Light. Electron. Opt. 143, 158–166 (2017).
[Crossref]

Rogers, H. L.

Rosa, L.

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modelling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9), 731–759 (2006).
[Crossref]

Roth, M. M.

C. Holmes, P. A. Cooper, H. N. J. Fernando, A. Stroll, J. C. Gates, C. Krishnan, R. Haynes, P. L. Mennea, L. G. Carpenter, C. B. E. Gawith, M. M. Roth, M. D. Charlton, and P. G. R. Smith, “Direct UV written planar Bragg gratings that feature zero fluence induced birefringence,” Meas. Sci. Technol. 26(12), 125006 (2015).
[Crossref]

Saitoh, K.

Schroeder, K.

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol. 12(7), 757 (2001).
[Crossref]

Selleri, S.

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modelling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9), 731–759 (2006).
[Crossref]

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4), 359–371 (2001).
[Crossref]

Shao, L.-Y.

J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photon Rev. 7(1), 83–108 (2013).
[Crossref]

Shen, F.

Shenoy, M.

A. Ghatak, K. Thyagarajan, and M. Shenoy, “Numerical analysis of planar optical waveguides using matrix approach,” J. Lightwave Technol. 5(5), 660–667 (1987).
[Crossref]

Shenoy, M. R.

Shu, X.

Sima, C.

Smith, P. G. R.

C. Holmes, A. Jantzen, A. C. Gray, P. C. Gow, L. G. Carpenter, R. H. S. Bannerman, J. C. Gates, and P. G. R. Smith, “Evanescent field refractometry in planar optical fiber,” Opt. Lett. 43(4), 791–794 (2018).
[Crossref] [PubMed]

C. Holmes, P. A. Cooper, H. N. J. Fernando, A. Stroll, J. C. Gates, C. Krishnan, R. Haynes, P. L. Mennea, L. G. Carpenter, C. B. E. Gawith, M. M. Roth, M. D. Charlton, and P. G. R. Smith, “Direct UV written planar Bragg gratings that feature zero fluence induced birefringence,” Meas. Sci. Technol. 26(12), 125006 (2015).
[Crossref]

C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. M. Adikan, C. B. E. Gawith, and P. G. R. Smith, “Direct UV-written planar Bragg grating sensors,” Meas. Sci. Technol. 26(11), 112001 (2015).
[Crossref]

C. Sima, J. C. Gates, H. L. Rogers, P. L. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, “Ultra-wide detuning planar Bragg grating fabrication technique based on direct UV grating writing with electro-optic phase modulation,” Opt. Express 21(13), 15747–15754 (2013).
[Crossref] [PubMed]

K. R. Daly, C. Holmes, J. C. Gates, P. G. R. Smith, and G. D’Alessandro, “Complete mode structure analysis of tilted Bragg grating refractometers in planar waveguides toward absolute index measurement,” IEEE Photon. J. 3(5), 861–8871 (2011).
[Crossref]

H. L. Rogers, S. Ambran, C. Holmes, P. G. R. Smith, and J. C. Gates, “In situ loss measurement of direct UV-written waveguides using integrated Bragg gratings,” Opt. Lett. 35(17), 2849–2851 (2010).
[Crossref] [PubMed]

I. Sparrow, G. Emmerson, C. B. E. Gawith, and P. G. R. Smith, “Planar waveguide hygrometer and state sensor demonstrating supercooled water recognition,” Sens. Actuat. B 107(2), 856–860 (2005).
[Crossref]

Sozzi, M.

M. Konstantaki, P. Childs, M. Sozzi, and S. Pissadakis, “Relief Bragg reflectors inscribed on the capillary walls of solid-core photonic crystal fibers,” Laser Photon Rev. 7(3), 439–443 (2013).
[Crossref]

Sparrow, I.

I. Sparrow, G. Emmerson, C. B. E. Gawith, and P. G. R. Smith, “Planar waveguide hygrometer and state sensor demonstrating supercooled water recognition,” Sens. Actuat. B 107(2), 856–860 (2005).
[Crossref]

Stroll, A.

C. Holmes, P. A. Cooper, H. N. J. Fernando, A. Stroll, J. C. Gates, C. Krishnan, R. Haynes, P. L. Mennea, L. G. Carpenter, C. B. E. Gawith, M. M. Roth, M. D. Charlton, and P. G. R. Smith, “Direct UV written planar Bragg gratings that feature zero fluence induced birefringence,” Meas. Sci. Technol. 26(12), 125006 (2015).
[Crossref]

Sugden, K.

