Abstract

Previously, PbS/CdS core/shell quantum dots with excellent optical properties have been widely used as light-harvesting materials in solar cell and biomarkers in bio-medicine. However, the nonlinear absorption characteristics of PbS/CdS core/shell quantum dots have been rarely investigated. In this work, PbS/CdS core/shell quantum dots were successfully employed as nonlinear saturable absorber (SA) for demonstrating a mode-locked Er-doped fiber laser. Based on a film-type SA, which was prepared by incorporating the quantum dots with the polyvinyl alcohol (PVA), mode-locked Er-doped operation with a pulse width of 54 ps and a maximum average output power of 2.71 mW at the repetition rate of 3.302 MHz was obtained. Our long-time stable results indicate that the CdS shell can effectively protect the PbS core from the effect of photo-oxidation and PbS/CdS core/shell quantum dots were efficient SA candidates for demonstrating pulse fiber lasers due to its tunable absorption peak and excellent saturable absorption properties.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Passively mode-locked Er-doped fiber laser based on SnS2 nanosheets as a saturable absorber

Kangdi Niu, Ruyi Sun, Qingyun Chen, Baoyuan Man, and Huanian Zhang
Photon. Res. 6(2) 72-76 (2018)

Stable passively Q-switched erbium-doped fiber laser incorporating a PbS quantum dots polystyrene composite film based saturable absorber

Xiaolan Sun, Bin Zhou, Chuanhang Zou, Wei Zhao, Qianqian Huang, Nana Li, Tianxing Wang, Chengbo Mou, Tingyun Wang, and Alan R. Kost
Appl. Opt. 57(12) 3231-3236 (2018)

Passively Q-switched Er3+-doped fiber lasers using colloidal PbS quantum dot saturable absorber

Yin-Wen Lee, Chien-Ming Chen, Chia-Wei Huang, Shih-Ken Chen, and Jhang-Rong Jiang
Opt. Express 24(10) 10675-10681 (2016)

References

  • View by:
  • |
  • |
  • |

  1. B. Guo, “2D noncarbon materials-based nonlinear optical devices for ultrafast photonics,” Chin. Opt. Lett. 16(1), 020004 (2018).
    [Crossref]
  2. H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 969(11), 111112 (2010).
    [Crossref]
  3. D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97(20), 203106 (2010).
    [Crossref]
  4. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
    [Crossref] [PubMed]
  5. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [Crossref]
  6. Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, and W. C. Xu, “2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett. 38(24), 5212–5215 (2013).
    [Crossref] [PubMed]
  7. B. Guo, Y. Yao, Y. F. Yang, Y. J. Yuan, L. Jin, B. Yan, and J. Y. Zhang, “Dual-wavelength rectangular pulse erbium-doped fiber laser based on topological insulator saturable absorber,” Photon. Res. 3(3), 94–99 (2015).
    [Crossref]
  8. H. Liu, X. W. Zheng, M. Liu, N. Zhao, A. P. Luo, Z. C. Luo, W. C. Xu, H. Zhang, C. J. Zhao, and S. C. Wen, “Femtosecond pulse generation from a topological insulator mode-locked fiber laser,” Opt. Express 22(6), 6868–6873 (2014).
    [Crossref] [PubMed]
  9. C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3 as a mode locker,” Opt. Express 20(25), 27888–27895 (2012).
    [Crossref] [PubMed]
  10. Y. H. Lin, C. Y. Yang, S. F. Lin, W. H. Tseng, Q. Bao, C. I. Wu, and G. R. Lin, “Soliton compression of the erbium-doped fiber laser weakly started mode-locking by nanoscale p-type Bi2Te3 topological insulator particles,” Laser Phys. Lett. 11(5), 055107 (2014).
    [Crossref]
  11. J. Sotor, G. Sobon, W. Macherzynski, and K. M. Abramski, “Harmonically mode-locked Er-doped fiber laser based on a Sb2Te3 topological insulator saturable absorber,” Laser Phys. Lett. 11(5), 055102 (2014).
    [Crossref]
  12. Z. C. Luo, M. Liu, Z. N. Guo, X. F. Jiang, A. P. Luo, C. J. Zhao, X. F. Yu, W. C. Xu, and H. Zhang, “Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser,” Opt. Express 23(15), 20030–20039 (2015).
    [Crossref] [PubMed]
  13. Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
    [Crossref] [PubMed]
  14. J. Li, Q. Y. Chen, K. D. Niu, R. Y. Sun, and H. N. Zhang, “Passively Mode-Locked Ytterbium-Doped Fiber Laser Based on SnS2 as Saturable Absorber,” IEEE Photonics J. 9(6), 1–7 (2017).
    [Crossref]
  15. H. Xia, H. Li, C. Lan, C. Li, X. Zhang, S. Zhang, and Y. Liu, “Ultrafast erbium-doped fiber laser mode-locked by a CVD-grown molybdenum disulfide (MoS2) saturable absorber,” Opt. Express 22(14), 17341–17348 (2014).
    [Crossref] [PubMed]
  16. D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
    [Crossref] [PubMed]
  17. P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5(1), 12587 (2015).
    [Crossref] [PubMed]
  18. D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6(1), 23583 (2016).
    [Crossref] [PubMed]
  19. D. Mao, X. Q. Cui, X. T. Gan, M. K. Li, W. D. Zhang, H. Lu, and J. L. Zhao, “Passively Q-switched and mode-locked fiber laser based on a ReS2 saturable absorber,” IEEE J. Sel. Top. Quant. 24(3), 1100406 (2018).
  20. B. Guo, Q. Lyu, Y. Yao, and P. F. Wang, “Direct generation of dip-type sidebands from WS2 mode-locked fiber laser,” Opt. Mater. Express 6(8), 2475–2486 (2016).
    [Crossref]
  21. K. D. Niu, Q. Y. Chen, R. Y. Sun, B. Y. Man, and H. N. Zhang, “Passively Q-switched erbium-doped fiber laser based on SnS2 saturable absorber,” Opt. Mater. Express 7(11), 3934–3943 (2017).
    [Crossref]
  22. Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
    [Crossref]
  23. Z. Kang, X. J. Gao, L. Zhang, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015).
    [Crossref]
  24. H. Zhang and J. Liu, “Gold nanobipyramids as saturable absorbers for passively Q-switched laser generation in the 1.1 μm region,” Opt. Lett. 41(6), 1150–1152 (2016).
    [Crossref] [PubMed]
  25. Y. W. Lee, C. M. Chen, C. W. Huang, S. K. Chen, and J. R. Jiang, “Passively Q-switched Er3+-doped fiber lasers using colloidal PbS quantum dot saturable absorber,” Opt. Express 24(10), 10675–10681 (2016).
    [Crossref] [PubMed]
  26. K. Wei, S. Fan, Q. Chen, and X. Lai, “Passively mode-locked Yb fiber laser with PbSe colloidal quantum dots as saturable absorber,” Opt. Express 25(21), 24901–24906 (2017).
    [Crossref] [PubMed]
  27. R. J. Ellingson, M. C. Beard, J. C. Johnson, P. Yu, O. I. Micic, A. J. Nozik, A. Shabaev, and A. L. Efros, “Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots,” Nano Lett. 5(5), 865–871 (2005).
    [Crossref] [PubMed]
  28. I. Moreels, Y. Justo, B. De Geyter, K. Haustraete, J. C. Martins, and Z. Hens, “Size-tunable, bright, and stable PbS quantum dots: a surface chemistry study,” ACS Nano 5(3), 2004–2012 (2011).
    [Crossref] [PubMed]
  29. L. Bakueva, S. Musikhin, M. A. Hines, T. W. Chang, M. Tzolov, G. D. Scholes, and E. H. Sargent, “Size-tunable infrared (1000-1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer,” Appl. Phys. Lett. 82(17), 2895–2897 (2003).
    [Crossref]
  30. I. Kang and F. W. Wise, “Electronic structure and optical properties of PbS and PbSe quantum dots,” J. Opt. Soc. Am. B 14(7), 1632–1646 (1997).
    [Crossref]
  31. S. Huang, Q. Zhang, X. Huang, X. Guo, M. Deng, D. Li, Y. Luo, Q. Shen, T. Toyoda, and Q. Meng, “Fibrous CdS/CdSe quantum dot co-sensitized solar cells based on ordered TiO2 nanotube arrays,” Nanotechnology 21(37), 375201 (2010).
    [Crossref] [PubMed]
  32. M. Shalom, S. Dor, S. Ruhle, L. Grinis, and A. Zaban, “Core/CdS quantum dot/shell mesoporous solar cells with improved stability and efficiency using an amorphous TiO2 coating,” J. Phys. Chem. C 113(9), 3895–3898 (2009).
    [Crossref]
  33. D. C. Neo, C. Cheng, S. D. Stranks, S. M. Fairclough, J. S. Kim, A. I. Kirkland, and A. A. Watt, “Influence of shell thickness and surface passivation on PbS/CdS core/shell colloidal quantum dot solar cells,” Chem. Mater. 26(13), 4004–4013 (2014).
    [Crossref]
  34. E. G. Durmusoglu, M. M. Yildizhan, M. A. Gulgun, and H. Yagci Acar, “Production of Small, Stable PbS/CdS Quantum Dots via Room Temperature Cation Exchange Followed by a Low Temperature Annealing Processes,” J. Phys. Chem. C 121(45), 25520–25530 (2017).
    [Crossref]
  35. M. J. Speirs, D. M. Balazs, H. H. Fang, L. H. Lai, L. Protesescu, M. V. Kovalenko, and M. A. Loi, “Origin of the increased open circuit voltage in PbS-CdS core-shell quantum dot solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 3(4), 1450–1457 (2015).
    [Crossref]
  36. M. Li, Q. Wang, X. Shi, L. A. Hornak, and N. Wu, “Detection of mercury(II) by quantum dot/DNA/gold nanoparticle ensemble based nanosensor via nanometal surface energy transfer,” Anal. Chem. 83(18), 7061–7065 (2011).
    [Crossref] [PubMed]
  37. G. J. Supran, K. W. Song, G. W. Hwang, R. E. Correa, J. Scherer, E. A. Dauler, Y. Shirasaki, M. G. Bawendi, and V. Bulović, “High-performance shortwave-infrared light-emitting devices using core-shell (PbS-CdS) colloidal quantum dots,” Adv. Mater. 27(8), 1437–1442 (2015).
    [Crossref] [PubMed]
  38. J. J. Qiu, B. B. Weng, W. Y. Ge, L. L. McDowell, Z. H. Cai, and Z. S. Shi, “A broadband Pb-chalcogenide/CdS solar cells with tandem quantum-dots embedded in the bulk matrix (QDiM) absorption layers by using chemical bath deposition,” Sol. Energy Mater. Sol. Cells 172, 117–123 (2017).
    [Crossref]
  39. M. L. Dennis and I. N. Duling, “Experimental study of sideband generation in femtosecond fiber laser,” IEEE J. Quantum Electron. 30(6), 1469–1477 (1994).
    [Crossref]

