Abstract

A Holmium thin-disk laser based on a 3 at.% Ho:KY(WO4)2 / KY(WO4)2 epitaxy and single-bounce pumping by a 1960 nm Tm-fiber laser is passively Q-switched with a GaSb-based quantum-well semiconductor saturable absorber mirror. It generates an average output power of 551 mW at 2056 nm with a slope efficiency of 44% (with respect to the absorbed pump power). The best pulse characteristics (energy and duration) are 4.1 μJ / 201 ns at a repetition rate of 135 kHz and the conversion efficiency with respect to the continuous-wave regime is as high as 93%.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Thermo-optic effects in Ho:KY(WO4)2 thin-disk lasers

Xavier Mateos, Pavel Loiko, Samir Lamrini, Karsten Scholle, Peter Fuhrberg, Sergei Vatnik, Ivan Vedin, Magdalena Aguiló, Francesc Díaz, Uwe Griebner, and Valentin Petrov
Opt. Mater. Express 8(3) 684-690 (2018)

Holmium thin-disk laser based on Ho:KY(WO4)2/KY(WO4)2 epitaxy with 60% slope efficiency and simplified pump geometry

Xavier Mateos, Samir Lamrini, Karsten Scholle, Peter Fuhrberg, Sergei Vatnik, Pavel Loiko, Ivan Vedin, Magdalena Aguiló, Francesc Díaz, Uwe Griebner, and Valentin Petrov
Opt. Lett. 42(17) 3490-3493 (2017)

Tm:KY1-x-yGdxLuy(WO4)2 planar waveguide laser passively Q-switched by single-walled carbon nanotubes

Esrom Kifle, Xavier Mateos, Pavel Loiko, Sun Yung Choi, Ji Eun Bae, Fabian Rotermund, Magdalena Aguiló, Francesc Díaz, Uwe Griebner, and Valentin Petrov
Opt. Express 26(4) 4961-4966 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
    [Crossref]
  2. A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
    [Crossref]
  3. C. J. Saraceno, F. Emaury, C. Schriber, A. Diebold, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Toward millijoule-level high-power ultrafast thin-disk oscillators,” IEEE J. Sel. Top. Quantum Electron. 21(1), 106–123 (2015).
    [Crossref]
  4. R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Broadly tunable high-power Yb:Lu2O3 thin disk laser with 80% slope efficiency,” Opt. Express 15(11), 7075–7082 (2007).
    [Crossref] [PubMed]
  5. T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
    [Crossref]
  6. O. Pronin, J. Brons, C. Grasse, V. Pervak, G. Boehm, M.-C. Amann, V. L. Kalashnikov, A. Apolonski, and F. Krausz, “High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator,” Opt. Lett. 36(24), 4746–4748 (2011).
    [Crossref] [PubMed]
  7. F. Brunner, T. Südmeyer, E. Innerhofer, F. Morier-Genoud, R. Paschotta, V. E. Kisel, V. G. Shcherbitsky, N. V. Kuleshov, J. Gao, K. Contag, A. Giesen, and U. Keller, “240-fs pulses with 22-W average power from a mode-locked thin-disk Yb:KY(WO4)2 laser,” Opt. Lett. 27(13), 1162–1164 (2002).
    [Crossref] [PubMed]
  8. E. Innerhofer, T. Südmeyer, F. Brunner, R. Häring, A. Aschwanden, R. Paschotta, C. Hönninger, M. Kumkar, and U. Keller, “60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser,” Opt. Lett. 28(5), 367–369 (2003).
    [Crossref] [PubMed]
  9. S. Ricaud, A. Jaffres, K. Wentsch, A. Suganuma, B. Viana, P. Loiseau, B. Weichelt, M. Abdou-Ahmed, A. Voss, T. Graf, D. Rytz, C. Hönninger, E. Mottay, P. Georges, and F. Druon, “Femtosecond Yb:CaGdAlO4 thin-disk oscillator,” Opt. Lett. 37(19), 3984–3986 (2012).
    [Crossref] [PubMed]
  10. J. Speiser, G. Renz, and A. Giesen, “Thin disk laser in the 2 µm wavelength range,” Proc. SPIE 8547, 85470E (2012).
    [Crossref]
  11. M. Schellhorn, “Performance of a Ho:YAG thin-disc laser pumped by a diode-pumped 1.9 μm thulium laser,” Appl. Phys. B 85(4), 549–552 (2006).
    [Crossref]
  12. D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, “Efficient Ho:YAG laser pumped by a cladding-pumped tunable Tm:silica-fibre laser,” Appl. Phys. B 79(5), 559–561 (2004).
    [Crossref]
  13. Y. Wang, G. Xie, X. Xu, J. Di, Z. Qin, S. Suomalainen, M. Guina, A. Härkönen, A. Agnesi, U. Griebner, X. Mateos, P. Loiko, and V. Petrov, “SESAM mode-locked Tm:CALGO laser at 2 µm,” Opt. Mater. Express 6(1), 131–136 (2016).
    [Crossref]
  14. V. Aleksandrov, A. Gluth, V. Petrov, I. Buchvarov, G. Steinmeyer, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, X. Mateos, F. Díaz, and U. Griebner, “Mode-locked Tm,Ho:KLu(WO4)2 laser at 2060 nm using InGaSb-based SESAMs,” Opt. Express 23(4), 4614–4619 (2015).
    [Crossref] [PubMed]
  15. A. Gluth, Y. Wang, V. Petrov, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, G. Steinmeyer, X. Mateos, S. Veronesi, M. Tonelli, J. Li, Y. Pan, J. Guo, and U. Griebner, “GaSb-based SESAM mode-locked Tm:YAG ceramic laser at 2 µm,” Opt. Express 23(2), 1361–1369 (2015).
    [Crossref] [PubMed]
  16. Y. Wang, R. Lan, X. Mateos, J. Li, C. Li, S. Suomalainen, A. Härkönen, M. Guina, V. Petrov, and U. Griebner, “Thulium doped LuAG ceramics for passively mode locked lasers,” Opt. Express 25(6), 7084–7091 (2017).
    [Crossref] [PubMed]
  17. Y. Wang, R. Lan, X. Mateos, J. Li, C. Hu, C. Li, S. Suomalainen, A. Härkönen, M. Guina, V. Petrov, and U. Griebner, “Broadly tunable mode-locked Ho:YAG ceramic laser around 2.1 µm,” Opt. Express 24(16), 18003–18012 (2016).
    [Crossref] [PubMed]
  18. J. Paajaste, S. Suomalainen, A. Härkönen, U. Griebner, G. Steinmeyer, and M. Guina, “Absorption recovery dynamics in 2 μm GaSb-based SESAMs,” J. Phys. D Appl. Phys. 47(6), 065102 (2014).
    [Crossref]
  19. J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, G. Steinmeyer, and M. Guina, “GaSb-based semiconductor saturable absorber mirrors for mode-locking 2 μm semiconductor disk lasers,” Phys. Status Solidi 9(2), 294–297 (2012).
    [Crossref]
  20. V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguilo, R. Sole, J. Liu, U. Griebner, and F. Diaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
    [Crossref]
  21. V. Jambunathan, X. Mateos, M. C. Pujol, J. J. Carvajal, F. Díaz, M. Aguiló, U. Griebner, and V. Petrov, “Continuous-wave laser generation at ~2.1 µm in Ho:KRE(WO4)2 (RE = Y, Gd, Lu) crystals: a comparative study,” Opt. Express 19(25), 25279–25289 (2011).
    [Crossref] [PubMed]
  22. V. Jambunathan, X. Mateos, P. A. Loiko, J. M. Serres, U. Griebner, V. Petrov, K. V. Yumashev, M. Aguiló, and F. Díaz, “Growth, spectroscopy and laser operation of Ho:KY(WO4)2,” J. Lumin. 179, 50–58 (2016).
    [Crossref]
  23. V. Jambunathan, X. Mateos, M. C. Pujol, J. J. Carvajal, C. Zaldo, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Crystal growth, optical spectroscopy, and continuous-wave laser operation of Ho:KLu(WO4)2 crystals,” Appl. Phys. B 116(2), 455–466 (2014).
    [Crossref]
  24. S. Vatnik, I. Vedin, M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, V. Petrov, and U. Griebner, “Efficient thin-disk Tm-laser operation based on Tm:KLu(WO4)2/KLu(WO4)2 epitaxies,” Opt. Lett. 37(3), 356–358 (2012).
    [Crossref] [PubMed]
  25. X. Mateos, S. Lamrini, K. Scholle, P. Fuhrberg, S. Vatnik, P. Loiko, I. Vedin, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Holmium thin-disk laser based on Ho:KY(WO4)2/KY(WO4)2 epitaxy with 60% slope efficiency and simplified pump geometry,” Opt. Lett. 42(17), 3490–3493 (2017).
    [Crossref] [PubMed]
  26. R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov, “Passive Q-switching of microchip lasers based on Ho:YAG ceramics,” Appl. Opt. 55(18), 4877–4887 (2016).
    [Crossref] [PubMed]