Sun, Z.

Thyagarajan, K.

M. R. Ramadas, A. K. Ghatak, K. Thyagarajan, E. Garmire, and M. R. Shenoy, “Analysis of absorbing and leaky planar waveguides: a novel method,” Opt. Lett. 14(7), 376–378 (1989).
[Crossref] [PubMed]

A. Ghatak, K. Thyagarajan, and M. Shenoy, “Numerical analysis of planar optical waveguides using matrix approach,” J. Lightwave Technol. 5(5), 660–667 (1987).
[Crossref]

Uranus, H. P.

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modelling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9), 731–759 (2006).
[Crossref]

H. P. Uranus and H. Hoekstra, “Modelling of microstructured waveguides using a finite-element-based vectorial mode solver with transparent boundary conditions,” Opt. Express 12(12), 2795–2809 (2004).
[Crossref] [PubMed]

van den Berg, F. G. A.

H. W. Yarranton, J. C. Okafor, D. P. Ortiz, and F. G. A. van den Berg, “Density and refractive index of petroleum, cuts, and mixtures,” Energy Fuels 29(9), 5723–5736 (2015).
[Crossref]

van der Veen, L. E. W.

Veldhuis, G. J.

Vincetti, L.

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4), 359–371 (2001).
[Crossref]

Vivien, L.

F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall soi waveguides,” IEEE Photon. Technol. Lett. 16(7), 1661–1663 (2004).
[Crossref]

Wang, C.

Wang, Q.

Willsch, R.

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol. 12(7), 757 (2001).
[Crossref]

Xu, C. L.

W. P. Huang and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Quantum Electron. 29(10), 2639–2649 (1993).
[Crossref]

Xu, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Yariv, A.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Yarranton, H. W.

H. W. Yarranton, J. C. Okafor, D. P. Ortiz, and F. G. A. van den Berg, “Density and refractive index of petroleum, cuts, and mixtures,” Energy Fuels 29(9), 5723–5736 (2015).
[Crossref]

Zervas, M. N.

Zhang, L.

Zhang, X.

X. Zhang and W. Peng, “Fiber optic refractometer based on leaky-mode interference of bent fiber,” IEEE Photon. Technol. Lett. 27(1), 11–14 (2015).
[Crossref]

Zhou, K.

Zoboli, M.

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4), 359–371 (2001).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Energy Fuels (1)

H. W. Yarranton, J. C. Okafor, D. P. Ortiz, and F. G. A. van den Berg, “Density and refractive index of petroleum, cuts, and mixtures,” Energy Fuels 29(9), 5723–5736 (2015).
[Crossref]

IEEE J. Quantum Electron. (1)

W. P. Huang and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Quantum Electron. 29(10), 2639–2649 (1993).
[Crossref]

IEEE Photon. J. (1)

K. R. Daly, C. Holmes, J. C. Gates, P. G. R. Smith, and G. D’Alessandro, “Complete mode structure analysis of tilted Bragg grating refractometers in planar waveguides toward absolute index measurement,” IEEE Photon. J. 3(5), 861–8871 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (3)

F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall soi waveguides,” IEEE Photon. Technol. Lett. 16(7), 1661–1663 (2004).
[Crossref]

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004).
[Crossref]

X. Zhang and W. Peng, “Fiber optic refractometer based on leaky-mode interference of bent fiber,” IEEE Photon. Technol. Lett. 27(1), 11–14 (2015).
[Crossref]

IEEE Sensors J. (1)

C. Gouveia, P. A. S. Jorge, J. M. Baptista, and O. Frazao, “Fabry-perot cavity based on a high-birefringent fiber Bragg grating for refractive index and temperature measurement,” IEEE Sensors J. 12(1), 17–21 (2012).
[Crossref]

J. Appl. Phys. (1)

L. L. Lin, Z. Y. Li, and K. M. Ho, “Lattice symmetry applied in transfer-matrix methods for photonic crystals,” J. Appl. Phys. 94(2), 811–821 (2003).
[Crossref]

J. Lightwave Technol. (4)

J. Mod. Opt. (1)

J. Pendry, “Photonic band structures,” J. Mod. Opt. 41(2), 209–229 (1994).
[Crossref]

Laser Photon Rev. (2)