2018 (2)

B. Guo, “2D noncarbon materials-based nonlinear optical devices for ultrafast photonics,” Chin. Opt. Lett. 16(1), 020004 (2018).
[Crossref]

D. Mao, X. Q. Cui, X. T. Gan, M. K. Li, W. D. Zhang, H. Lu, and J. L. Zhao, “Passively Q-switched and mode-locked fiber laser based on a ReS2 saturable absorber,” IEEE J. Sel. Top. Quant. 24(3), 1100406 (2018).

2017 (5)

K. D. Niu, Q. Y. Chen, R. Y. Sun, B. Y. Man, and H. N. Zhang, “Passively Q-switched erbium-doped fiber laser based on SnS2 saturable absorber,” Opt. Mater. Express 7(11), 3934–3943 (2017).
[Crossref]

K. Wei, S. Fan, Q. Chen, and X. Lai, “Passively mode-locked Yb fiber laser with PbSe colloidal quantum dots as saturable absorber,” Opt. Express 25(21), 24901–24906 (2017).
[Crossref] [PubMed]

E. G. Durmusoglu, M. M. Yildizhan, M. A. Gulgun, and H. Yagci Acar, “Production of Small, Stable PbS/CdS Quantum Dots via Room Temperature Cation Exchange Followed by a Low Temperature Annealing Processes,” J. Phys. Chem. C 121(45), 25520–25530 (2017).
[Crossref]

J. Li, Q. Y. Chen, K. D. Niu, R. Y. Sun, and H. N. Zhang, “Passively Mode-Locked Ytterbium-Doped Fiber Laser Based on SnS2 as Saturable Absorber,” IEEE Photonics J. 9(6), 1–7 (2017).
[Crossref]

J. J. Qiu, B. B. Weng, W. Y. Ge, L. L. McDowell, Z. H. Cai, and Z. S. Shi, “A broadband Pb-chalcogenide/CdS solar cells with tandem quantum-dots embedded in the bulk matrix (QDiM) absorption layers by using chemical bath deposition,” Sol. Energy Mater. Sol. Cells 172, 117–123 (2017).
[Crossref]

2016 (4)

2015 (8)

M. J. Speirs, D. M. Balazs, H. H. Fang, L. H. Lai, L. Protesescu, M. V. Kovalenko, and M. A. Loi, “Origin of the increased open circuit voltage in PbS-CdS core-shell quantum dot solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 3(4), 1450–1457 (2015).
[Crossref]

Z. Kang, X. J. Gao, L. Zhang, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015).
[Crossref]

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5(1), 12587 (2015).
[Crossref] [PubMed]

Z. C. Luo, M. Liu, Z. N. Guo, X. F. Jiang, A. P. Luo, C. J. Zhao, X. F. Yu, W. C. Xu, and H. Zhang, “Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser,” Opt. Express 23(15), 20030–20039 (2015).
[Crossref] [PubMed]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
[Crossref] [PubMed]

B. Guo, Y. Yao, Y. F. Yang, Y. J. Yuan, L. Jin, B. Yan, and J. Y. Zhang, “Dual-wavelength rectangular pulse erbium-doped fiber laser based on topological insulator saturable absorber,” Photon. Res. 3(3), 94–99 (2015).
[Crossref]

G. J. Supran, K. W. Song, G. W. Hwang, R. E. Correa, J. Scherer, E. A. Dauler, Y. Shirasaki, M. G. Bawendi, and V. Bulović, “High-performance shortwave-infrared light-emitting devices using core-shell (PbS-CdS) colloidal quantum dots,” Adv. Mater. 27(8), 1437–1442 (2015).
[Crossref] [PubMed]

2014 (5)

H. Liu, X. W. Zheng, M. Liu, N. Zhao, A. P. Luo, Z. C. Luo, W. C. Xu, H. Zhang, C. J. Zhao, and S. C. Wen, “Femtosecond pulse generation from a topological insulator mode-locked fiber laser,” Opt. Express 22(6), 6868–6873 (2014).
[Crossref] [PubMed]

Y. H. Lin, C. Y. Yang, S. F. Lin, W. H. Tseng, Q. Bao, C. I. Wu, and G. R. Lin, “Soliton compression of the erbium-doped fiber laser weakly started mode-locking by nanoscale p-type Bi2Te3 topological insulator particles,” Laser Phys. Lett. 11(5), 055107 (2014).
[Crossref]

J. Sotor, G. Sobon, W. Macherzynski, and K. M. Abramski, “Harmonically mode-locked Er-doped fiber laser based on a Sb2Te3 topological insulator saturable absorber,” Laser Phys. Lett. 11(5), 055102 (2014).
[Crossref]

H. Xia, H. Li, C. Lan, C. Li, X. Zhang, S. Zhang, and Y. Liu, “Ultrafast erbium-doped fiber laser mode-locked by a CVD-grown molybdenum disulfide (MoS2) saturable absorber,” Opt. Express 22(14), 17341–17348 (2014).
[Crossref] [PubMed]

D. C. Neo, C. Cheng, S. D. Stranks, S. M. Fairclough, J. S. Kim, A. I. Kirkland, and A. A. Watt, “Influence of shell thickness and surface passivation on PbS/CdS core/shell colloidal quantum dot solar cells,” Chem. Mater. 26(13), 4004–4013 (2014).
[Crossref]

2013 (2)

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, and W. C. Xu, “2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett. 38(24), 5212–5215 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (2)

M. Li, Q. Wang, X. Shi, L. A. Hornak, and N. Wu, “Detection of mercury(II) by quantum dot/DNA/gold nanoparticle ensemble based nanosensor via nanometal surface energy transfer,” Anal. Chem. 83(18), 7061–7065 (2011).
[Crossref] [PubMed]

I. Moreels, Y. Justo, B. De Geyter, K. Haustraete, J. C. Martins, and Z. Hens, “Size-tunable, bright, and stable PbS quantum dots: a surface chemistry study,” ACS Nano 5(3), 2004–2012 (2011).
[Crossref] [PubMed]