2017 (2)

2016 (4)

2015 (3)

2014 (2)

J. Paajaste, S. Suomalainen, A. Härkönen, U. Griebner, G. Steinmeyer, and M. Guina, “Absorption recovery dynamics in 2 μm GaSb-based SESAMs,” J. Phys. D Appl. Phys. 47(6), 065102 (2014).
[Crossref]

V. Jambunathan, X. Mateos, M. C. Pujol, J. J. Carvajal, C. Zaldo, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Crystal growth, optical spectroscopy, and continuous-wave laser operation of Ho:KLu(WO4)2 crystals,” Appl. Phys. B 116(2), 455–466 (2014).
[Crossref]

2012 (4)

2011 (2)

2009 (1)

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[Crossref]

2007 (3)

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguilo, R. Sole, J. Liu, U. Griebner, and F. Diaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Broadly tunable high-power Yb:Lu2O3 thin disk laser with 80% slope efficiency,” Opt. Express 15(11), 7075–7082 (2007).
[Crossref] [PubMed]

2006 (1)

M. Schellhorn, “Performance of a Ho:YAG thin-disc laser pumped by a diode-pumped 1.9 μm thulium laser,” Appl. Phys. B 85(4), 549–552 (2006).
[Crossref]

2004 (1)

D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, “Efficient Ho:YAG laser pumped by a cladding-pumped tunable Tm:silica-fibre laser,” Appl. Phys. B 79(5), 559–561 (2004).
[Crossref]

2003 (1)

2002 (1)

1994 (1)

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Abdolvand, A.

D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, “Efficient Ho:YAG laser pumped by a cladding-pumped tunable Tm:silica-fibre laser,” Appl. Phys. B 79(5), 559–561 (2004).
[Crossref]

Abdou-Ahmed, M.

Agnesi, A.

Aguilo, M.

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguilo, R. Sole, J. Liu, U. Griebner, and F. Diaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Aguiló, M.

Aleksandrov, V.

Amann, M.-C.

Apolonski, A.

Aschwanden, A.

Baer, C. R. E.

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[Crossref]

Boehm, G.

Brauch, U.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Brons, J.

Brunner, F.

Buchvarov, I.

Carvajal, J. J.

Choi, S. Y.

Clarkson, W. A.

D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, “Efficient Ho:YAG laser pumped by a cladding-pumped tunable Tm:silica-fibre laser,” Appl. Phys. B 79(5), 559–561 (2004).
[Crossref]

Contag, K.

Cooper, L. J.

D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, “Efficient Ho:YAG laser pumped by a cladding-pumped tunable Tm:silica-fibre laser,” Appl. Phys. B 79(5), 559–561 (2004).
[Crossref]

Di, J.

Diaz, F.

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguilo, R. Sole, J. Liu, U. Griebner, and F. Diaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Díaz, F.

X. Mateos, S. Lamrini, K. Scholle, P. Fuhrberg, S. Vatnik, P. Loiko, I. Vedin, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Holmium thin-disk laser based on Ho:KY(WO4)2/KY(WO4)2 epitaxy with 60% slope efficiency and simplified pump geometry,” Opt. Lett. 42(17), 3490–3493 (2017).
[Crossref] [PubMed]

V. Jambunathan, X. Mateos, P. A. Loiko, J. M. Serres, U. Griebner, V. Petrov, K. V. Yumashev, M. Aguiló, and F. Díaz, “Growth, spectroscopy and laser operation of Ho:KY(WO4)2,” J. Lumin. 179, 50–58 (2016).
[Crossref]

V. Aleksandrov, A. Gluth, V. Petrov, I. Buchvarov, G. Steinmeyer, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, X. Mateos, F. Díaz, and U. Griebner, “Mode-locked Tm,Ho:KLu(WO4)2 laser at 2060 nm using InGaSb-based SESAMs,” Opt. Express 23(4), 4614–4619 (2015).
[Crossref] [PubMed]

V. Jambunathan, X. Mateos, M. C. Pujol, J. J. Carvajal, C. Zaldo, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Crystal growth, optical spectroscopy, and continuous-wave laser operation of Ho:KLu(WO4)2 crystals,” Appl. Phys. B 116(2), 455–466 (2014).
[Crossref]

S. Vatnik, I. Vedin, M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, V. Petrov, and U. Griebner, “Efficient thin-disk Tm-laser operation based on Tm:KLu(WO4)2/KLu(WO4)2 epitaxies,” Opt. Lett. 37(3), 356–358 (2012).
[Crossref] [PubMed]

V. Jambunathan, X. Mateos, M. C. Pujol, J. J. Carvajal, F. Díaz, M. Aguiló, U. Griebner, and V. Petrov, “Continuous-wave laser generation at ~2.1 µm in Ho:KRE(WO4)2 (RE = Y, Gd, Lu) crystals: a comparative study,” Opt. Express 19(25), 25279–25289 (2011).
[Crossref] [PubMed]

Diebold, A.