J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photon Rev. 7(1), 83–108 (2013).
[Crossref]

M. Konstantaki, P. Childs, M. Sozzi, and S. Pissadakis, “Relief Bragg reflectors inscribed on the capillary walls of solid-core photonic crystal fibers,” Laser Photon Rev. 7(3), 439–443 (2013).
[Crossref]

Meas. Sci. Technol. (4)

C. Holmes, J. C. Gates, L. G. Carpenter, H. L. Rogers, R. M. Parker, P. A. Cooper, S. Chaotan, F. R. M. Adikan, C. B. E. Gawith, and P. G. R. Smith, “Direct UV-written planar Bragg grating sensors,” Meas. Sci. Technol. 26(11), 112001 (2015).
[Crossref]

C. Holmes, P. A. Cooper, H. N. J. Fernando, A. Stroll, J. C. Gates, C. Krishnan, R. Haynes, P. L. Mennea, L. G. Carpenter, C. B. E. Gawith, M. M. Roth, M. D. Charlton, and P. G. R. Smith, “Direct UV written planar Bragg gratings that feature zero fluence induced birefringence,” Meas. Sci. Technol. 26(12), 125006 (2015).
[Crossref]

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol. 12(7), 757 (2001).
[Crossref]

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17(5), 1129 (2006).
[Crossref]

Opt. Express (2)

Opt. Lett. (6)

Opt. Quantum Electron. (2)

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modelling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9), 731–759 (2006).
[Crossref]

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4), 359–371 (2001).
[Crossref]

Optik Int. J. Light. Electron. Opt. (1)

B. Hooda and V. Rastogi, “Low cost highly sensitive miniaturized refractive index sensor based on planar waveguide,” Optik Int. J. Light. Electron. Opt. 143, 158–166 (2017).
[Crossref]

Phys. Rev. B (1)

L. C. Andreani and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,” Phys. Rev. B 73(23), 235114 (2006).
[Crossref]

Sens. Actuat. B (1)

I. Sparrow, G. Emmerson, C. B. E. Gawith, and P. G. R. Smith, “Planar waveguide hygrometer and state sensor demonstrating supercooled water recognition,” Sens. Actuat. B 107(2), 856–860 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of the integrated optical fibre refractometer. Each λ corresponds to a different period FBG wrote into the etched optical fibre via direct UV grating writing. (b) Backscatter scanning electron micrograph of the end facet of the presented refractometer.
Fig. 2
Fig. 2 Example of the back reflection spectrum of the device. One spectrum (n=1.42) is representative of indices lower than the device’s effective index, the other spectrum (n=1.4678) displays a clear reduction in FBG-reflected power due to comparitively high propagation loss in the waveguide. A moving average method is applied to the spectra for ease of understanding the analysis technique. The λi labelling corresponds to those in Fig. 1(a). Inset displays a zoomed in graph of the reduction in FBG amplitude at approx. 1590 nm.
Fig. 3
Fig. 3 An example data set of the power loss at each FBG in the refractometer along the device using the described method. The slope of the data is seen to be dependent on the analyte’s refractive index.
Fig. 4
Fig. 4 External indices below that of the device’s effective index are seen to be minimal in propagation loss and a distinct response curve for higher refractive indices.
Fig. 5
Fig. 5 A schematic of the model which is presented as part of this work. This simplification corresponds to a vertical slice of the IOF refractive index sensor solved for but may apply to any planar waveguide.
Fig. 6
Fig. 6 (a) Numerical simulation results of propagation loss for different fibre diameters. (b) Theoretical sensitivity of a planar model of the device at a refractive index of 1.456. An exponential increase in sensitivity is shown with respect to a decreasing diameter.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E i = A i cos ( ( x d i ) k i ) + B i ξ i sin ( ( x d i ) k i ) ,
g : = n = i 1 S i
S i : = { [ cos ( Δ i ) ξ i sin ( Δ i ) 1 ξ i sin ( Δ i ) cos ( Δ i ) ] for k i [ cosh ( i Δ i ) γ i sinh ( i Δ i ) 1 γ i sinh ( i Δ i ) cosh ( i Δ i ) ] for k i i
[ A C B C ] = g [ A 1 B 1 ]
F ( β ) = γ 1 g 11 + g 12 + γ C γ 1 g 21 + γ C g 22 = 0 .

Metrics