2010 (5)

S. Huang, Q. Zhang, X. Huang, X. Guo, M. Deng, D. Li, Y. Luo, Q. Shen, T. Toyoda, and Q. Meng, “Fibrous CdS/CdSe quantum dot co-sensitized solar cells based on ordered TiO2 nanotube arrays,” Nanotechnology 21(37), 375201 (2010).
[Crossref] [PubMed]

H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 969(11), 111112 (2010).
[Crossref]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97(20), 203106 (2010).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

2009 (1)

M. Shalom, S. Dor, S. Ruhle, L. Grinis, and A. Zaban, “Core/CdS quantum dot/shell mesoporous solar cells with improved stability and efficiency using an amorphous TiO2 coating,” J. Phys. Chem. C 113(9), 3895–3898 (2009).
[Crossref]

2005 (1)

R. J. Ellingson, M. C. Beard, J. C. Johnson, P. Yu, O. I. Micic, A. J. Nozik, A. Shabaev, and A. L. Efros, “Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots,” Nano Lett. 5(5), 865–871 (2005).
[Crossref] [PubMed]

2003 (1)

L. Bakueva, S. Musikhin, M. A. Hines, T. W. Chang, M. Tzolov, G. D. Scholes, and E. H. Sargent, “Size-tunable infrared (1000-1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer,” Appl. Phys. Lett. 82(17), 2895–2897 (2003).
[Crossref]

1997 (1)

1994 (1)

M. L. Dennis and I. N. Duling, “Experimental study of sideband generation in femtosecond fiber laser,” IEEE J. Quantum Electron. 30(6), 1469–1477 (1994).
[Crossref]

Abramski, K. M.

J. Sotor, G. Sobon, W. Macherzynski, and K. M. Abramski, “Harmonically mode-locked Er-doped fiber laser based on a Sb2Te3 topological insulator saturable absorber,” Laser Phys. Lett. 11(5), 055102 (2014).
[Crossref]

Bakueva, L.

L. Bakueva, S. Musikhin, M. A. Hines, T. W. Chang, M. Tzolov, G. D. Scholes, and E. H. Sargent, “Size-tunable infrared (1000-1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer,” Appl. Phys. Lett. 82(17), 2895–2897 (2003).
[Crossref]

Balazs, D. M.

M. J. Speirs, D. M. Balazs, H. H. Fang, L. H. Lai, L. Protesescu, M. V. Kovalenko, and M. A. Loi, “Origin of the increased open circuit voltage in PbS-CdS core-shell quantum dot solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 3(4), 1450–1457 (2015).
[Crossref]

Bao, Q.

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
[Crossref] [PubMed]

Y. H. Lin, C. Y. Yang, S. F. Lin, W. H. Tseng, Q. Bao, C. I. Wu, and G. R. Lin, “Soliton compression of the erbium-doped fiber laser weakly started mode-locking by nanoscale p-type Bi2Te3 topological insulator particles,” Laser Phys. Lett. 11(5), 055107 (2014).
[Crossref]

Bao, Q. L.

H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 969(11), 111112 (2010).
[Crossref]

Basko, D. M.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Bawendi, M. G.

G. J. Supran, K. W. Song, G. W. Hwang, R. E. Correa, J. Scherer, E. A. Dauler, Y. Shirasaki, M. G. Bawendi, and V. Bulović, “High-performance shortwave-infrared light-emitting devices using core-shell (PbS-CdS) colloidal quantum dots,” Adv. Mater. 27(8), 1437–1442 (2015).
[Crossref] [PubMed]

Beard, M. C.

R. J. Ellingson, M. C. Beard, J. C. Johnson, P. Yu, O. I. Micic, A. J. Nozik, A. Shabaev, and A. L. Efros, “Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots,” Nano Lett. 5(5), 865–871 (2005).
[Crossref] [PubMed]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Bulovic, V.

G. J. Supran, K. W. Song, G. W. Hwang, R. E. Correa, J. Scherer, E. A. Dauler, Y. Shirasaki, M. G. Bawendi, and V. Bulović, “High-performance shortwave-infrared light-emitting devices using core-shell (PbS-CdS) colloidal quantum dots,” Adv. Mater. 27(8), 1437–1442 (2015).
[Crossref] [PubMed]

Cai, Z. H.

J. J. Qiu, B. B. Weng, W. Y. Ge, L. L. McDowell, Z. H. Cai, and Z. S. Shi, “A broadband Pb-chalcogenide/CdS solar cells with tandem quantum-dots embedded in the bulk matrix (QDiM) absorption layers by using chemical bath deposition,” Sol. Energy Mater. Sol. Cells 172, 117–123 (2017).
[Crossref]

Chang, T. W.

L. Bakueva, S. Musikhin, M. A. Hines, T. W. Chang, M. Tzolov, G. D. Scholes, and E. H. Sargent, “Size-tunable infrared (1000-1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer,” Appl. Phys. Lett. 82(17), 2895–2897 (2003).
[Crossref]

Chen, C. M.

Chen, H.

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5(1), 12587 (2015).
[Crossref] [PubMed]

Chen, Q.

Chen, Q. Y.

K. D. Niu, Q. Y. Chen, R. Y. Sun, B. Y. Man, and H. N. Zhang, “Passively Q-switched erbium-doped fiber laser based on SnS2 saturable absorber,” Opt. Mater. Express 7(11), 3934–3943 (2017).
[Crossref]

J. Li, Q. Y. Chen, K. D. Niu, R. Y. Sun, and H. N. Zhang, “Passively Mode-Locked Ytterbium-Doped Fiber Laser Based on SnS2 as Saturable Absorber,” IEEE Photonics J. 9(6), 1–7 (2017).
[Crossref]

Chen, S.

Chen, S. K.

Chen, Y.

Cheng, C.

D. C. Neo, C. Cheng, S. D. Stranks, S. M. Fairclough, J. S. Kim, A. I. Kirkland, and A. A. Watt, “Influence of shell thickness and surface passivation on PbS/CdS core/shell colloidal quantum dot solar cells,” Chem. Mater. 26(13), 4004–4013 (2014).
[Crossref]

Correa, R. E.

G. J. Supran, K. W. Song, G. W. Hwang, R. E. Correa, J. Scherer, E. A. Dauler, Y. Shirasaki, M. G. Bawendi, and V. Bulović, “High-performance shortwave-infrared light-emitting devices using core-shell (PbS-CdS) colloidal quantum dots,” Adv. Mater. 27(8), 1437–1442 (2015).
[Crossref] [PubMed]

Cui, X.

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6(1), 23583 (2016).
[Crossref] [PubMed]

Cui, X. Q.

D. Mao, X. Q. Cui, X. T. Gan, M. K. Li, W. D. Zhang, H. Lu, and J. L. Zhao, “Passively Q-switched and mode-locked fiber laser based on a ReS2 saturable absorber,” IEEE J. Sel. Top. Quant. 24(3), 1100406 (2018).

Dauler, E. A.

G. J. Supran, K. W. Song, G. W. Hwang, R. E. Correa, J. Scherer, E. A. Dauler, Y. Shirasaki, M. G. Bawendi, and V. Bulović, “High-performance shortwave-infrared light-emitting devices using core-shell (PbS-CdS) colloidal quantum dots,” Adv. Mater. 27(8), 1437–1442 (2015).
[Crossref] [PubMed]

De Geyter, B.

I. Moreels, Y. Justo, B. De Geyter, K. Haustraete, J. C. Martins, and Z. Hens, “Size-tunable, bright, and stable PbS quantum dots: a surface chemistry study,” ACS Nano 5(3), 2004–2012 (2011).
[Crossref] [PubMed]

Deng, M.

S. Huang, Q. Zhang, X. Huang, X. Guo, M. Deng, D. Li, Y. Luo, Q. Shen, T. Toyoda, and Q. Meng, “Fibrous CdS/CdSe quantum dot co-sensitized solar cells based on ordered TiO2 nanotube arrays,” Nanotechnology 21(37), 375201 (2010).
[Crossref] [PubMed]

Dennis, M. L.

M. L. Dennis and I. N. Duling, “Experimental study of sideband generation in femtosecond fiber laser,” IEEE J. Quantum Electron. 30(6), 1469–1477 (1994).
[Crossref]

Ding, J.

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5(1), 12587 (2015).
[Crossref] [PubMed]

Dor, S.