C. J. Saraceno, F. Emaury, C. Schriber, A. Diebold, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Toward millijoule-level high-power ultrafast thin-disk oscillators,” IEEE J. Sel. Top. Quantum Electron. 21(1), 106–123 (2015).
[Crossref]

Druon, F.

Emaury, F.

C. J. Saraceno, F. Emaury, C. Schriber, A. Diebold, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Toward millijoule-level high-power ultrafast thin-disk oscillators,” IEEE J. Sel. Top. Quantum Electron. 21(1), 106–123 (2015).
[Crossref]

Fuhrberg, P.

Gao, J.

Georges, P.

Giesen, A.

J. Speiser, G. Renz, and A. Giesen, “Thin disk laser in the 2 µm wavelength range,” Proc. SPIE 8547, 85470E (2012).
[Crossref]

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

F. Brunner, T. Südmeyer, E. Innerhofer, F. Morier-Genoud, R. Paschotta, V. E. Kisel, V. G. Shcherbitsky, N. V. Kuleshov, J. Gao, K. Contag, A. Giesen, and U. Keller, “240-fs pulses with 22-W average power from a mode-locked thin-disk Yb:KY(WO4)2 laser,” Opt. Lett. 27(13), 1162–1164 (2002).
[Crossref] [PubMed]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Gluth, A.

Golling, M.

C. J. Saraceno, F. Emaury, C. Schriber, A. Diebold, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Toward millijoule-level high-power ultrafast thin-disk oscillators,” IEEE J. Sel. Top. Quantum Electron. 21(1), 106–123 (2015).
[Crossref]

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[Crossref]

Graf, T.

Grasse, C.

Griebner, U.

Y. Wang, R. Lan, X. Mateos, J. Li, C. Li, S. Suomalainen, A. Härkönen, M. Guina, V. Petrov, and U. Griebner, “Thulium doped LuAG ceramics for passively mode locked lasers,” Opt. Express 25(6), 7084–7091 (2017).
[Crossref] [PubMed]

X. Mateos, S. Lamrini, K. Scholle, P. Fuhrberg, S. Vatnik, P. Loiko, I. Vedin, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Holmium thin-disk laser based on Ho:KY(WO4)2/KY(WO4)2 epitaxy with 60% slope efficiency and simplified pump geometry,” Opt. Lett. 42(17), 3490–3493 (2017).
[Crossref] [PubMed]

Y. Wang, G. Xie, X. Xu, J. Di, Z. Qin, S. Suomalainen, M. Guina, A. Härkönen, A. Agnesi, U. Griebner, X. Mateos, P. Loiko, and V. Petrov, “SESAM mode-locked Tm:CALGO laser at 2 µm,” Opt. Mater. Express 6(1), 131–136 (2016).
[Crossref]

R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov, “Passive Q-switching of microchip lasers based on Ho:YAG ceramics,” Appl. Opt. 55(18), 4877–4887 (2016).
[Crossref] [PubMed]

Y. Wang, R. Lan, X. Mateos, J. Li, C. Hu, C. Li, S. Suomalainen, A. Härkönen, M. Guina, V. Petrov, and U. Griebner, “Broadly tunable mode-locked Ho:YAG ceramic laser around 2.1 µm,” Opt. Express 24(16), 18003–18012 (2016).
[Crossref] [PubMed]

V. Jambunathan, X. Mateos, P. A. Loiko, J. M. Serres, U. Griebner, V. Petrov, K. V. Yumashev, M. Aguiló, and F. Díaz, “Growth, spectroscopy and laser operation of Ho:KY(WO4)2,” J. Lumin. 179, 50–58 (2016).
[Crossref]

V. Aleksandrov, A. Gluth, V. Petrov, I. Buchvarov, G. Steinmeyer, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, X. Mateos, F. Díaz, and U. Griebner, “Mode-locked Tm,Ho:KLu(WO4)2 laser at 2060 nm using InGaSb-based SESAMs,” Opt. Express 23(4), 4614–4619 (2015).
[Crossref] [PubMed]

A. Gluth, Y. Wang, V. Petrov, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, G. Steinmeyer, X. Mateos, S. Veronesi, M. Tonelli, J. Li, Y. Pan, J. Guo, and U. Griebner, “GaSb-based SESAM mode-locked Tm:YAG ceramic laser at 2 µm,” Opt. Express 23(2), 1361–1369 (2015).
[Crossref] [PubMed]

V. Jambunathan, X. Mateos, M. C. Pujol, J. J. Carvajal, C. Zaldo, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Crystal growth, optical spectroscopy, and continuous-wave laser operation of Ho:KLu(WO4)2 crystals,” Appl. Phys. B 116(2), 455–466 (2014).
[Crossref]

J. Paajaste, S. Suomalainen, A. Härkönen, U. Griebner, G. Steinmeyer, and M. Guina, “Absorption recovery dynamics in 2 μm GaSb-based SESAMs,” J. Phys. D Appl. Phys. 47(6), 065102 (2014).
[Crossref]

S. Vatnik, I. Vedin, M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, V. Petrov, and U. Griebner, “Efficient thin-disk Tm-laser operation based on Tm:KLu(WO4)2/KLu(WO4)2 epitaxies,” Opt. Lett. 37(3), 356–358 (2012).
[Crossref] [PubMed]

V. Jambunathan, X. Mateos, M. C. Pujol, J. J. Carvajal, F. Díaz, M. Aguiló, U. Griebner, and V. Petrov, “Continuous-wave laser generation at ~2.1 µm in Ho:KRE(WO4)2 (RE = Y, Gd, Lu) crystals: a comparative study,” Opt. Express 19(25), 25279–25289 (2011).
[Crossref] [PubMed]

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguilo, R. Sole, J. Liu, U. Griebner, and F. Diaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Guina, M.

Y. Wang, R. Lan, X. Mateos, J. Li, C. Li, S. Suomalainen, A. Härkönen, M. Guina, V. Petrov, and U. Griebner, “Thulium doped LuAG ceramics for passively mode locked lasers,” Opt. Express 25(6), 7084–7091 (2017).
[Crossref] [PubMed]

Y. Wang, R. Lan, X. Mateos, J. Li, C. Hu, C. Li, S. Suomalainen, A. Härkönen, M. Guina, V. Petrov, and U. Griebner, “Broadly tunable mode-locked Ho:YAG ceramic laser around 2.1 µm,” Opt. Express 24(16), 18003–18012 (2016).
[Crossref] [PubMed]

Y. Wang, G. Xie, X. Xu, J. Di, Z. Qin, S. Suomalainen, M. Guina, A. Härkönen, A. Agnesi, U. Griebner, X. Mateos, P. Loiko, and V. Petrov, “SESAM mode-locked Tm:CALGO laser at 2 µm,” Opt. Mater. Express 6(1), 131–136 (2016).
[Crossref]

V. Aleksandrov, A. Gluth, V. Petrov, I. Buchvarov, G. Steinmeyer, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, X. Mateos, F. Díaz, and U. Griebner, “Mode-locked Tm,Ho:KLu(WO4)2 laser at 2060 nm using InGaSb-based SESAMs,” Opt. Express 23(4), 4614–4619 (2015).
[Crossref] [PubMed]

A. Gluth, Y. Wang, V. Petrov, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, G. Steinmeyer, X. Mateos, S. Veronesi, M. Tonelli, J. Li, Y. Pan, J. Guo, and U. Griebner, “GaSb-based SESAM mode-locked Tm:YAG ceramic laser at 2 µm,” Opt. Express 23(2), 1361–1369 (2015).
[Crossref] [PubMed]

J. Paajaste, S. Suomalainen, A. Härkönen, U. Griebner, G. Steinmeyer, and M. Guina, “Absorption recovery dynamics in 2 μm GaSb-based SESAMs,” J. Phys. D Appl. Phys. 47(6), 065102 (2014).
[Crossref]

J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, G. Steinmeyer, and M. Guina, “GaSb-based semiconductor saturable absorber mirrors for mode-locking 2 μm semiconductor disk lasers,” Phys. Status Solidi 9(2), 294–297 (2012).
[Crossref]

Guo, J.

Häring, R.

Härkönen, A.

Y. Wang, R. Lan, X. Mateos, J. Li, C. Li, S. Suomalainen, A. Härkönen, M. Guina, V. Petrov, and U. Griebner, “Thulium doped LuAG ceramics for passively mode locked lasers,” Opt. Express 25(6), 7084–7091 (2017).
[Crossref] [PubMed]

Y. Wang, G. Xie, X. Xu, J. Di, Z. Qin, S. Suomalainen, M. Guina, A. Härkönen, A. Agnesi, U. Griebner, X. Mateos, P. Loiko, and V. Petrov, “SESAM mode-locked Tm:CALGO laser at 2 µm,” Opt. Mater. Express 6(1), 131–136 (2016).
[Crossref]

Y. Wang, R. Lan, X. Mateos, J. Li, C. Hu, C. Li, S. Suomalainen, A. Härkönen, M. Guina, V. Petrov, and U. Griebner, “Broadly tunable mode-locked Ho:YAG ceramic laser around 2.1 µm,” Opt. Express 24(16), 18003–18012 (2016).
[Crossref] [PubMed]

V. Aleksandrov, A. Gluth, V. Petrov, I. Buchvarov, G. Steinmeyer, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, X. Mateos, F. Díaz, and U. Griebner, “Mode-locked Tm,Ho:KLu(WO4)2 laser at 2060 nm using InGaSb-based SESAMs,” Opt. Express 23(4), 4614–4619 (2015).
[Crossref] [PubMed]

A. Gluth, Y. Wang, V. Petrov, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, G. Steinmeyer, X. Mateos, S. Veronesi, M. Tonelli, J. Li, Y. Pan, J. Guo, and U. Griebner, “GaSb-based SESAM mode-locked Tm:YAG ceramic laser at 2 µm,” Opt. Express 23(2), 1361–1369 (2015).
[Crossref] [PubMed]

J. Paajaste, S. Suomalainen, A. Härkönen, U. Griebner, G. Steinmeyer, and M. Guina, “Absorption recovery dynamics in 2 μm GaSb-based SESAMs,” J. Phys. D Appl. Phys. 47(6), 065102 (2014).
[Crossref]

J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, G. Steinmeyer, and M. Guina, “GaSb-based semiconductor saturable absorber mirrors for mode-locking 2 μm semiconductor disk lasers,” Phys. Status Solidi 9(2), 294–297 (2012).
[Crossref]

Heckl, O. H.

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[Crossref]

Hoffmann, M.

C. J. Saraceno, F. Emaury, C. Schriber, A. Diebold, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Toward millijoule-level high-power ultrafast thin-disk oscillators,” IEEE J. Sel. Top. Quantum Electron. 21(1), 106–123 (2015).
[Crossref]

Hönninger, C.

Hu, C.

Huber, G.

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[Crossref]

R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Broadly tunable high-power Yb:Lu2O3 thin disk laser with 80% slope efficiency,” Opt. Express 15(11), 7075–7082 (2007).
[Crossref] [PubMed]

Hügel, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Innerhofer, E.

Jaffres, A.

Jambunathan, V.

V. Jambunathan, X. Mateos, P. A. Loiko, J. M. Serres, U. Griebner, V. Petrov, K. V. Yumashev, M. Aguiló, and F. Díaz, “Growth, spectroscopy and laser operation of Ho:KY(WO4)2,” J. Lumin. 179, 50–58 (2016).
[Crossref]

V. Jambunathan, X. Mateos, M. C. Pujol, J. J. Carvajal, C. Zaldo, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Crystal growth, optical spectroscopy, and continuous-wave laser operation of Ho:KLu(WO4)2 crystals,” Appl. Phys. B 116(2), 455–466 (2014).
[Crossref]

V. Jambunathan, X. Mateos, M. C. Pujol, J. J. Carvajal, F. Díaz, M. Aguiló, U. Griebner, and V. Petrov, “Continuous-wave laser generation at ~2.1 µm in Ho:KRE(WO4)2 (RE = Y, Gd, Lu) crystals: a comparative study,” Opt. Express 19(25), 25279–25289 (2011).
[Crossref] [PubMed]

Kalashnikov, V. L.

Keller, U.

C. J. Saraceno, F. Emaury, C. Schriber, A. Diebold, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Toward millijoule-level high-power ultrafast thin-disk oscillators,” IEEE J. Sel. Top. Quantum Electron. 21(1), 106–123 (2015).
[Crossref]

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[Crossref]

E. Innerhofer, T. Südmeyer, F. Brunner, R. Häring, A. Aschwanden, R. Paschotta, C. Hönninger, M. Kumkar, and U. Keller, “60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser,” Opt. Lett. 28(5), 367–369 (2003).
[Crossref] [PubMed]

F. Brunner, T. Südmeyer, E. Innerhofer, F. Morier-Genoud, R. Paschotta, V. E. Kisel, V. G. Shcherbitsky, N. V. Kuleshov, J. Gao, K. Contag, A. Giesen, and U. Keller, “240-fs pulses with 22-W average power from a mode-locked thin-disk Yb:KY(WO4)2 laser,” Opt. Lett. 27(13), 1162–1164 (2002).
[Crossref] [PubMed]

Kim, M. H.

Kisel, V. E.

Koskinen, R.

J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, G. Steinmeyer, and M. Guina, “GaSb-based semiconductor saturable absorber mirrors for mode-locking 2 μm semiconductor disk lasers,” Phys. Status Solidi 9(2), 294–297 (2012).
[Crossref]

Kränkel, C.

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[Crossref]

R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Broadly tunable high-power Yb:Lu2O3 thin disk laser with 80% slope efficiency,” Opt. Express 15(11), 7075–7082 (2007).
[Crossref] [PubMed]

Krausz, F.

Kuleshov, N. V.

Kumkar, M.

Lamrini, S.

Lan, R.

Li, C.

Li, J.

Liu, J.

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguilo, R. Sole, J. Liu, U. Griebner, and F. Diaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Loiko, P.

Loiko, P. A.

V. Jambunathan, X. Mateos, P. A. Loiko, J. M. Serres, U. Griebner, V. Petrov, K. V. Yumashev, M. Aguiló, and F. Díaz, “Growth, spectroscopy and laser operation of Ho:KY(WO4)2,” J. Lumin. 179, 50–58 (2016).
[Crossref]

Loiseau, P.

Mateos, X.

Y. Wang, R. Lan, X. Mateos, J. Li, C. Li, S. Suomalainen, A. Härkönen, M. Guina, V. Petrov, and U. Griebner, “Thulium doped LuAG ceramics for passively mode locked lasers,” Opt. Express 25(6), 7084–7091 (2017).
[Crossref] [PubMed]

X. Mateos, S. Lamrini, K. Scholle, P. Fuhrberg, S. Vatnik, P. Loiko, I. Vedin, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Holmium thin-disk laser based on Ho:KY(WO4)2/KY(WO4)2 epitaxy with 60% slope efficiency and simplified pump geometry,” Opt. Lett. 42(17), 3490–3493 (2017).
[Crossref] [PubMed]

R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov, “Passive Q-switching of microchip lasers based on Ho:YAG ceramics,” Appl. Opt. 55(18), 4877–4887 (2016).
[Crossref] [PubMed]

Y. Wang, R. Lan, X. Mateos, J. Li, C. Hu, C. Li, S. Suomalainen, A. Härkönen, M. Guina, V. Petrov, and U. Griebner, “Broadly tunable mode-locked Ho:YAG ceramic laser around 2.1 µm,” Opt. Express 24(16), 18003–18012 (2016).
[Crossref] [PubMed]

Y. Wang, G. Xie, X. Xu, J. Di, Z. Qin, S. Suomalainen, M. Guina, A. Härkönen, A. Agnesi, U. Griebner, X. Mateos, P. Loiko, and V. Petrov, “SESAM mode-locked Tm:CALGO laser at 2 µm,” Opt. Mater. Express 6(1), 131–136 (2016).
[Crossref]

V. Jambunathan, X. Mateos, P. A. Loiko, J. M. Serres, U. Griebner, V. Petrov, K. V. Yumashev, M. Aguiló, and F. Díaz, “Growth, spectroscopy and laser operation of Ho:KY(WO4)2,” J. Lumin. 179, 50–58 (2016).
[Crossref]

V. Aleksandrov, A. Gluth, V. Petrov, I. Buchvarov, G. Steinmeyer, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, X. Mateos, F. Díaz, and U. Griebner, “Mode-locked Tm,Ho:KLu(WO4)2 laser at 2060 nm using InGaSb-based SESAMs,” Opt. Express 23(4), 4614–4619 (2015).
[Crossref] [PubMed]

A. Gluth, Y. Wang, V. Petrov, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, G. Steinmeyer, X. Mateos, S. Veronesi, M. Tonelli, J. Li, Y. Pan, J. Guo, and U. Griebner, “GaSb-based SESAM mode-locked Tm:YAG ceramic laser at 2 µm,” Opt. Express 23(2), 1361–1369 (2015).
[Crossref] [PubMed]

V. Jambunathan, X. Mateos, M. C. Pujol, J. J. Carvajal, C. Zaldo, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Crystal growth, optical spectroscopy, and continuous-wave laser operation of Ho:KLu(WO4)2 crystals,” Appl. Phys. B 116(2), 455–466 (2014).
[Crossref]

S. Vatnik, I. Vedin, M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, V. Petrov, and U. Griebner, “Efficient thin-disk Tm-laser operation based on Tm:KLu(WO4)2/KLu(WO4)2 epitaxies,” Opt. Lett. 37(3), 356–358 (2012).
[Crossref] [PubMed]

V. Jambunathan, X. Mateos, M. C. Pujol, J. J. Carvajal, F. Díaz, M. Aguiló, U. Griebner, and V. Petrov, “Continuous-wave laser generation at ~2.1 µm in Ho:KRE(WO4)2 (RE = Y, Gd, Lu) crystals: a comparative study,” Opt. Express 19(25), 25279–25289 (2011).
[Crossref] [PubMed]

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguilo, R. Sole, J. Liu, U. Griebner, and F. Diaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Morier-Genoud, F.

Mottay, E.

Opower, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Paajaste, J.

A. Gluth, Y. Wang, V. Petrov, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, G. Steinmeyer, X. Mateos, S. Veronesi, M. Tonelli, J. Li, Y. Pan, J. Guo, and U. Griebner, “GaSb-based SESAM mode-locked Tm:YAG ceramic laser at 2 µm,” Opt. Express 23(2), 1361–1369 (2015).
[Crossref] [PubMed]

V. Aleksandrov, A. Gluth, V. Petrov, I. Buchvarov, G. Steinmeyer, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, X. Mateos, F. Díaz, and U. Griebner, “Mode-locked Tm,Ho:KLu(WO4)2 laser at 2060 nm using InGaSb-based SESAMs,” Opt. Express 23(4), 4614–4619 (2015).
[Crossref] [PubMed]

J. Paajaste, S. Suomalainen, A. Härkönen, U. Griebner, G. Steinmeyer, and M. Guina, “Absorption recovery dynamics in 2 μm GaSb-based SESAMs,” J. Phys. D Appl. Phys. 47(6), 065102 (2014).
[Crossref]

J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, G. Steinmeyer, and M. Guina, “GaSb-based semiconductor saturable absorber mirrors for mode-locking 2 μm semiconductor disk lasers,” Phys. Status Solidi 9(2), 294–297 (2012).
[Crossref]

Pan, Y.

Paschotta, R.

Pervak, V.

Petermann, K.

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[Crossref]

R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Broadly tunable high-power Yb:Lu2O3 thin disk laser with 80% slope efficiency,” Opt. Express 15(11), 7075–7082 (2007).
[Crossref] [PubMed]

Peters, R.

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[Crossref]

R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Broadly tunable high-power Yb:Lu2O3 thin disk laser with 80% slope efficiency,” Opt. Express 15(11), 7075–7082 (2007).
[Crossref] [PubMed]

Petrov, V.

Y. Wang, R. Lan, X. Mateos, J. Li, C. Li, S. Suomalainen, A. Härkönen, M. Guina, V. Petrov, and U. Griebner, “Thulium doped LuAG ceramics for passively mode locked lasers,” Opt. Express 25(6), 7084–7091 (2017).
[Crossref] [PubMed]

X. Mateos, S. Lamrini, K. Scholle, P. Fuhrberg, S. Vatnik, P. Loiko, I. Vedin, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Holmium thin-disk laser based on Ho:KY(WO4)2/KY(WO4)2 epitaxy with 60% slope efficiency and simplified pump geometry,” Opt. Lett. 42(17), 3490–3493 (2017).
[Crossref] [PubMed]

Y. Wang, R. Lan, X. Mateos, J. Li, C. Hu, C. Li, S. Suomalainen, A. Härkönen, M. Guina, V. Petrov, and U. Griebner, “Broadly tunable mode-locked Ho:YAG ceramic laser around 2.1 µm,” Opt. Express 24(16), 18003–18012 (2016).
[Crossref] [PubMed]

Y. Wang, G. Xie, X. Xu, J. Di, Z. Qin, S. Suomalainen, M. Guina, A. Härkönen, A. Agnesi, U. Griebner, X. Mateos, P. Loiko, and V. Petrov, “SESAM mode-locked Tm:CALGO laser at 2 µm,” Opt. Mater. Express 6(1), 131–136 (2016).
[Crossref]

R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov, “Passive Q-switching of microchip lasers based on Ho:YAG ceramics,” Appl. Opt. 55(18), 4877–4887 (2016).
[Crossref] [PubMed]

V. Jambunathan, X. Mateos, P. A. Loiko, J. M. Serres, U. Griebner, V. Petrov, K. V. Yumashev, M. Aguiló, and F. Díaz, “Growth, spectroscopy and laser operation of Ho:KY(WO4)2,” J. Lumin. 179, 50–58 (2016).
[Crossref]

V. Aleksandrov, A. Gluth, V. Petrov, I. Buchvarov, G. Steinmeyer, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, X. Mateos, F. Díaz, and U. Griebner, “Mode-locked Tm,Ho:KLu(WO4)2 laser at 2060 nm using InGaSb-based SESAMs,” Opt. Express 23(4), 4614–4619 (2015).
[Crossref] [PubMed]

A. Gluth, Y. Wang, V. Petrov, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, G. Steinmeyer, X. Mateos, S. Veronesi, M. Tonelli, J. Li, Y. Pan, J. Guo, and U. Griebner, “GaSb-based SESAM mode-locked Tm:YAG ceramic laser at 2 µm,” Opt. Express 23(2), 1361–1369 (2015).
[Crossref] [PubMed]

V. Jambunathan, X. Mateos, M. C. Pujol, J. J. Carvajal, C. Zaldo, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Crystal growth, optical spectroscopy, and continuous-wave laser operation of Ho:KLu(WO4)2 crystals,” Appl. Phys. B 116(2), 455–466 (2014).
[Crossref]

S. Vatnik, I. Vedin, M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, V. Petrov, and U. Griebner, “Efficient thin-disk Tm-laser operation based on Tm:KLu(WO4)2/KLu(WO4)2 epitaxies,” Opt. Lett. 37(3), 356–358 (2012).
[Crossref] [PubMed]

V. Jambunathan, X. Mateos, M. C. Pujol, J. J. Carvajal, F. Díaz, M. Aguiló, U. Griebner, and V. Petrov, “Continuous-wave laser generation at ~2.1 µm in Ho:KRE(WO4)2 (RE = Y, Gd, Lu) crystals: a comparative study,” Opt. Express 19(25), 25279–25289 (2011).
[Crossref] [PubMed]

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguilo, R. Sole, J. Liu, U. Griebner, and F. Diaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Pronin, O.

Pujol, M. C.

V. Jambunathan, X. Mateos, M. C. Pujol, J. J. Carvajal, C. Zaldo, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Crystal growth, optical spectroscopy, and continuous-wave laser operation of Ho:KLu(WO4)2 crystals,” Appl. Phys. B 116(2), 455–466 (2014).
[Crossref]

S. Vatnik, I. Vedin, M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, V. Petrov, and U. Griebner, “Efficient thin-disk Tm-laser operation based on Tm:KLu(WO4)2/KLu(WO4)2 epitaxies,” Opt. Lett. 37(3), 356–358 (2012).
[Crossref] [PubMed]

V. Jambunathan, X. Mateos, M. C. Pujol, J. J. Carvajal, F. Díaz, M. Aguiló, U. Griebner, and V. Petrov, “Continuous-wave laser generation at ~2.1 µm in Ho:KRE(WO4)2 (RE = Y, Gd, Lu) crystals: a comparative study,” Opt. Express 19(25), 25279–25289 (2011).
[Crossref] [PubMed]

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguilo, R. Sole, J. Liu, U. Griebner, and F. Diaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Qin, Z.

Renz, G.

J. Speiser, G. Renz, and A. Giesen, “Thin disk laser in the 2 µm wavelength range,” Proc. SPIE 8547, 85470E (2012).
[Crossref]

Ricaud, S.

Rivier, S.

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguilo, R. Sole, J. Liu, U. Griebner, and F. Diaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Rotermund, F.

Rytz, D.

Saraceno, C. J.

C. J. Saraceno, F. Emaury, C. Schriber, A. Diebold, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Toward millijoule-level high-power ultrafast thin-disk oscillators,” IEEE J. Sel. Top. Quantum Electron. 21(1), 106–123 (2015).
[Crossref]

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[Crossref]

Schellhorn, M.

M. Schellhorn, “Performance of a Ho:YAG thin-disc laser pumped by a diode-pumped 1.9 μm thulium laser,” Appl. Phys. B 85(4), 549–552 (2006).
[Crossref]

Scholle, K.

Schriber, C.

C. J. Saraceno, F. Emaury, C. Schriber, A. Diebold, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Toward millijoule-level high-power ultrafast thin-disk oscillators,” IEEE J. Sel. Top. Quantum Electron. 21(1), 106–123 (2015).
[Crossref]

Segura, M.

Serres, J. M.

V. Jambunathan, X. Mateos, P. A. Loiko, J. M. Serres, U. Griebner, V. Petrov, K. V. Yumashev, M. Aguiló, and F. Díaz, “Growth, spectroscopy and laser operation of Ho:KY(WO4)2,” J. Lumin. 179, 50–58 (2016).
[Crossref]

Shcherbitsky, V. G.

Shen, D. Y.

D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, “Efficient Ho:YAG laser pumped by a cladding-pumped tunable Tm:silica-fibre laser,” Appl. Phys. B 79(5), 559–561 (2004).
[Crossref]

Silvestre, O.

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguilo, R. Sole, J. Liu, U. Griebner, and F. Diaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Sole, R.

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguilo, R. Sole, J. Liu, U. Griebner, and F. Diaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Speiser, J.

J. Speiser, G. Renz, and A. Giesen, “Thin disk laser in the 2 µm wavelength range,” Proc. SPIE 8547, 85470E (2012).
[Crossref]

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

Steinmeyer, G.

V. Aleksandrov, A. Gluth, V. Petrov, I. Buchvarov, G. Steinmeyer, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, X. Mateos, F. Díaz, and U. Griebner, “Mode-locked Tm,Ho:KLu(WO4)2 laser at 2060 nm using InGaSb-based SESAMs,” Opt. Express 23(4), 4614–4619 (2015).
[Crossref] [PubMed]

A. Gluth, Y. Wang, V. Petrov, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, G. Steinmeyer, X. Mateos, S. Veronesi, M. Tonelli, J. Li, Y. Pan, J. Guo, and U. Griebner, “GaSb-based SESAM mode-locked Tm:YAG ceramic laser at 2 µm,” Opt. Express 23(2), 1361–1369 (2015).
[Crossref] [PubMed]

J. Paajaste, S. Suomalainen, A. Härkönen, U. Griebner, G. Steinmeyer, and M. Guina, “Absorption recovery dynamics in 2 μm GaSb-based SESAMs,” J. Phys. D Appl. Phys. 47(6), 065102 (2014).
[Crossref]

J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, G. Steinmeyer, and M. Guina, “GaSb-based semiconductor saturable absorber mirrors for mode-locking 2 μm semiconductor disk lasers,” Phys. Status Solidi 9(2), 294–297 (2012).
[Crossref]

Südmeyer, T.

C. J. Saraceno, F. Emaury, C. Schriber, A. Diebold, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Toward millijoule-level high-power ultrafast thin-disk oscillators,” IEEE J. Sel. Top. Quantum Electron. 21(1), 106–123 (2015).
[Crossref]

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[Crossref]

E. Innerhofer, T. Südmeyer, F. Brunner, R. Häring, A. Aschwanden, R. Paschotta, C. Hönninger, M. Kumkar, and U. Keller, “60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser,” Opt. Lett. 28(5), 367–369 (2003).
[Crossref] [PubMed]

F. Brunner, T. Südmeyer, E. Innerhofer, F. Morier-Genoud, R. Paschotta, V. E. Kisel, V. G. Shcherbitsky, N. V. Kuleshov, J. Gao, K. Contag, A. Giesen, and U. Keller, “240-fs pulses with 22-W average power from a mode-locked thin-disk Yb:KY(WO4)2 laser,” Opt. Lett. 27(13), 1162–1164 (2002).
[Crossref] [PubMed]

Suganuma, A.

Suomalainen, S.

Y. Wang, R. Lan, X. Mateos, J. Li, C. Li, S. Suomalainen, A. Härkönen, M. Guina, V. Petrov, and U. Griebner, “Thulium doped LuAG ceramics for passively mode locked lasers,” Opt. Express 25(6), 7084–7091 (2017).
[Crossref] [PubMed]

Y. Wang, R. Lan, X. Mateos, J. Li, C. Hu, C. Li, S. Suomalainen, A. Härkönen, M. Guina, V. Petrov, and U. Griebner, “Broadly tunable mode-locked Ho:YAG ceramic laser around 2.1 µm,” Opt. Express 24(16), 18003–18012 (2016).
[Crossref] [PubMed]

Y. Wang, G. Xie, X. Xu, J. Di, Z. Qin, S. Suomalainen, M. Guina, A. Härkönen, A. Agnesi, U. Griebner, X. Mateos, P. Loiko, and V. Petrov, “SESAM mode-locked Tm:CALGO laser at 2 µm,” Opt. Mater. Express 6(1), 131–136 (2016).
[Crossref]

V. Aleksandrov, A. Gluth, V. Petrov, I. Buchvarov, G. Steinmeyer, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, X. Mateos, F. Díaz, and U. Griebner, “Mode-locked Tm,Ho:KLu(WO4)2 laser at 2060 nm using InGaSb-based SESAMs,” Opt. Express 23(4), 4614–4619 (2015).
[Crossref] [PubMed]

A. Gluth, Y. Wang, V. Petrov, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, G. Steinmeyer, X. Mateos, S. Veronesi, M. Tonelli, J. Li, Y. Pan, J. Guo, and U. Griebner, “GaSb-based SESAM mode-locked Tm:YAG ceramic laser at 2 µm,” Opt. Express 23(2), 1361–1369 (2015).
[Crossref] [PubMed]

J. Paajaste, S. Suomalainen, A. Härkönen, U. Griebner, G. Steinmeyer, and M. Guina, “Absorption recovery dynamics in 2 μm GaSb-based SESAMs,” J. Phys. D Appl. Phys. 47(6), 065102 (2014).
[Crossref]

J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, G. Steinmeyer, and M. Guina, “GaSb-based semiconductor saturable absorber mirrors for mode-locking 2 μm semiconductor disk lasers,” Phys. Status Solidi 9(2), 294–297 (2012).
[Crossref]

Tonelli, M.

Vatnik, S.

Vedin, I.

Veronesi, S.

Viana, B.

Voss, A.

Wang, Y.

Weichelt, B.

Wentsch, K.

Wittig, K.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

Xie, G.

Xu, X.

Yasukevich, A.

Yumashev, K.

Yumashev, K. V.

V. Jambunathan, X. Mateos, P. A. Loiko, J. M. Serres, U. Griebner, V. Petrov, K. V. Yumashev, M. Aguiló, and F. Díaz, “Growth, spectroscopy and laser operation of Ho:KY(WO4)2,” J. Lumin. 179, 50–58 (2016).
[Crossref]

Zaldo, C.

V. Jambunathan, X. Mateos, M. C. Pujol, J. J. Carvajal, C. Zaldo, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Crystal growth, optical spectroscopy, and continuous-wave laser operation of Ho:KLu(WO4)2 crystals,” Appl. Phys. B 116(2), 455–466 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (5)

V. Jambunathan, X. Mateos, M. C. Pujol, J. J. Carvajal, C. Zaldo, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Crystal growth, optical spectroscopy, and continuous-wave laser operation of Ho:KLu(WO4)2 crystals,” Appl. Phys. B 116(2), 455–466 (2014).
[Crossref]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[Crossref]

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[Crossref]

M. Schellhorn, “Performance of a Ho:YAG thin-disc laser pumped by a diode-pumped 1.9 μm thulium laser,” Appl. Phys. B 85(4), 549–552 (2006).
[Crossref]

D. Y. Shen, A. Abdolvand, L. J. Cooper, and W. A. Clarkson, “Efficient Ho:YAG laser pumped by a cladding-pumped tunable Tm:silica-fibre laser,” Appl. Phys. B 79(5), 559–561 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

C. J. Saraceno, F. Emaury, C. Schriber, A. Diebold, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Toward millijoule-level high-power ultrafast thin-disk oscillators,” IEEE J. Sel. Top. Quantum Electron. 21(1), 106–123 (2015).
[Crossref]

J. Lumin. (1)

V. Jambunathan, X. Mateos, P. A. Loiko, J. M. Serres, U. Griebner, V. Petrov, K. V. Yumashev, M. Aguiló, and F. Díaz, “Growth, spectroscopy and laser operation of Ho:KY(WO4)2,” J. Lumin. 179, 50–58 (2016).
[Crossref]

J. Phys. D Appl. Phys. (1)

J. Paajaste, S. Suomalainen, A. Härkönen, U. Griebner, G. Steinmeyer, and M. Guina, “Absorption recovery dynamics in 2 μm GaSb-based SESAMs,” J. Phys. D Appl. Phys. 47(6), 065102 (2014).
[Crossref]

Laser Photonics Rev. (1)

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguilo, R. Sole, J. Liu, U. Griebner, and F. Diaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Opt. Express (6)

V. Jambunathan, X. Mateos, M. C. Pujol, J. J. Carvajal, F. Díaz, M. Aguiló, U. Griebner, and V. Petrov, “Continuous-wave laser generation at ~2.1 µm in Ho:KRE(WO4)2 (RE = Y, Gd, Lu) crystals: a comparative study,” Opt. Express 19(25), 25279–25289 (2011).
[Crossref] [PubMed]

V. Aleksandrov, A. Gluth, V. Petrov, I. Buchvarov, G. Steinmeyer, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, X. Mateos, F. Díaz, and U. Griebner, “Mode-locked Tm,Ho:KLu(WO4)2 laser at 2060 nm using InGaSb-based SESAMs,” Opt. Express 23(4), 4614–4619 (2015).
[Crossref] [PubMed]

A. Gluth, Y. Wang, V. Petrov, J. Paajaste, S. Suomalainen, A. Härkönen, M. Guina, G. Steinmeyer, X. Mateos, S. Veronesi, M. Tonelli, J. Li, Y. Pan, J. Guo, and U. Griebner, “GaSb-based SESAM mode-locked Tm:YAG ceramic laser at 2 µm,” Opt. Express 23(2), 1361–1369 (2015).
[Crossref] [PubMed]

Y. Wang, R. Lan, X. Mateos, J. Li, C. Li, S. Suomalainen, A. Härkönen, M. Guina, V. Petrov, and U. Griebner, “Thulium doped LuAG ceramics for passively mode locked lasers,” Opt. Express 25(6), 7084–7091 (2017).
[Crossref] [PubMed]

Y. Wang, R. Lan, X. Mateos, J. Li, C. Hu, C. Li, S. Suomalainen, A. Härkönen, M. Guina, V. Petrov, and U. Griebner, “Broadly tunable mode-locked Ho:YAG ceramic laser around 2.1 µm,” Opt. Express 24(16), 18003–18012 (2016).
[Crossref] [PubMed]

R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Broadly tunable high-power Yb:Lu2O3 thin disk laser with 80% slope efficiency,” Opt. Express 15(11), 7075–7082 (2007).
[Crossref] [PubMed]

Opt. Lett. (6)

O. Pronin, J. Brons, C. Grasse, V. Pervak, G. Boehm, M.-C. Amann, V. L. Kalashnikov, A. Apolonski, and F. Krausz, “High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator,” Opt. Lett. 36(24), 4746–4748 (2011).
[Crossref] [PubMed]

F. Brunner, T. Südmeyer, E. Innerhofer, F. Morier-Genoud, R. Paschotta, V. E. Kisel, V. G. Shcherbitsky, N. V. Kuleshov, J. Gao, K. Contag, A. Giesen, and U. Keller, “240-fs pulses with 22-W average power from a mode-locked thin-disk Yb:KY(WO4)2 laser,” Opt. Lett. 27(13), 1162–1164 (2002).
[Crossref] [PubMed]

E. Innerhofer, T. Südmeyer, F. Brunner, R. Häring, A. Aschwanden, R. Paschotta, C. Hönninger, M. Kumkar, and U. Keller, “60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser,” Opt. Lett. 28(5), 367–369 (2003).
[Crossref] [PubMed]

S. Ricaud, A. Jaffres, K. Wentsch, A. Suganuma, B. Viana, P. Loiseau, B. Weichelt, M. Abdou-Ahmed, A. Voss, T. Graf, D. Rytz, C. Hönninger, E. Mottay, P. Georges, and F. Druon, “Femtosecond Yb:CaGdAlO4 thin-disk oscillator,” Opt. