Abstract

Magnetic plasmons (MPs) refer to the coupling of external electromagnetic waves with a strong magnetic response induced inside the nanostructures. MPs have been widely employed as artificial magnetic atoms to fabricate negative-permeability or negative-refractive-index metamaterials with peculiar electromagnetic properties. Here, we propose a refractive index sensing by utilizing the MP resonances excited in a simple one-dimensional (1D) metallic nanogroove array. We demonstrate a sensitivity up to 1200 nm/RIU with a figure of merit (FOM*) of 15 thanks to the MP resonances that are extremely sensitive to the surrounding media. Importantly, the influence of the local environment effects on the sensing ability is studied. An equivalent inductor-capacitor (LC) model is used to give a precise quantitative description of the sensing performance and reveal the underlying mechanism. Such a MP-based sensor with the ease of fabrication may provide great potentials in designing broadband sensing devices with high performance and compactness.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Experimental demonstration of high sensitivity refractive index sensing based on magnetic plasmons in a simple metallic deep nanogroove array

D. M. Li, X. Y. Kuang, H. Zhang, Y. Z. Liang, T. Xu, L. Y. Qing, Y. H. Zhu, S. Zhang, W. X. Wang, and W. Wang
Opt. Express 26(26) 34122-34130 (2018)

Metal-substrate-enhanced magnetic dipole resonance in metamaterials for high-performance refractive index sensing

Bo Liu, Chaojun Tang, Jing Chen, Ningyan Xie, Jun Yuan, Huang Tang, and Xiaoqin Zhu
Opt. Mater. Express 8(7) 2008-2016 (2018)

Engineering the magnetic plasmon resonances of metamaterials for high-quality sensing

Jing Chen, Wenfang Fan, Tao Zhang, Chaojun Tang, Xingyu Chen, Jingjing Wu, Danyang Li, and Ying Yu
Opt. Express 25(4) 3675-3681 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
    [Crossref] [PubMed]
  2. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
    [Crossref]
  3. M. L. Brongersma and V. M. Shalaev, “The case for plasmonics,” Science 328, 440–441 (2010).
    [Crossref] [PubMed]
  4. P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, “Real-time observation of ultrafast rabi oscillations between excitons and plasmons in metal nanostructures with j-aggregates,” Nat. Photonics 7, 128–132 (2013).
    [Crossref]
  5. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
    [Crossref] [PubMed]
  6. T. Siegfried, Y. Ekinci, H. H. Solak, O. J. F. Martin, and H. Sigg, “Fabrication of sub-10 nm gap arrays over large areas for plasmonic sensors,” Appl. Phys. Lett. 99, 263302 (2011).
    [Crossref]
  7. C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett. 98, 153108 (2011).
    [Crossref] [PubMed]
  8. M. Li, S. K. Cushing, and N. Wu, “Plasmon-enhanced optical sensors: a review,” Analyst. 140, 386–406 (2015).
    [Crossref]
  9. H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79, 024304 (2009).
  10. C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B 83, 041402 (2011).
    [Crossref]
  11. J. Chen, P. Mao, R. Xu, C. Tang, Y. Liu, Q. Wang, and L. Zhang, “Strategy for realizing magnetic field enhancement based on diffraction coupling of magnetic plasmon resonances in embedded metamaterials,” Opt. Express 23, 16238–16245 (2015).
    [Crossref] [PubMed]
  12. Y. Yang and L. Wang, “Spectrally enhancing near-field radiative transfer between metallic gratings by exciting magnetic polaritons in nanometric vacuum gaps,” Phys. Rev. Lett. 117, 044301 (2016).
    [Crossref] [PubMed]
  13. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
    [Crossref] [PubMed]
  14. S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
    [Crossref] [PubMed]
  15. C. Tserkezis, N. Papanikolaou, G. Gantzounis, and N. Stefanou, “Understanding artificial optical magnetism of periodic metal-dielectric-metal layered structures,” Phys. Rev. B 78, 165114 (2008).
    [Crossref]
  16. J. Chen, R. Xu, P. Mao, Y. Zhang, Y. Liu, C. Tang, J. Liu, and T. Chen, “Realization of fanolike resonance due to diffraction coupling of localized surface plasmon resonances in embedded nanoantenna arrays,” Plasmonics 10, 341–346 (2015).
    [Crossref]
  17. J. Chen, T. Q. Zha, T. Zhang, C. J. Tang, Y. Yu, Y. J. Liu, and L. B. Zhang, “Enhanced magnetic fields at optical frequency by diffraction coupling of magnetic resonances in lifted metamaterials,” J. Light. Technol. 35, 71–74 (2017).
    [Crossref]
  18. M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science. 313, 502–504 (2006).
    [Crossref] [PubMed]
  19. I. V. Shadrivov, A. B. Kozyrev, D. van der Weide, and Y. S. Kivshar, “Nonlinear magnetic metamaterials,” Opt. Express 16, 20266–20271 (2008).
    [Crossref] [PubMed]
  20. M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
    [Crossref] [PubMed]
  21. N. N. Rosanov, N. V. Vysotina, A. N. Shatsev, A. S. Desyatnikov, and Y. S. Kivshar, “Knotted solitons in nonlinear magnetic metamaterials,” Phys. Rev. Lett. 108, 133902 (2012).
    [Crossref] [PubMed]
  22. J. Chen, W. Fan, T. Zhang, C. Tang, X. Chen, J. Wu, D. Li, and Y. Yu, “Engineering the magnetic plasmon resonances of metamaterials for high-quality sensing,” Opt. Express 25, 3675–3681 (2017).
    [Crossref] [PubMed]
  23. S. Linden, M. Decker, and M. Wegener, “Model system for a one-dimensional magnetic photonic crystal,” Phys. Rev. Lett. 97, 083902 (2006).
    [Crossref] [PubMed]
  24. H. Liu, X. Sun, Y. Pei, F. Yao, and Y. Jiang, “Enhanced magnetic response in a gold nanowire pair array through coupling with bloch surface waves,” Opt. Lett. 36, 2414–2416 (2011).
    [Crossref] [PubMed]
  25. L. Zhang, L. Tang, W. Wei, X. Cheng, W. Wang, and H. Zhang, “Enhanced near-infrared absorption in graphene with multilayer metal-dielectric-metal nanostructure,” Opt. Express 24, 20002–20009 (2016).
    [Crossref] [PubMed]
  26. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
    [Crossref] [PubMed]
  27. B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105, 031905 (2014).
    [Crossref]
  28. B. Zhao and Z. M. Zhang, “Study of magnetic polaritons in deep gratings for thermal emission control,” J. Quant. Spectrosc. Radiat. Transf. 135, 81–89 (2014).
    [Crossref]
  29. L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. N. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
    [Crossref] [PubMed]
  30. A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic fano resonances,” Proc. Natl. Acad. Sci. USA 108, 11784–11789 (2011).
    [Crossref] [PubMed]
  31. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Soennichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
    [Crossref]
  32. J. Becker, A. Trugler, A. Jakab, U. Hohenester, and C. Sonnichsen, “The optimal aspect ratio of gold nanorods for plasmonic bio-sensing,” Plasmonics. 5, 161–167 (2010).
    [Crossref]
  33. Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
    [Crossref] [PubMed]
  34. L. P. Wang and Z. M. Zhang, “Phonon-mediated magnetic polaritons in the infrared region,” Opt. Express 19, A126–A135 (2011).
    [Crossref]
  35. H. Wang, Y. Yang, and L. P. Wang, “Infrared frequency-tunable coherent thermal sources,” J. Opt. 17, 10 (2015).
    [Crossref]
  36. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical-properties of the metals al, co, cu, au, fe, pb, ni, pd, pt, ag, ti, and w in the infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983).
    [Crossref] [PubMed]

2017 (2)

J. Chen, T. Q. Zha, T. Zhang, C. J. Tang, Y. Yu, Y. J. Liu, and L. B. Zhang, “Enhanced magnetic fields at optical frequency by diffraction coupling of magnetic resonances in lifted metamaterials,” J. Light. Technol. 35, 71–74 (2017).
[Crossref]

J. Chen, W. Fan, T. Zhang, C. Tang, X. Chen, J. Wu, D. Li, and Y. Yu, “Engineering the magnetic plasmon resonances of metamaterials for high-quality sensing,” Opt. Express 25, 3675–3681 (2017).
[Crossref] [PubMed]

2016 (2)

Y. Yang and L. Wang, “Spectrally enhancing near-field radiative transfer between metallic gratings by exciting magnetic polaritons in nanometric vacuum gaps,” Phys. Rev. Lett. 117, 044301 (2016).
[Crossref] [PubMed]

L. Zhang, L. Tang, W. Wei, X. Cheng, W. Wang, and H. Zhang, “Enhanced near-infrared absorption in graphene with multilayer metal-dielectric-metal nanostructure,” Opt. Express 24, 20002–20009 (2016).
[Crossref] [PubMed]

2015 (4)

J. Chen, P. Mao, R. Xu, C. Tang, Y. Liu, Q. Wang, and L. Zhang, “Strategy for realizing magnetic field enhancement based on diffraction coupling of magnetic plasmon resonances in embedded metamaterials,” Opt. Express 23, 16238–16245 (2015).
[Crossref] [PubMed]

H. Wang, Y. Yang, and L. P. Wang, “Infrared frequency-tunable coherent thermal sources,” J. Opt. 17, 10 (2015).
[Crossref]

J. Chen, R. Xu, P. Mao, Y. Zhang, Y. Liu, C. Tang, J. Liu, and T. Chen, “Realization of fanolike resonance due to diffraction coupling of localized surface plasmon resonances in embedded nanoantenna arrays,” Plasmonics 10, 341–346 (2015).
[Crossref]

M. Li, S. K. Cushing, and N. Wu, “Plasmon-enhanced optical sensors: a review,” Analyst. 140, 386–406 (2015).
[Crossref]

2014 (2)

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105, 031905 (2014).
[Crossref]

B. Zhao and Z. M. Zhang, “Study of magnetic polaritons in deep gratings for thermal emission control,” J. Quant. Spectrosc. Radiat. Transf. 135, 81–89 (2014).
[Crossref]

2013 (2)

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
[Crossref] [PubMed]

P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, “Real-time observation of ultrafast rabi oscillations between excitons and plasmons in metal nanostructures with j-aggregates,” Nat. Photonics 7, 128–132 (2013).
[Crossref]

2012 (1)

N. N. Rosanov, N. V. Vysotina, A. N. Shatsev, A. S. Desyatnikov, and Y. S. Kivshar, “Knotted solitons in nonlinear magnetic metamaterials,” Phys. Rev. Lett. 108, 133902 (2012).
[Crossref] [PubMed]

2011 (7)

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic fano resonances,” Proc. Natl. Acad. Sci. USA 108, 11784–11789 (2011).
[Crossref] [PubMed]

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
[Crossref] [PubMed]

L. P. Wang and Z. M. Zhang, “Phonon-mediated magnetic polaritons in the infrared region,” Opt. Express 19, A126–A135 (2011).
[Crossref]

H. Liu, X. Sun, Y. Pei, F. Yao, and Y. Jiang, “Enhanced magnetic response in a gold nanowire pair array through coupling with bloch surface waves,” Opt. Lett. 36, 2414–2416 (2011).
[Crossref] [PubMed]

T. Siegfried, Y. Ekinci, H. H. Solak, O. J. F. Martin, and H. Sigg, “Fabrication of sub-10 nm gap arrays over large areas for plasmonic sensors,” Appl. Phys. Lett. 99, 263302 (2011).
[Crossref]

C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett. 98, 153108 (2011).
[Crossref] [PubMed]

C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B 83, 041402 (2011).
[Crossref]

2010 (3)

M. L. Brongersma and V. M. Shalaev, “The case for plasmonics,” Science 328, 440–441 (2010).
[Crossref] [PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Soennichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

J. Becker, A. Trugler, A. Jakab, U. Hohenester, and C. Sonnichsen, “The optimal aspect ratio of gold nanorods for plasmonic bio-sensing,” Plasmonics. 5, 161–167 (2010).
[Crossref]

2009 (2)

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
[Crossref] [PubMed]

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79, 024304 (2009).

2008 (3)

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[Crossref] [PubMed]

C. Tserkezis, N. Papanikolaou, G. Gantzounis, and N. Stefanou, “Understanding artificial optical magnetism of periodic metal-dielectric-metal layered structures,” Phys. Rev. B 78, 165114 (2008).
[Crossref]

I. V. Shadrivov, A. B. Kozyrev, D. van der Weide, and Y. S. Kivshar, “Nonlinear magnetic metamaterials,” Opt. Express 16, 20266–20271 (2008).
[Crossref] [PubMed]

2007 (1)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[Crossref]

2006 (2)

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science. 313, 502–504 (2006).
[Crossref] [PubMed]

S. Linden, M. Decker, and M. Wegener, “Model system for a one-dimensional magnetic photonic crystal,” Phys. Rev. Lett. 97, 083902 (2006).
[Crossref] [PubMed]

2005 (3)

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. N. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[Crossref] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[Crossref] [PubMed]

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[Crossref] [PubMed]

2004 (1)

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[Crossref] [PubMed]

1983 (1)

Alexander, R. W.

Altug, H.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic fano resonances,” Proc. Natl. Acad. Sci. USA 108, 11784–11789 (2011).
[Crossref] [PubMed]

Anderton, C. R.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[Crossref] [PubMed]

Artar, A.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic fano resonances,” Proc. Natl. Acad. Sci. USA 108, 11784–11789 (2011).
[Crossref] [PubMed]

Becker, J.

J. Becker, A. Trugler, A. Jakab, U. Hohenester, and C. Sonnichsen, “The optimal aspect ratio of gold nanorods for plasmonic bio-sensing,” Plasmonics. 5, 161–167 (2010).
[Crossref]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Brongersma, M. L.

M. L. Brongersma and V. M. Shalaev, “The case for plasmonics,” Science 328, 440–441 (2010).
[Crossref] [PubMed]

Brueck, S. R. J.

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[Crossref] [PubMed]

Burger, S.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[Crossref] [PubMed]

Burresi, M.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
[Crossref] [PubMed]

Cao, Z. S.

C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B 83, 041402 (2011).
[Crossref]

Capasso, F.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
[Crossref] [PubMed]

Cerullo, G.

P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, “Real-time observation of ultrafast rabi oscillations between excitons and plasmons in metal nanostructures with j-aggregates,” Nat. Photonics 7, 128–132 (2013).
[Crossref]

Cetin, A. E.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic fano resonances,” Proc. Natl. Acad. Sci. USA 108, 11784–11789 (2011).
[Crossref] [PubMed]

Chang, S. H.

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. N. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[Crossref] [PubMed]

Chen, J.

J. Chen, W. Fan, T. Zhang, C. Tang, X. Chen, J. Wu, D. Li, and Y. Yu, “Engineering the magnetic plasmon resonances of metamaterials for high-quality sensing,” Opt. Express 25, 3675–3681 (2017).
[Crossref] [PubMed]

J. Chen, T. Q. Zha, T. Zhang, C. J. Tang, Y. Yu, Y. J. Liu, and L. B. Zhang, “Enhanced magnetic fields at optical frequency by diffraction coupling of magnetic resonances in lifted metamaterials,” J. Light. Technol. 35, 71–74 (2017).
[Crossref]

J. Chen, P. Mao, R. Xu, C. Tang, Y. Liu, Q. Wang, and L. Zhang, “Strategy for realizing magnetic field enhancement based on diffraction coupling of magnetic plasmon resonances in embedded metamaterials,” Opt. Express 23, 16238–16245 (2015).
[Crossref] [PubMed]

J. Chen, R. Xu, P. Mao, Y. Zhang, Y. Liu, C. Tang, J. Liu, and T. Chen, “Realization of fanolike resonance due to diffraction coupling of localized surface plasmon resonances in embedded nanoantenna arrays,” Plasmonics 10, 341–346 (2015).
[Crossref]

Chen, T.

J. Chen, R. Xu, P. Mao, Y. Zhang, Y. Liu, C. Tang, J. Liu, and T. Chen, “Realization of fanolike resonance due to diffraction coupling of localized surface plasmon resonances in embedded nanoantenna arrays,” Plasmonics 10, 341–346 (2015).
[Crossref]

Chen, X.

Chen, Z.

C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B 83, 041402 (2011).
[Crossref]

Cheng, X.

Connor, J. H.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic fano resonances,” Proc. Natl. Acad. Sci. USA 108, 11784–11789 (2011).
[Crossref] [PubMed]

Cushing, S. K.

M. Li, S. K. Cushing, and N. Wu, “Plasmon-enhanced optical sensors: a review,” Analyst. 140, 386–406 (2015).
[Crossref]

Decker, M.

S. Linden, M. Decker, and M. Wegener, “Model system for a one-dimensional magnetic photonic crystal,” Phys. Rev. Lett. 97, 083902 (2006).
[Crossref] [PubMed]

Desyatnikov, A. S.

N. N. Rosanov, N. V. Vysotina, A. N. Shatsev, A. S. Desyatnikov, and Y. S. Kivshar, “Knotted solitons in nonlinear magnetic metamaterials,” Phys. Rev. Lett. 108, 133902 (2012).
[Crossref] [PubMed]

Eigenthaler, U.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Soennichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Ekinci, Y.

T. Siegfried, Y. Ekinci, H. H. Solak, O. J. F. Martin, and H. Sigg, “Fabrication of sub-10 nm gap arrays over large areas for plasmonic sensors,” Appl. Phys. Lett. 99, 263302 (2011).
[Crossref]

Enkrich, C.

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science. 313, 502–504 (2006).
[Crossref] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[Crossref] [PubMed]

Fan, W.

Fan, W. J.

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[Crossref] [PubMed]

Gantzounis, G.

C. Tserkezis, N. Papanikolaou, G. Gantzounis, and N. Stefanou, “Understanding artificial optical magnetism of periodic metal-dielectric-metal layered structures,” Phys. Rev. B 78, 165114 (2008).
[Crossref]

Genevet, P.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
[Crossref] [PubMed]

Giessen, H.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Soennichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Gray, S. K.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[Crossref] [PubMed]

Hafner, J. H.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
[Crossref] [PubMed]

Halas, N. J.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[Crossref]

Heideman, R.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
[Crossref] [PubMed]

Hirscher, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Soennichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Hohenester, U.

J. Becker, A. Trugler, A. Jakab, U. Hohenester, and C. Sonnichsen, “The optimal aspect ratio of gold nanorods for plasmonic bio-sensing,” Plasmonics. 5, 161–167 (2010).
[Crossref]

Huang, M.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic fano resonances,” Proc. Natl. Acad. Sci. USA 108, 11784–11789 (2011).
[Crossref] [PubMed]

Jakab, A.

J. Becker, A. Trugler, A. Jakab, U. Hohenester, and C. Sonnichsen, “The optimal aspect ratio of gold nanorods for plasmonic bio-sensing,” Plasmonics. 5, 161–167 (2010).
[Crossref]

Jiang, Y.

Kampfrath, T.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
[Crossref] [PubMed]

Kats, M. A.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
[Crossref] [PubMed]

Khanikaev, A.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic fano resonances,” Proc. Natl. Acad. Sci. USA 108, 11784–11789 (2011).
[Crossref] [PubMed]

Kivshar, Y. S.

N. N. Rosanov, N. V. Vysotina, A. N. Shatsev, A. S. Desyatnikov, and Y. S. Kivshar, “Knotted solitons in nonlinear magnetic metamaterials,” Phys. Rev. Lett. 108, 133902 (2012).
[Crossref] [PubMed]

I. V. Shadrivov, A. B. Kozyrev, D. van der Weide, and Y. S. Kivshar, “Nonlinear magnetic metamaterials,” Opt. Express 16, 20266–20271 (2008).
[Crossref] [PubMed]

Klein, M. W.

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science. 313, 502–504 (2006).
[Crossref] [PubMed]

Kong, J.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
[Crossref] [PubMed]

Koschny, T.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[Crossref] [PubMed]

Kozyrev, A. B.

Kuipers, L.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
[Crossref] [PubMed]

Lal, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[Crossref]

Lammers, M.

P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, “Real-time observation of ultrafast rabi oscillations between excitons and plasmons in metal nanostructures with j-aggregates,” Nat. Photonics 7, 128–132 (2013).
[Crossref]

Langguth, L.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Soennichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Lee, P.-T.

C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett. 98, 153108 (2011).
[Crossref] [PubMed]

Leinse, A.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
[Crossref] [PubMed]

Li, D.

Li, J. Q.

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79, 024304 (2009).

Li, M.

M. Li, S. K. Cushing, and N. Wu, “Plasmon-enhanced optical sensors: a review,” Analyst. 140, 386–406 (2015).
[Crossref]

Li, T.

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79, 024304 (2009).

Lienau, C.

P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, “Real-time observation of ultrafast rabi oscillations between excitons and plasmons in metal nanostructures with j-aggregates,” Nat. Photonics 7, 128–132 (2013).
[Crossref]

Lin, J.-W.

C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett. 98, 153108 (2011).
[Crossref] [PubMed]

Linden, S.

S. Linden, M. Decker, and M. Wegener, “Model system for a one-dimensional magnetic photonic crystal,” Phys. Rev. Lett. 97, 083902 (2006).
[Crossref] [PubMed]

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science. 313, 502–504 (2006).
[Crossref] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[Crossref] [PubMed]

Link, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[Crossref]

Liu, H.

H. Liu, X. Sun, Y. Pei, F. Yao, and Y. Jiang, “Enhanced magnetic response in a gold nanowire pair array through coupling with bloch surface waves,” Opt. Lett. 36, 2414–2416 (2011).
[Crossref] [PubMed]

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79, 024304 (2009).

Liu, J.

J. Chen, R. Xu, P. Mao, Y. Zhang, Y. Liu, C. Tang, J. Liu, and T. Chen, “Realization of fanolike resonance due to diffraction coupling of localized surface plasmon resonances in embedded nanoantenna arrays,” Plasmonics 10, 341–346 (2015).
[Crossref]

Liu, N.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Soennichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Liu, Y.

J. Chen, R. Xu, P. Mao, Y. Zhang, Y. Liu, C. Tang, J. Liu, and T. Chen, “Realization of fanolike resonance due to diffraction coupling of localized surface plasmon resonances in embedded nanoantenna arrays,” Plasmonics 10, 341–346 (2015).
[Crossref]

J. Chen, P. Mao, R. Xu, C. Tang, Y. Liu, Q. Wang, and L. Zhang, “Strategy for realizing magnetic field enhancement based on diffraction coupling of magnetic plasmon resonances in embedded metamaterials,” Opt. Express 23, 16238–16245 (2015).
[Crossref] [PubMed]

Liu, Y. J.

J. Chen, T. Q. Zha, T. Zhang, C. J. Tang, Y. Yu, Y. J. Liu, and L. B. Zhang, “Enhanced magnetic fields at optical frequency by diffraction coupling of magnetic resonances in lifted metamaterials,” J. Light. Technol. 35, 71–74 (2017).
[Crossref]

Long, L. L.

Lu, S.-P.

C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett. 98, 153108 (2011).
[Crossref] [PubMed]

Maiuri, M.

P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, “Real-time observation of ultrafast rabi oscillations between excitons and plasmons in metal nanostructures with j-aggregates,” Nat. Photonics 7, 128–132 (2013).
[Crossref]

Malloy, K. J.

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[Crossref] [PubMed]

Manzoni, C.

P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, “Real-time observation of ultrafast rabi oscillations between excitons and plasmons in metal nanostructures with j-aggregates,” Nat. Photonics 7, 128–132 (2013).
[Crossref]

Mao, P.

J. Chen, R. Xu, P. Mao, Y. Zhang, Y. Liu, C. Tang, J. Liu, and T. Chen, “Realization of fanolike resonance due to diffraction coupling of localized surface plasmon resonances in embedded nanoantenna arrays,” Plasmonics 10, 341–346 (2015).
[Crossref]

J. Chen, P. Mao, R. Xu, C. Tang, Y. Liu, Q. Wang, and L. Zhang, “Strategy for realizing magnetic field enhancement based on diffraction coupling of magnetic plasmon resonances in embedded metamaterials,” Opt. Express 23, 16238–16245 (2015).
[Crossref] [PubMed]

Maria, J.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[Crossref] [PubMed]

Martin, O. J. F.

T. Siegfried, Y. Ekinci, H. H. Solak, O. J. F. Martin, and H. Sigg, “Fabrication of sub-10 nm gap arrays over large areas for plasmonic sensors,” Appl. Phys. Lett. 99, 263302 (2011).
[Crossref]

Mayer, K. M.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
[Crossref] [PubMed]

Mesch, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Soennichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Mousavi, S. H.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic fano resonances,” Proc. Natl. Acad. Sci. USA 108, 11784–11789 (2011).
[Crossref] [PubMed]

Nuzzo, R. G.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[Crossref] [PubMed]

Ordal, M. A.

Osgood, R. M.

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[Crossref] [PubMed]

Pan, J.

C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B 83, 041402 (2011).
[Crossref]

Panoiu, N. C.

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[Crossref] [PubMed]

Papanikolaou, N.

C. Tserkezis, N. Papanikolaou, G. Gantzounis, and N. Stefanou, “Understanding artificial optical magnetism of periodic metal-dielectric-metal layered structures,” Phys. Rev. B 78, 165114 (2008).
[Crossref]

Pei, Y.

Pomraenke, R.

P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, “Real-time observation of ultrafast rabi oscillations between excitons and plasmons in metal nanostructures with j-aggregates,” Nat. Photonics 7, 128–132 (2013).
[Crossref]

Rogers, J. A.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[Crossref] [PubMed]

Rosanov, N. N.

N. N. Rosanov, N. V. Vysotina, A. N. Shatsev, A. S. Desyatnikov, and Y. S. Kivshar, “Knotted solitons in nonlinear magnetic metamaterials,” Phys. Rev. Lett. 108, 133902 (2012).
[Crossref] [PubMed]

Schatz, G. C.

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. N. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[Crossref] [PubMed]

Schmidt, F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[Crossref] [PubMed]

Schoenmaker, H.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
[Crossref] [PubMed]

Shadrivov, I. V.

Shalaev, V. M.

M. L. Brongersma and V. M. Shalaev, “The case for plasmonics,” Science 328, 440–441 (2010).
[Crossref] [PubMed]

Shatsev, A. N.

N. N. Rosanov, N. V. Vysotina, A. N. Shatsev, A. S. Desyatnikov, and Y. S. Kivshar, “Knotted solitons in nonlinear magnetic metamaterials,” Phys. Rev. Lett. 108, 133902 (2012).
[Crossref] [PubMed]

Sherry, L. J.

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. N. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[Crossref] [PubMed]

Shvets, G.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic fano resonances,” Proc. Natl. Acad. Sci. USA 108, 11784–11789 (2011).
[Crossref] [PubMed]

Siegfried, T.

T. Siegfried, Y. Ekinci, H. H. Solak, O. J. F. Martin, and H. Sigg, “Fabrication of sub-10 nm gap arrays over large areas for plasmonic sensors,” Appl. Phys. Lett. 99, 263302 (2011).
[Crossref]

Sigg, H.

T. Siegfried, Y. Ekinci, H. H. Solak, O. J. F. Martin, and H. Sigg, “Fabrication of sub-10 nm gap arrays over large areas for plasmonic sensors,” Appl. Phys. Lett. 99, 263302 (2011).
[Crossref]

Soennichsen, C.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Soennichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Solak, H. H.

T. Siegfried, Y. Ekinci, H. H. Solak, O. J. F. Martin, and H. Sigg, “Fabrication of sub-10 nm gap arrays over large areas for plasmonic sensors,” Appl. Phys. Lett. 99, 263302 (2011).
[Crossref]

Song, Y.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
[Crossref] [PubMed]

Sonnichsen, C.

J. Becker, A. Trugler, A. Jakab, U. Hohenester, and C. Sonnichsen, “The optimal aspect ratio of gold nanorods for plasmonic bio-sensing,” Plasmonics. 5, 161–167 (2010).
[Crossref]

Soukoulis, C. M.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[Crossref] [PubMed]

Stefanou, N.

C. Tserkezis, N. Papanikolaou, G. Gantzounis, and N. Stefanou, “Understanding artificial optical magnetism of periodic metal-dielectric-metal layered structures,” Phys. Rev. B 78, 165114 (2008).
[Crossref]

Stewart, M. E.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[Crossref] [PubMed]

Stockman, M. I.

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[Crossref] [PubMed]

Sun, X.

Tang, C.

Tang, C. J.

J. Chen, T. Q. Zha, T. Zhang, C. J. Tang, Y. Yu, Y. J. Liu, and L. B. Zhang, “Enhanced magnetic fields at optical frequency by diffraction coupling of magnetic resonances in lifted metamaterials,” J. Light. Technol. 35, 71–74 (2017).
[Crossref]

C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B 83, 041402 (2011).
[Crossref]

Tang, L.

Thompson, L. B.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[Crossref] [PubMed]

Trugler, A.

J. Becker, A. Trugler, A. Jakab, U. Hohenester, and C. Sonnichsen, “The optimal aspect ratio of gold nanorods for plasmonic bio-sensing,” Plasmonics. 5, 161–167 (2010).
[Crossref]

Tsai, C.-Y.

C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett. 98, 153108 (2011).
[Crossref] [PubMed]

Tserkezis, C.

C. Tserkezis, N. Papanikolaou, G. Gantzounis, and N. Stefanou, “Understanding artificial optical magnetism of periodic metal-dielectric-metal layered structures,” Phys. Rev. B 78, 165114 (2008).
[Crossref]

van der Weide, D.

Van Duyne, R. P.

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. N. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[Crossref] [PubMed]

van Oosten, D.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
[Crossref] [PubMed]

Vasa, P.

P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, “Real-time observation of ultrafast rabi oscillations between excitons and plasmons in metal nanostructures with j-aggregates,” Nat. Photonics 7, 128–132 (2013).
[Crossref]

Vysotina, N. V.

N. N. Rosanov, N. V. Vysotina, A. N. Shatsev, A. S. Desyatnikov, and Y. S. Kivshar, “Knotted solitons in nonlinear magnetic metamaterials,” Phys. Rev. Lett. 108, 133902 (2012).
[Crossref] [PubMed]

Wang, H.

H. Wang, Y. Yang, and L. P. Wang, “Infrared frequency-tunable coherent thermal sources,” J. Opt. 17, 10 (2015).
[Crossref]

Wang, L.

Y. Yang and L. Wang, “Spectrally enhancing near-field radiative transfer between metallic gratings by exciting magnetic polaritons in nanometric vacuum gaps,” Phys. Rev. Lett. 117, 044301 (2016).
[Crossref] [PubMed]

Wang, L. P.

H. Wang, Y. Yang, and L. P. Wang, “Infrared frequency-tunable coherent thermal sources,” J. Opt. 17, 10 (2015).
[Crossref]

L. P. Wang and Z. M. Zhang, “Phonon-mediated magnetic polaritons in the infrared region,” Opt. Express 19, A126–A135 (2011).
[Crossref]

Wang, Q.

Wang, Q. J.

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79, 024304 (2009).

Wang, S. M.

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79, 024304 (2009).

Wang, W.

L. Zhang, L. Tang, W. Wei, X. Cheng, W. Wang, and H. Zhang, “Enhanced near-infrared absorption in graphene with multilayer metal-dielectric-metal nanostructure,” Opt. Express 24, 20002–20009 (2016).
[Crossref] [PubMed]

P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, “Real-time observation of ultrafast rabi oscillations between excitons and plasmons in metal nanostructures with j-aggregates,” Nat. Photonics 7, 128–132 (2013).
[Crossref]

Wang, Z. L.

C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B 83, 041402 (2011).
[Crossref]

Ward, C. A.

Wegener, M.

S. Linden, M. Decker, and M. Wegener, “Model system for a one-dimensional magnetic photonic crystal,” Phys. Rev. Lett. 97, 083902 (2006).
[Crossref] [PubMed]

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science. 313, 502–504 (2006).
[Crossref] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[Crossref] [PubMed]

Wei, W.

Weiss, T.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Soennichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Wiley, B. J.

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. N. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[Crossref] [PubMed]

Wu, J.

Wu, N.

M. Li, S. K. Cushing, and N. Wu, “Plasmon-enhanced optical sensors: a review,” Analyst. 140, 386–406 (2015).
[Crossref]

Xia, Y. N.

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. N. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[Crossref] [PubMed]

Xu, R.

J. Chen, R. Xu, P. Mao, Y. Zhang, Y. Liu, C. Tang, J. Liu, and T. Chen, “Realization of fanolike resonance due to diffraction coupling of localized surface plasmon resonances in embedded nanoantenna arrays,” Plasmonics 10, 341–346 (2015).
[Crossref]

J. Chen, P. Mao, R. Xu, C. Tang, Y. Liu, Q. Wang, and L. Zhang, “Strategy for realizing magnetic field enhancement based on diffraction coupling of magnetic plasmon resonances in embedded metamaterials,” Opt. Express 23, 16238–16245 (2015).
[Crossref] [PubMed]

Yang, Y.

Y. Yang and L. Wang, “Spectrally enhancing near-field radiative transfer between metallic gratings by exciting magnetic polaritons in nanometric vacuum gaps,” Phys. Rev. Lett. 117, 044301 (2016).
[Crossref] [PubMed]

H. Wang, Y. Yang, and L. P. Wang, “Infrared frequency-tunable coherent thermal sources,” J. Opt. 17, 10 (2015).
[Crossref]

Yanik, A. A.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic fano resonances,” Proc. Natl. Acad. Sci. USA 108, 11784–11789 (2011).
[Crossref] [PubMed]

Yao, F.

Yao, Y.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
[Crossref] [PubMed]

Yu, N.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
[Crossref] [PubMed]

Yu, Y.

J. Chen, W. Fan, T. Zhang, C. Tang, X. Chen, J. Wu, D. Li, and Y. Yu, “Engineering the magnetic plasmon resonances of metamaterials for high-quality sensing,” Opt. Express 25, 3675–3681 (2017).
[Crossref] [PubMed]

J. Chen, T. Q. Zha, T. Zhang, C. J. Tang, Y. Yu, Y. J. Liu, and L. B. Zhang, “Enhanced magnetic fields at optical frequency by diffraction coupling of magnetic resonances in lifted metamaterials,” J. Light. Technol. 35, 71–74 (2017).
[Crossref]

Zha, T. Q.

J. Chen, T. Q. Zha, T. Zhang, C. J. Tang, Y. Yu, Y. J. Liu, and L. B. Zhang, “Enhanced magnetic fields at optical frequency by diffraction coupling of magnetic resonances in lifted metamaterials,” J. Light. Technol. 35, 71–74 (2017).
[Crossref]

Zhan, P.

C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B 83, 041402 (2011).
[Crossref]

Zhang, H.

Zhang, L.

Zhang, L. B.

J. Chen, T. Q. Zha, T. Zhang, C. J. Tang, Y. Yu, Y. J. Liu, and L. B. Zhang, “Enhanced magnetic fields at optical frequency by diffraction coupling of magnetic resonances in lifted metamaterials,” J. Light. Technol. 35, 71–74 (2017).
[Crossref]

Zhang, S.

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[Crossref] [PubMed]

Zhang, T.

J. Chen, W. Fan, T. Zhang, C. Tang, X. Chen, J. Wu, D. Li, and Y. Yu, “Engineering the magnetic plasmon resonances of metamaterials for high-quality sensing,” Opt. Express 25, 3675–3681 (2017).
[Crossref] [PubMed]

J. Chen, T. Q. Zha, T. Zhang, C. J. Tang, Y. Yu, Y. J. Liu, and L. B. Zhang, “Enhanced magnetic fields at optical frequency by diffraction coupling of magnetic resonances in lifted metamaterials,” J. Light. Technol. 35, 71–74 (2017).
[Crossref]

Zhang, X.

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79, 024304 (2009).

Zhang, Y.

J. Chen, R. Xu, P. Mao, Y. Zhang, Y. Liu, C. Tang, J. Liu, and T. Chen, “Realization of fanolike resonance due to diffraction coupling of localized surface plasmon resonances in embedded nanoantenna arrays,” Plasmonics 10, 341–346 (2015).
[Crossref]

Zhang, Z. M.

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105, 031905 (2014).
[Crossref]

B. Zhao and Z. M. Zhang, “Study of magnetic polaritons in deep gratings for thermal emission control,” J. Quant. Spectrosc. Radiat. Transf. 135, 81–89 (2014).
[Crossref]

L. P. Wang and Z. M. Zhang, “Phonon-mediated magnetic polaritons in the infrared region,” Opt. Express 19, A126–A135 (2011).
[Crossref]

Zhao, B.

B. Zhao and Z. M. Zhang, “Study of magnetic polaritons in deep gratings for thermal emission control,” J. Quant. Spectrosc. Radiat. Transf. 135, 81–89 (2014).
[Crossref]

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105, 031905 (2014).
[Crossref]

Zhao, J. M.

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105, 031905 (2014).
[Crossref]

Zhou, J. F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[Crossref] [PubMed]

Zhu, S. N.

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79, 024304 (2009).

Zhu, Y. Y.

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79, 024304 (2009).

Zhu, Z. H.

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79, 024304 (2009).

Zschiedrich, L.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[Crossref] [PubMed]

Analyst. (1)

M. Li, S. K. Cushing, and N. Wu, “Plasmon-enhanced optical sensors: a review,” Analyst. 140, 386–406 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105, 031905 (2014).
[Crossref]

T. Siegfried, Y. Ekinci, H. H. Solak, O. J. F. Martin, and H. Sigg, “Fabrication of sub-10 nm gap arrays over large areas for plasmonic sensors,” Appl. Phys. Lett. 99, 263302 (2011).
[Crossref]

C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett. 98, 153108 (2011).
[Crossref] [PubMed]

Chem. Rev. (2)

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[Crossref] [PubMed]

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
[Crossref] [PubMed]

J. Light. Technol. (1)

J. Chen, T. Q. Zha, T. Zhang, C. J. Tang, Y. Yu, Y. J. Liu, and L. B. Zhang, “Enhanced magnetic fields at optical frequency by diffraction coupling of magnetic resonances in lifted metamaterials,” J. Light. Technol. 35, 71–74 (2017).
[Crossref]

J. Opt. (1)

H. Wang, Y. Yang, and L. P. Wang, “Infrared frequency-tunable coherent thermal sources,” J. Opt. 17, 10 (2015).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

B. Zhao and Z. M. Zhang, “Study of magnetic polaritons in deep gratings for thermal emission control,” J. Quant. Spectrosc. Radiat. Transf. 135, 81–89 (2014).
[Crossref]

Nano Lett. (3)

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. N. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[Crossref] [PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Soennichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
[Crossref] [PubMed]

Nat. Photonics (2)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[Crossref]

P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, “Real-time observation of ultrafast rabi oscillations between excitons and plasmons in metal nanostructures with j-aggregates,” Nat. Photonics 7, 128–132 (2013).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. B (3)

H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B 79, 024304 (2009).

C. J. Tang, P. Zhan, Z. S. Cao, J. Pan, Z. Chen, and Z. L. Wang, “Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials,” Phys. Rev. B 83, 041402 (2011).
[Crossref]

C. Tserkezis, N. Papanikolaou, G. Gantzounis, and N. Stefanou, “Understanding artificial optical magnetism of periodic metal-dielectric-metal layered structures,” Phys. Rev. B 78, 165114 (2008).
[Crossref]

Phys. Rev. Lett. (6)

Y. Yang and L. Wang, “Spectrally enhancing near-field radiative transfer between metallic gratings by exciting magnetic polaritons in nanometric vacuum gaps,” Phys. Rev. Lett. 117, 044301 (2016).
[Crossref] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[Crossref] [PubMed]

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[Crossref] [PubMed]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[Crossref] [PubMed]

N. N. Rosanov, N. V. Vysotina, A. N. Shatsev, A. S. Desyatnikov, and Y. S. Kivshar, “Knotted solitons in nonlinear magnetic metamaterials,” Phys. Rev. Lett. 108, 133902 (2012).
[Crossref] [PubMed]

S. Linden, M. Decker, and M. Wegener, “Model system for a one-dimensional magnetic photonic crystal,” Phys. Rev. Lett. 97, 083902 (2006).
[Crossref] [PubMed]

Plasmonics (1)

J. Chen, R. Xu, P. Mao, Y. Zhang, Y. Liu, C. Tang, J. Liu, and T. Chen, “Realization of fanolike resonance due to diffraction coupling of localized surface plasmon resonances in embedded nanoantenna arrays,” Plasmonics 10, 341–346 (2015).
[Crossref]

Plasmonics. (1)

J. Becker, A. Trugler, A. Jakab, U. Hohenester, and C. Sonnichsen, “The optimal aspect ratio of gold nanorods for plasmonic bio-sensing,” Plasmonics. 5, 161–167 (2010).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic fano resonances,” Proc. Natl. Acad. Sci. USA 108, 11784–11789 (2011).
[Crossref] [PubMed]

Science (2)

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550–553 (2009).
[Crossref] [PubMed]

M. L. Brongersma and V. M. Shalaev, “The case for plasmonics,” Science 328, 440–441 (2010).
[Crossref] [PubMed]

Science. (1)

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science. 313, 502–504 (2006).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) 3-dimensional schematic illustration of gold nanogroove array. The right part shows the cross section with the schematic of equivalent LC circuit. (b) Simulated absorptance of the nanogroove array with groove period p = 800 nm, groove width b = 50 nm and groove depth h = 150 nm under illumination of TM (red) and TE (blue) wave respectively. A strong MP resonance is excited at λMP = 1542 nm with the absorptance α = 0.79. (c) Distribution of magnetic field at MP resonance λMP = 1542 nm.
Fig. 2
Fig. 2 (a) Simulated Absorptance with different refractive index n. (b) Calculated [dI(λ)/I(λ)]/dn as a function of wavelength with dn = 0.02. (c) MP resonance positions extracted from (a) (red squares) and the corresponding results calculated by LC model (blue triangles).
Fig. 3
Fig. 3 (a) Distribution of electric field at λMP = 1542 nm with a strong field confinement at the groove opening. (b) Simulated absorptance for locally varying material inside the groove.
Fig. 4
Fig. 4 Calculated FOM* values at MP resonances over a broad wavelength range. The lower left and the upper right insets show the simulated absorptance for a groove depth of 120 nm and 200 nm, respectively. The red and blue lines represent the absorptance simulated with refractive indices of 1.312 and 1.332, respectively.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S = d λ MP d n .
FOM * = ( d I ( λ ) / I ( λ ) d n ) max .
L k = h 0 ω 2 δ Au ( Au 2 + Au 2 ) ,
L m = μ 0 h ( b + δ ) .
λ MP = 2 π c 0 n ( c 1 0 h b ) L Au .

Metrics