M. Shalom, S. Dor, S. Ruhle, L. Grinis, and A. Zaban, “Core/CdS quantum dot/shell mesoporous solar cells with improved stability and efficiency using an amorphous TiO2 coating,” J. Phys. Chem. C 113(9), 3895–3898 (2009).
[Crossref]

Du, B.

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6(1), 23583 (2016).
[Crossref] [PubMed]

Duling, I. N.

M. L. Dennis and I. N. Duling, “Experimental study of sideband generation in femtosecond fiber laser,” IEEE J. Quantum Electron. 30(6), 1469–1477 (1994).
[Crossref]

Durmusoglu, E. G.

E. G. Durmusoglu, M. M. Yildizhan, M. A. Gulgun, and H. Yagci Acar, “Production of Small, Stable PbS/CdS Quantum Dots via Room Temperature Cation Exchange Followed by a Low Temperature Annealing Processes,” J. Phys. Chem. C 121(45), 25520–25530 (2017).
[Crossref]

Efros, A. L.

R. J. Ellingson, M. C. Beard, J. C. Johnson, P. Yu, O. I. Micic, A. J. Nozik, A. Shabaev, and A. L. Efros, “Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots,” Nano Lett. 5(5), 865–871 (2005).
[Crossref] [PubMed]

Ellingson, R. J.

R. J. Ellingson, M. C. Beard, J. C. Johnson, P. Yu, O. I. Micic, A. J. Nozik, A. Shabaev, and A. L. Efros, “Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots,” Nano Lett. 5(5), 865–871 (2005).
[Crossref] [PubMed]

Fairclough, S. M.

D. C. Neo, C. Cheng, S. D. Stranks, S. M. Fairclough, J. S. Kim, A. I. Kirkland, and A. A. Watt, “Influence of shell thickness and surface passivation on PbS/CdS core/shell colloidal quantum dot solar cells,” Chem. Mater. 26(13), 4004–4013 (2014).
[Crossref]

Fan, D.

Fan, S.

Fang, H. H.

M. J. Speirs, D. M. Balazs, H. H. Fang, L. H. Lai, L. Protesescu, M. V. Kovalenko, and M. A. Loi, “Origin of the increased open circuit voltage in PbS-CdS core-shell quantum dot solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 3(4), 1450–1457 (2015).
[Crossref]

Feng, Y.

Z. Kang, X. J. Gao, L. Zhang, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Ferrari, A. C.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97(20), 203106 (2010).
[Crossref]

Gan, X.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Gan, X. T.

D. Mao, X. Q. Cui, X. T. Gan, M. K. Li, W. D. Zhang, H. Lu, and J. L. Zhao, “Passively Q-switched and mode-locked fiber laser based on a ReS2 saturable absorber,” IEEE J. Sel. Top. Quant. 24(3), 1100406 (2018).

Gao, X. J.

Ge, W. Y.

J. J. Qiu, B. B. Weng, W. Y. Ge, L. L. McDowell, Z. H. Cai, and Z. S. Shi, “A broadband Pb-chalcogenide/CdS solar cells with tandem quantum-dots embedded in the bulk matrix (QDiM) absorption layers by using chemical bath deposition,” Sol. Energy Mater. Sol. Cells 172, 117–123 (2017).
[Crossref]

Grinis, L.

M. Shalom, S. Dor, S. Ruhle, L. Grinis, and A. Zaban, “Core/CdS quantum dot/shell mesoporous solar cells with improved stability and efficiency using an amorphous TiO2 coating,” J. Phys. Chem. C 113(9), 3895–3898 (2009).
[Crossref]

Gulgun, M. A.

E. G. Durmusoglu, M. M. Yildizhan, M. A. Gulgun, and H. Yagci Acar, “Production of Small, Stable PbS/CdS Quantum Dots via Room Temperature Cation Exchange Followed by a Low Temperature Annealing Processes,” J. Phys. Chem. C 121(45), 25520–25530 (2017).
[Crossref]

Guo, B.

Guo, X.

S. Huang, Q. Zhang, X. Huang, X. Guo, M. Deng, D. Li, Y. Luo, Q. Shen, T. Toyoda, and Q. Meng, “Fibrous CdS/CdSe quantum dot co-sensitized solar cells based on ordered TiO2 nanotube arrays,” Nanotechnology 21(37), 375201 (2010).
[Crossref] [PubMed]

Guo, Z.

Guo, Z. N.

Han, L.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Hasan, T.

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97(20), 203106 (2010).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Haustraete, K.

I. Moreels, Y. Justo, B. De Geyter, K. Haustraete, J. C. Martins, and Z. Hens, “Size-tunable, bright, and stable PbS quantum dots: a surface chemistry study,” ACS Nano 5(3), 2004–2012 (2011).
[Crossref] [PubMed]

Hens, Z.

I. Moreels, Y. Justo, B. De Geyter, K. Haustraete, J. C. Martins, and Z. Hens, “Size-tunable, bright, and stable PbS quantum dots: a surface chemistry study,” ACS Nano 5(3), 2004–2012 (2011).
[Crossref] [PubMed]

Hines, M. A.

L. Bakueva, S. Musikhin, M. A. Hines, T. W. Chang, M. Tzolov, G. D. Scholes, and E. H. Sargent, “Size-tunable infrared (1000-1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer,” Appl. Phys. Lett. 82(17), 2895–2897 (2003).
[Crossref]

Hornak, L. A.

M. Li, Q. Wang, X. Shi, L. A. Hornak, and N. Wu, “Detection of mercury(II) by quantum dot/DNA/gold nanoparticle ensemble based nanosensor via nanometal surface energy transfer,” Anal. Chem. 83(18), 7061–7065 (2011).
[Crossref] [PubMed]

Hua, S.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Huang, C. W.

Huang, S.

S. Huang, Q. Zhang, X. Huang, X. Guo, M. Deng, D. Li, Y. Luo, Q. Shen, T. Toyoda, and Q. Meng, “Fibrous CdS/CdSe quantum dot co-sensitized solar cells based on ordered TiO2 nanotube arrays,” Nanotechnology 21(37), 375201 (2010).
[Crossref] [PubMed]

Huang, X.

S. Huang, Q. Zhang, X. Huang, X. Guo, M. Deng, D. Li, Y. Luo, Q. Shen, T. Toyoda, and Q. Meng, “Fibrous CdS/CdSe quantum dot co-sensitized solar cells based on ordered TiO2 nanotube arrays,” Nanotechnology 21(37), 375201 (2010).
[Crossref] [PubMed]

Hwang, G. W.

G. J. Supran, K. W. Song, G. W. Hwang, R. E. Correa, J. Scherer, E. A. Dauler, Y. Shirasaki, M. G. Bawendi, and V. Bulović, “High-performance shortwave-infrared light-emitting devices using core-shell (PbS-CdS) colloidal quantum dots,” Adv. Mater. 27(8), 1437–1442 (2015).
[Crossref] [PubMed]

Jia, Z. X.

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Jiang, B.

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6(1), 23583 (2016).
[Crossref] [PubMed]

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Jiang, G.

Jiang, J. R.

Jiang, X. F.

Jin, L.

Johnson, J. C.

R. J. Ellingson, M. C. Beard, J. C. Johnson, P. Yu, O. I. Micic, A. J. Nozik, A. Shabaev, and A. L. Efros, “Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots,” Nano Lett. 5(5), 865–871 (2005).
[Crossref] [PubMed]

Justo, Y.

I. Moreels, Y. Justo, B. De Geyter, K. Haustraete, J. C. Martins, and Z. Hens, “Size-tunable, bright, and stable PbS quantum dots: a surface chemistry study,” ACS Nano 5(3), 2004–2012 (2011).
[Crossref] [PubMed]

Kang, I.

Kang, Z.

Z. Kang, X. J. Gao, L. Zhang, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Kim, J. S.

D. C. Neo, C. Cheng, S. D. Stranks, S. M. Fairclough, J. S. Kim, A. I. Kirkland, and A. A. Watt, “Influence of shell thickness and surface passivation on PbS/CdS core/shell colloidal quantum dot solar cells,” Chem. Mater. 26(13), 4004–4013 (2014).
[Crossref]

Kirkland, A. I.

D. C. Neo, C. Cheng, S. D. Stranks, S. M. Fairclough, J. S. Kim, A. I. Kirkland, and A. A. Watt, “Influence of shell thickness and surface passivation on PbS/CdS core/shell colloidal quantum dot solar cells,” Chem. Mater. 26(13), 4004–4013 (2014).
[Crossref]

Knize, R. J.

H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 969(11), 111112 (2010).
[Crossref]

Kovalenko, M. V.

M. J. Speirs, D. M. Balazs, H. H. Fang, L. H. Lai, L. Protesescu, M. V. Kovalenko, and M. A. Loi, “Origin of the increased open circuit voltage in PbS-CdS core-shell quantum dot solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 3(4), 1450–1457 (2015).
[Crossref]

Lai, L. H.

M. J. Speirs, D. M. Balazs, H. H. Fang, L. H. Lai, L. Protesescu, M. V. Kovalenko, and M. A. Loi, “Origin of the increased open circuit voltage in PbS-CdS core-shell quantum dot solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 3(4), 1450–1457 (2015).
[Crossref]

Lai, X.

Lan, C.

Lee, Y. W.

Li, C.

Li, D.

S. Huang, Q. Zhang, X. Huang, X. Guo, M. Deng, D. Li, Y. Luo, Q. Shen, T. Toyoda, and Q. Meng, “Fibrous CdS/CdSe quantum dot co-sensitized solar cells based on ordered TiO2 nanotube arrays,” Nanotechnology 21(37), 375201 (2010).
[Crossref] [PubMed]

Li, H.

Li, J.

J. Li, Q. Y. Chen, K. D. Niu, R. Y. Sun, and H. N. Zhang, “Passively Mode-Locked Ytterbium-Doped Fiber Laser Based on SnS2 as Saturable Absorber,” IEEE Photonics J. 9(6), 1–7 (2017).
[Crossref]

Li, M.

M. Li, Q. Wang, X. Shi, L. A. Hornak, and N. Wu, “Detection of mercury(II) by quantum dot/DNA/gold nanoparticle ensemble based nanosensor via nanometal surface energy transfer,” Anal. Chem. 83(18), 7061–7065 (2011).
[Crossref] [PubMed]

Li, M. K.

D. Mao, X. Q. Cui, X. T. Gan, M. K. Li, W. D. Zhang, H. Lu, and J. L. Zhao, “Passively Q-switched and mode-locked fiber laser based on a ReS2 saturable absorber,” IEEE J. Sel. Top. Quant. 24(3), 1100406 (2018).

Lin, G. R.

Y. H. Lin, C. Y. Yang, S. F. Lin, W. H. Tseng, Q. Bao, C. I. Wu, and G. R. Lin, “Soliton compression of the erbium-doped fiber laser weakly started mode-locking by nanoscale p-type Bi2Te3 topological insulator particles,” Laser Phys. Lett. 11(5), 055107 (2014).
[Crossref]

Lin, S. F.

Y. H. Lin, C. Y. Yang, S. F. Lin, W. H. Tseng, Q. Bao, C. I. Wu, and G. R. Lin, “Soliton compression of the erbium-doped fiber laser weakly started mode-locking by nanoscale p-type Bi2Te3 topological insulator particles,” Laser Phys. Lett. 11(5), 055107 (2014).
[Crossref]

Lin, Y. H.

Y. H. Lin, C. Y. Yang, S. F. Lin, W. H. Tseng, Q. Bao, C. I. Wu, and G. R. Lin, “Soliton compression of the erbium-doped fiber laser weakly started mode-locking by nanoscale p-type Bi2Te3 topological insulator particles,” Laser Phys. Lett. 11(5), 055107 (2014).
[Crossref]

Liu, A.

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5(1), 12587 (2015).
[Crossref] [PubMed]

Liu, H.

Liu, J.

Liu, L.

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Liu, M.

Liu, Y.

Loh, K. P.

H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 969(11), 111112 (2010).
[Crossref]

Loi, M. A.

M. J. Speirs, D. M. Balazs, H. H. Fang, L. H. Lai, L. Protesescu, M. V. Kovalenko, and M. A. Loi, “Origin of the increased open circuit voltage in PbS-CdS core-shell quantum dot solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 3(4), 1450–1457 (2015).
[Crossref]

Lu, H.

D. Mao, X. Q. Cui, X. T. Gan, M. K. Li, W. D. Zhang, H. Lu, and J. L. Zhao, “Passively Q-switched and mode-locked fiber laser based on a ReS2 saturable absorber,” IEEE J. Sel. Top. Quant. 24(3), 1100406 (2018).

Lu, S.

Luo, A. P.

Luo, Y.

S. Huang, Q. Zhang, X. Huang, X. Guo, M. Deng, D. Li, Y. Luo, Q. Shen, T. Toyoda, and Q. Meng, “Fibrous CdS/CdSe quantum dot co-sensitized solar cells based on ordered TiO2 nanotube arrays,” Nanotechnology 21(37), 375201 (2010).
[Crossref] [PubMed]

Luo, Z. C.

Lyu, Q.

Ma, C.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Macherzynski, W.

J. Sotor, G. Sobon, W. Macherzynski, and K. M. Abramski, “Harmonically mode-locked Er-doped fiber laser based on a Sb2Te3 topological insulator saturable absorber,” Laser Phys. Lett. 11(5), 055102 (2014).
[Crossref]

Man, B. Y.

Mao, D.

D. Mao, X. Q. Cui, X. T. Gan, M. K. Li, W. D. Zhang, H. Lu, and J. L. Zhao, “Passively Q-switched and mode-locked fiber laser based on a ReS2 saturable absorber,” IEEE J. Sel. Top. Quant. 24(3), 1100406 (2018).

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6(1), 23583 (2016).
[Crossref] [PubMed]

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Martins, J. C.

I. Moreels, Y. Justo, B. De Geyter, K. Haustraete, J. C. Martins, and Z. Hens, “Size-tunable, bright, and stable PbS quantum dots: a surface chemistry study,” ACS Nano 5(3), 2004–2012 (2011).
[Crossref] [PubMed]

McDowell, L. L.

J. J. Qiu, B. B. Weng, W. Y. Ge, L. L. McDowell, Z. H. Cai, and Z. S. Shi, “A broadband Pb-chalcogenide/CdS solar cells with tandem quantum-dots embedded in the bulk matrix (QDiM) absorption layers by using chemical bath deposition,” Sol. Energy Mater. Sol. Cells 172, 117–123 (2017).
[Crossref]

Mei, T.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Meng, Q.

S. Huang, Q. Zhang, X. Huang, X. Guo, M. Deng, D. Li, Y. Luo, Q. Shen, T. Toyoda, and Q. Meng, “Fibrous CdS/CdSe quantum dot co-sensitized solar cells based on ordered TiO2 nanotube arrays,” Nanotechnology 21(37), 375201 (2010).
[Crossref] [PubMed]

Micic, O. I.

R. J. Ellingson, M. C. Beard, J. C. Johnson, P. Yu, O. I. Micic, A. J. Nozik, A. Shabaev, and A. L. Efros, “Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots,” Nano Lett. 5(5), 865–871 (2005).
[Crossref] [PubMed]

Moreels, I.

I. Moreels, Y. Justo, B. De Geyter, K. Haustraete, J. C. Martins, and Z. Hens, “Size-tunable, bright, and stable PbS quantum dots: a surface chemistry study,” ACS Nano 5(3), 2004–2012 (2011).
[Crossref] [PubMed]

Musikhin, S.

L. Bakueva, S. Musikhin, M. A. Hines, T. W. Chang, M. Tzolov, G. D. Scholes, and E. H. Sargent, “Size-tunable infrared (1000-1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer,” Appl. Phys. Lett. 82(17), 2895–2897 (2003).
[Crossref]

Neo, D. C.

D. C. Neo, C. Cheng, S. D. Stranks, S. M. Fairclough, J. S. Kim, A. I. Kirkland, and A. A. Watt, “Influence of shell thickness and surface passivation on PbS/CdS core/shell colloidal quantum dot solar cells,” Chem. Mater. 26(13), 4004–4013 (2014).
[Crossref]

Niu, K. D.

J. Li, Q. Y. Chen, K. D. Niu, R. Y. Sun, and H. N. Zhang, “Passively Mode-Locked Ytterbium-Doped Fiber Laser Based on SnS2 as Saturable Absorber,” IEEE Photonics J. 9(6), 1–7 (2017).
[Crossref]

K. D. Niu, Q. Y. Chen, R. Y. Sun, B. Y. Man, and H. N. Zhang, “Passively Q-switched erbium-doped fiber laser based on SnS2 saturable absorber,” Opt. Mater. Express 7(11), 3934–3943 (2017).
[Crossref]

Nozik, A. J.

R. J. Ellingson, M. C. Beard, J. C. Johnson, P. Yu, O. I. Micic, A. J. Nozik, A. Shabaev, and A. L. Efros, “Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots,” Nano Lett. 5(5), 865–871 (2005).
[Crossref] [PubMed]

Peng, T.

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6(1), 23583 (2016).
[Crossref] [PubMed]

Popa, D.

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97(20), 203106 (2010).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Privitera, G.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Protesescu, L.

M. J. Speirs, D. M. Balazs, H. H. Fang, L. H. Lai, L. Protesescu, M. V. Kovalenko, and M. A. Loi, “Origin of the increased open circuit voltage in PbS-CdS core-shell quantum dot solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 3(4), 1450–1457 (2015).
[Crossref]

Qin, G. S.

Z. Kang, X. J. Gao, L. Zhang, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Qin, W. P.

Z. Kang, X. J. Gao, L. Zhang, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Qiu, J. J.

J. J. Qiu, B. B. Weng, W. Y. Ge, L. L. McDowell, Z. H. Cai, and Z. S. Shi, “A broadband Pb-chalcogenide/CdS solar cells with tandem quantum-dots embedded in the bulk matrix (QDiM) absorption layers by using chemical bath deposition,” Sol. Energy Mater. Sol. Cells 172, 117–123 (2017).
[Crossref]

Ruan, S.

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5(1), 12587 (2015).
[Crossref] [PubMed]

Ruhle, S.

M. Shalom, S. Dor, S. Ruhle, L. Grinis, and A. Zaban, “Core/CdS quantum dot/shell mesoporous solar cells with improved stability and efficiency using an amorphous TiO2 coating,” J. Phys. Chem. C 113(9), 3895–3898 (2009).
[Crossref]

Sargent, E. H.

L. Bakueva, S. Musikhin, M. A. Hines, T. W. Chang, M. Tzolov, G. D. Scholes, and E. H. Sargent, “Size-tunable infrared (1000-1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer,” Appl. Phys. Lett. 82(17), 2895–2897 (2003).
[Crossref]

Scherer, J.

G. J. Supran, K. W. Song, G. W. Hwang, R. E. Correa, J. Scherer, E. A. Dauler, Y. Shirasaki, M. G. Bawendi, and V. Bulović, “High-performance shortwave-infrared light-emitting devices using core-shell (PbS-CdS) colloidal quantum dots,” Adv. Mater. 27(8), 1437–1442 (2015).
[Crossref] [PubMed]

Scholes, G. D.

L. Bakueva, S. Musikhin, M. A. Hines, T. W. Chang, M. Tzolov, G. D. Scholes, and E. H. Sargent, “Size-tunable infrared (1000-1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer,” Appl. Phys. Lett. 82(17), 2895–2897 (2003).
[Crossref]

Shabaev, A.

R. J. Ellingson, M. C. Beard, J. C. Johnson, P. Yu, O. I. Micic, A. J. Nozik, A. Shabaev, and A. L. Efros, “Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots,” Nano Lett. 5(5), 865–871 (2005).
[Crossref] [PubMed]

Shalom, M.

M. Shalom, S. Dor, S. Ruhle, L. Grinis, and A. Zaban, “Core/CdS quantum dot/shell mesoporous solar cells with improved stability and efficiency using an amorphous TiO2 coating,” J. Phys. Chem. C 113(9), 3895–3898 (2009).
[Crossref]

She, X.

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6(1), 23583 (2016).
[Crossref] [PubMed]

Shen, Q.

S. Huang, Q. Zhang, X. Huang, X. Guo, M. Deng, D. Li, Y. Luo, Q. Shen, T. Toyoda, and Q. Meng, “Fibrous CdS/CdSe quantum dot co-sensitized solar cells based on ordered TiO2 nanotube arrays,” Nanotechnology 21(37), 375201 (2010).
[Crossref] [PubMed]

Shi, X.

M. Li, Q. Wang, X. Shi, L. A. Hornak, and N. Wu, “Detection of mercury(II) by quantum dot/DNA/gold nanoparticle ensemble based nanosensor via nanometal surface energy transfer,” Anal. Chem. 83(18), 7061–7065 (2011).
[Crossref] [PubMed]

Shi, Z. S.

J. J. Qiu, B. B. Weng, W. Y. Ge, L. L. McDowell, Z. H. Cai, and Z. S. Shi, “A broadband Pb-chalcogenide/CdS solar cells with tandem quantum-dots embedded in the bulk matrix (QDiM) absorption layers by using chemical bath deposition,” Sol. Energy Mater. Sol. Cells 172, 117–123 (2017).
[Crossref]

Shirasaki, Y.

G. J. Supran, K. W. Song, G. W. Hwang, R. E. Correa, J. Scherer, E. A. Dauler, Y. Shirasaki, M. G. Bawendi, and V. Bulović, “High-performance shortwave-infrared light-emitting devices using core-shell (PbS-CdS) colloidal quantum dots,” Adv. Mater. 27(8), 1437–1442 (2015).
[Crossref] [PubMed]

Sobon, G.

J. Sotor, G. Sobon, W. Macherzynski, and K. M. Abramski, “Harmonically mode-locked Er-doped fiber laser based on a Sb2Te3 topological insulator saturable absorber,” Laser Phys. Lett. 11(5), 055102 (2014).
[Crossref]

Song, K.

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6(1), 23583 (2016).
[Crossref] [PubMed]

Song, K. W.

G. J. Supran, K. W. Song, G. W. Hwang, R. E. Correa, J. Scherer, E. A. Dauler, Y. Shirasaki, M. G. Bawendi, and V. Bulović, “High-performance shortwave-infrared light-emitting devices using core-shell (PbS-CdS) colloidal quantum dots,” Adv. Mater. 27(8), 1437–1442 (2015).
[Crossref] [PubMed]

Sotor, J.

J. Sotor, G. Sobon, W. Macherzynski, and K. M. Abramski, “Harmonically mode-locked Er-doped fiber laser based on a Sb2Te3 topological insulator saturable absorber,” Laser Phys. Lett. 11(5), 055102 (2014).
[Crossref]

Speirs, M. J.

M. J. Speirs, D. M. Balazs, H. H. Fang, L. H. Lai, L. Protesescu, M. V. Kovalenko, and M. A. Loi, “Origin of the increased open circuit voltage in PbS-CdS core-shell quantum dot solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 3(4), 1450–1457 (2015).
[Crossref]

Stranks, S. D.

D. C. Neo, C. Cheng, S. D. Stranks, S. M. Fairclough, J. S. Kim, A. I. Kirkland, and A. A. Watt, “Influence of shell thickness and surface passivation on PbS/CdS core/shell colloidal quantum dot solar cells,” Chem. Mater. 26(13), 4004–4013 (2014).
[Crossref]

Sun, R. Y.

J. Li, Q. Y. Chen, K. D. Niu, R. Y. Sun, and H. N. Zhang, “Passively Mode-Locked Ytterbium-Doped Fiber Laser Based on SnS2 as Saturable Absorber,” IEEE Photonics J. 9(6), 1–7 (2017).
[Crossref]

K. D. Niu, Q. Y. Chen, R. Y. Sun, B. Y. Man, and H. N. Zhang, “Passively Q-switched erbium-doped fiber laser based on SnS2 saturable absorber,” Opt. Mater. Express 7(11), 3934–3943 (2017).
[Crossref]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97(20), 203106 (2010).
[Crossref]

Supran, G. J.

G. J. Supran, K. W. Song, G. W. Hwang, R. E. Correa, J. Scherer, E. A. Dauler, Y. Shirasaki, M. G. Bawendi, and V. Bulović, “High-performance shortwave-infrared light-emitting devices using core-shell (PbS-CdS) colloidal quantum dots,” Adv. Mater. 27(8), 1437–1442 (2015).
[Crossref] [PubMed]

Tang, D.

Tang, D. Y.

H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 969(11), 111112 (2010).
[Crossref]

Torrisi, F.

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97(20), 203106 (2010).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Toyoda, T.

S. Huang, Q. Zhang, X. Huang, X. Guo, M. Deng, D. Li, Y. Luo, Q. Shen, T. Toyoda, and Q. Meng, “Fibrous CdS/CdSe quantum dot co-sensitized solar cells based on ordered TiO2 nanotube arrays,” Nanotechnology 21(37), 375201 (2010).
[Crossref] [PubMed]

Tseng, W. H.

Y. H. Lin, C. Y. Yang, S. F. Lin, W. H. Tseng, Q. Bao, C. I. Wu, and G. R. Lin, “Soliton compression of the erbium-doped fiber laser weakly started mode-locking by nanoscale p-type Bi2Te3 topological insulator particles,” Laser Phys. Lett. 11(5), 055107 (2014).
[Crossref]

Tzolov, M.

L. Bakueva, S. Musikhin, M. A. Hines, T. W. Chang, M. Tzolov, G. D. Scholes, and E. H. Sargent, “Size-tunable infrared (1000-1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer,” Appl. Phys. Lett. 82(17), 2895–2897 (2003).
[Crossref]

Wang, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97(20), 203106 (2010).
[Crossref]

Wang, J.

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5(1), 12587 (2015).
[Crossref] [PubMed]

Wang, P. F.

Wang, Q.

M. Li, Q. Wang, X. Shi, L. A. Hornak, and N. Wu, “Detection of mercury(II) by quantum dot/DNA/gold nanoparticle ensemble based nanosensor via nanometal surface energy transfer,” Anal. Chem. 83(18), 7061–7065 (2011).
[Crossref] [PubMed]

Wang, Y.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Wang, Z.

Watt, A. A.

D. C. Neo, C. Cheng, S. D. Stranks, S. M. Fairclough, J. S. Kim, A. I. Kirkland, and A. A. Watt, “Influence of shell thickness and surface passivation on PbS/CdS core/shell colloidal quantum dot solar cells,” Chem. Mater. 26(13), 4004–4013 (2014).
[Crossref]

Wei, K.

Wen, S.

Wen, S. C.

Weng, B. B.

J. J. Qiu, B. B. Weng, W. Y. Ge, L. L. McDowell, Z. H. Cai, and Z. S. Shi, “A broadband Pb-chalcogenide/CdS solar cells with tandem quantum-dots embedded in the bulk matrix (QDiM) absorption layers by using chemical bath deposition,” Sol. Energy Mater. Sol. Cells 172, 117–123 (2017).
[Crossref]

Wise, F. W.

Wu, C. I.

Y. H. Lin, C. Y. Yang, S. F. Lin, W. H. Tseng, Q. Bao, C. I. Wu, and G. R. Lin, “Soliton compression of the erbium-doped fiber laser weakly started mode-locking by nanoscale p-type Bi2Te3 topological insulator particles,” Laser Phys. Lett. 11(5), 055107 (2014).
[Crossref]

Wu, N.

M. Li, Q. Wang, X. Shi, L. A. Hornak, and N. Wu, “Detection of mercury(II) by quantum dot/DNA/gold nanoparticle ensemble based nanosensor via nanometal surface energy transfer,” Anal. Chem. 83(18), 7061–7065 (2011).
[Crossref] [PubMed]

Xia, H.

Xu, W. C.

Xu, Y.

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Yagci Acar, H.

E. G. Durmusoglu, M. M. Yildizhan, M. A. Gulgun, and H. Yagci Acar, “Production of Small, Stable PbS/CdS Quantum Dots via Room Temperature Cation Exchange Followed by a Low Temperature Annealing Processes,” J. Phys. Chem. C 121(45), 25520–25530 (2017).
[Crossref]

Yan, B.

Yan, P.

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5(1), 12587 (2015).
[Crossref] [PubMed]

Yang, C. Y.

Y. H. Lin, C. Y. Yang, S. F. Lin, W. H. Tseng, Q. Bao, C. I. Wu, and G. R. Lin, “Soliton compression of the erbium-doped fiber laser weakly started mode-locking by nanoscale p-type Bi2Te3 topological insulator particles,” Laser Phys. Lett. 11(5), 055107 (2014).
[Crossref]

Yang, D.

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6(1), 23583 (2016).
[Crossref] [PubMed]

Yang, Y. F.

Yao, Y.

Yildizhan, M. M.

E. G. Durmusoglu, M. M. Yildizhan, M. A. Gulgun, and H. Yagci Acar, “Production of Small, Stable PbS/CdS Quantum Dots via Room Temperature Cation Exchange Followed by a Low Temperature Annealing Processes,” J. Phys. Chem. C 121(45), 25520–25530 (2017).
[Crossref]

Yu, P.

R. J. Ellingson, M. C. Beard, J. C. Johnson, P. Yu, O. I. Micic, A. J. Nozik, A. Shabaev, and A. L. Efros, “Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots,” Nano Lett. 5(5), 865–871 (2005).
[Crossref] [PubMed]

Yu, X.

Yu, X. F.

Yuan, Y. J.

Zaban, A.

M. Shalom, S. Dor, S. Ruhle, L. Grinis, and A. Zaban, “Core/CdS quantum dot/shell mesoporous solar cells with improved stability and efficiency using an amorphous TiO2 coating,” J. Phys. Chem. C 113(9), 3895–3898 (2009).
[Crossref]

Zhang, H.

H. Zhang and J. Liu, “Gold nanobipyramids as saturable absorbers for passively Q-switched laser generation in the 1.1 μm region,” Opt. Lett. 41(6), 1150–1152 (2016).
[Crossref] [PubMed]

Z. C. Luo, M. Liu, Z. N. Guo, X. F. Jiang, A. P. Luo, C. J. Zhao, X. F. Yu, W. C. Xu, and H. Zhang, “Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser,” Opt. Express 23(15), 20030–20039 (2015).
[Crossref] [PubMed]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
[Crossref] [PubMed]

H. Liu, X. W. Zheng, M. Liu, N. Zhao, A. P. Luo, Z. C. Luo, W. C. Xu, H. Zhang, C. J. Zhao, and S. C. Wen, “Femtosecond pulse generation from a topological insulator mode-locked fiber laser,” Opt. Express 22(6), 6868–6873 (2014).
[Crossref] [PubMed]

Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, and W. C. Xu, “2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett. 38(24), 5212–5215 (2013).
[Crossref] [PubMed]

C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3 as a mode locker,” Opt. Express 20(25), 27888–27895 (2012).
[Crossref] [PubMed]

H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 969(11), 111112 (2010).
[Crossref]

Zhang, H. N.

J. Li, Q. Y. Chen, K. D. Niu, R. Y. Sun, and H. N. Zhang, “Passively Mode-Locked Ytterbium-Doped Fiber Laser Based on SnS2 as Saturable Absorber,” IEEE Photonics J. 9(6), 1–7 (2017).
[Crossref]

K. D. Niu, Q. Y. Chen, R. Y. Sun, B. Y. Man, and H. N. Zhang, “Passively Q-switched erbium-doped fiber laser based on SnS2 saturable absorber,” Opt. Mater. Express 7(11), 3934–3943 (2017).
[Crossref]

Zhang, J. Y.

Zhang, L.

Z. Kang, X. J. Gao, L. Zhang, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Zhang, Q.

S. Huang, Q. Zhang, X. Huang, X. Guo, M. Deng, D. Li, Y. Luo, Q. Shen, T. Toyoda, and Q. Meng, “Fibrous CdS/CdSe quantum dot co-sensitized solar cells based on ordered TiO2 nanotube arrays,” Nanotechnology 21(37), 375201 (2010).
[Crossref] [PubMed]

Zhang, S.

Zhang, W.

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6(1), 23583 (2016).
[Crossref] [PubMed]

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Zhang, W. D.

D. Mao, X. Q. Cui, X. T. Gan, M. K. Li, W. D. Zhang, H. Lu, and J. L. Zhao, “Passively Q-switched and mode-locked fiber laser based on a ReS2 saturable absorber,” IEEE J. Sel. Top. Quant. 24(3), 1100406 (2018).

Zhang, X.

Zhao, C.

Zhao, C. J.

Zhao, D.

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Zhao, J.

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6(1), 23583 (2016).
[Crossref] [PubMed]

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

Zhao, J. L.

D. Mao, X. Q. Cui, X. T. Gan, M. K. Li, W. D. Zhang, H. Lu, and J. L. Zhao, “Passively Q-switched and mode-locked fiber laser based on a ReS2 saturable absorber,” IEEE J. Sel. Top. Quant. 24(3), 1100406 (2018).

Zhao, L. M.

H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 969(11), 111112 (2010).
[Crossref]

Zhao, N.

Zheng, X. W.

Zou, Y.

ACS Nano (2)

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

I. Moreels, Y. Justo, B. De Geyter, K. Haustraete, J. C. Martins, and Z. Hens, “Size-tunable, bright, and stable PbS quantum dots: a surface chemistry study,” ACS Nano 5(3), 2004–2012 (2011).
[Crossref] [PubMed]

Adv. Mater. (1)

G. J. Supran, K. W. Song, G. W. Hwang, R. E. Correa, J. Scherer, E. A. Dauler, Y. Shirasaki, M. G. Bawendi, and V. Bulović, “High-performance shortwave-infrared light-emitting devices using core-shell (PbS-CdS) colloidal quantum dots,” Adv. Mater. 27(8), 1437–1442 (2015).
[Crossref] [PubMed]

Anal. Chem. (1)

M. Li, Q. Wang, X. Shi, L. A. Hornak, and N. Wu, “Detection of mercury(II) by quantum dot/DNA/gold nanoparticle ensemble based nanosensor via nanometal surface energy transfer,” Anal. Chem. 83(18), 7061–7065 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

L. Bakueva, S. Musikhin, M. A. Hines, T. W. Chang, M. Tzolov, G. D. Scholes, and E. H. Sargent, “Size-tunable infrared (1000-1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer,” Appl. Phys. Lett. 82(17), 2895–2897 (2003).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 969(11), 111112 (2010).
[Crossref]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97(20), 203106 (2010).
[Crossref]

Chem. Mater. (1)

D. C. Neo, C. Cheng, S. D. Stranks, S. M. Fairclough, J. S. Kim, A. I. Kirkland, and A. A. Watt, “Influence of shell thickness and surface passivation on PbS/CdS core/shell colloidal quantum dot solar cells,” Chem. Mater. 26(13), 4004–4013 (2014).
[Crossref]

Chin. Opt. Lett. (1)

IEEE J. Quantum Electron. (1)

M. L. Dennis and I. N. Duling, “Experimental study of sideband generation in femtosecond fiber laser,” IEEE J. Quantum Electron. 30(6), 1469–1477 (1994).
[Crossref]

IEEE J. Sel. Top. Quant. (1)

D. Mao, X. Q. Cui, X. T. Gan, M. K. Li, W. D. Zhang, H. Lu, and J. L. Zhao, “Passively Q-switched and mode-locked fiber laser based on a ReS2 saturable absorber,” IEEE J. Sel. Top. Quant. 24(3), 1100406 (2018).

IEEE Photonics J. (1)

J. Li, Q. Y. Chen, K. D. Niu, R. Y. Sun, and H. N. Zhang, “Passively Mode-Locked Ytterbium-Doped Fiber Laser Based on SnS2 as Saturable Absorber,” IEEE Photonics J. 9(6), 1–7 (2017).
[Crossref]

J. Mater. Chem. A Mater. Energy Sustain. (1)

M. J. Speirs, D. M. Balazs, H. H. Fang, L. H. Lai, L. Protesescu, M. V. Kovalenko, and M. A. Loi, “Origin of the increased open circuit voltage in PbS-CdS core-shell quantum dot solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 3(4), 1450–1457 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (2)

E. G. Durmusoglu, M. M. Yildizhan, M. A. Gulgun, and H. Yagci Acar, “Production of Small, Stable PbS/CdS Quantum Dots via Room Temperature Cation Exchange Followed by a Low Temperature Annealing Processes,” J. Phys. Chem. C 121(45), 25520–25530 (2017).
[Crossref]

M. Shalom, S. Dor, S. Ruhle, L. Grinis, and A. Zaban, “Core/CdS quantum dot/shell mesoporous solar cells with improved stability and efficiency using an amorphous TiO2 coating,” J. Phys. Chem. C 113(9), 3895–3898 (2009).
[Crossref]

Laser Phys. Lett. (2)

Y. H. Lin, C. Y. Yang, S. F. Lin, W. H. Tseng, Q. Bao, C. I. Wu, and G. R. Lin, “Soliton compression of the erbium-doped fiber laser weakly started mode-locking by nanoscale p-type Bi2Te3 topological insulator particles,” Laser Phys. Lett. 11(5), 055107 (2014).
[Crossref]

J. Sotor, G. Sobon, W. Macherzynski, and K. M. Abramski, “Harmonically mode-locked Er-doped fiber laser based on a Sb2Te3 topological insulator saturable absorber,” Laser Phys. Lett. 11(5), 055102 (2014).
[Crossref]

Nano Lett. (1)

R. J. Ellingson, M. C. Beard, J. C. Johnson, P. Yu, O. I. Micic, A. J. Nozik, A. Shabaev, and A. L. Efros, “Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots,” Nano Lett. 5(5), 865–871 (2005).
[Crossref] [PubMed]

Nanotechnology (1)

S. Huang, Q. Zhang, X. Huang, X. Guo, M. Deng, D. Li, Y. Luo, Q. Shen, T. Toyoda, and Q. Meng, “Fibrous CdS/CdSe quantum dot co-sensitized solar cells based on ordered TiO2 nanotube arrays,” Nanotechnology 21(37), 375201 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Opt. Express (7)

H. Liu, X. W. Zheng, M. Liu, N. Zhao, A. P. Luo, Z. C. Luo, W. C. Xu, H. Zhang, C. J. Zhao, and S. C. Wen, “Femtosecond pulse generation from a topological insulator mode-locked fiber laser,” Opt. Express 22(6), 6868–6873 (2014).
[Crossref] [PubMed]

C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3 as a mode locker,” Opt. Express 20(25), 27888–27895 (2012).
[Crossref] [PubMed]

Z. C. Luo, M. Liu, Z. N. Guo, X. F. Jiang, A. P. Luo, C. J. Zhao, X. F. Yu, W. C. Xu, and H. Zhang, “Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser,” Opt. Express 23(15), 20030–20039 (2015).
[Crossref] [PubMed]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
[Crossref] [PubMed]

H. Xia, H. Li, C. Lan, C. Li, X. Zhang, S. Zhang, and Y. Liu, “Ultrafast erbium-doped fiber laser mode-locked by a CVD-grown molybdenum disulfide (MoS2) saturable absorber,” Opt. Express 22(14), 17341–17348 (2014).
[Crossref] [PubMed]

Y. W. Lee, C. M. Chen, C. W. Huang, S. K. Chen, and J. R. Jiang, “Passively Q-switched Er3+-doped fiber lasers using colloidal PbS quantum dot saturable absorber,” Opt. Express 24(10), 10675–10681 (2016).
[Crossref] [PubMed]

K. Wei, S. Fan, Q. Chen, and X. Lai, “Passively mode-locked Yb fiber laser with PbSe colloidal quantum dots as saturable absorber,” Opt. Express 25(21), 24901–24906 (2017).
[Crossref] [PubMed]

Opt. Lett. (2)

Opt. Mater. Express (3)

Photon. Res. (1)

Sci. Rep. (3)

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5(1), 7965 (2015).
[Crossref] [PubMed]

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5(1), 12587 (2015).
[Crossref] [PubMed]

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6(1), 23583 (2016).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

J. J. Qiu, B. B. Weng, W. Y. Ge, L. L. McDowell, Z. H. Cai, and Z. S. Shi, “A broadband Pb-chalcogenide/CdS solar cells with tandem quantum-dots embedded in the bulk matrix (QDiM) absorption layers by using chemical bath deposition,” Sol. Energy Mater. Sol. Cells 172, 117–123 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 The TEM image of the PbS/CdS core/shell quantum dots. Insert of Fig. 1. The corresponding size distribution histogram.
Fig. 2
Fig. 2 The HRTEM images of the PbS/CdS core/shell quantum dots.
Fig. 3
Fig. 3 The Raman spectrum of the PbS/CdS core/shell quantum dots.
Fig. 4
Fig. 4 The X-ray Diffraction of the PbS/CdS quantum dots
Fig. 5
Fig. 5 (a). The absorption spectra of the PbS/CdS core/shell quantum dots. 4(b) The photoluminescence spectra of the PbS/CdS core/shell quantum dots.
Fig. 6
Fig. 6 (a) The photo of the PbS/CdS quantum dots sample. 6(b) The photo of the mode-locker.
Fig. 7
Fig. 7 The test setup and nonlinear absorption properties of the SA.
Fig. 8
Fig. 8 The experimental setup of the mode-locked fiber laser.
Fig. 9
Fig. 9 (a). The emission spectrum. (b) The average output powers versus the pump powers.
Fig. 10
Fig. 10 (a). Typical pulse trains of the mode-locked laser under different bandwidth. (b) The auto-correlation trace.
Fig. 11
Fig. 11 The RF spectrum of the mode-locked laser located at 3.302 MHz. Insert of Fig. 11. The RF spectrum with a bandwidth of 1 GHz.
Fig. 12
Fig. 12 The relationships between the central wavelengths, 3 dB spectrum widths and the time.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E 0 =0.41+ (0.0252 d 2 +0.283d) 1
E 0 = hc λ

Metrics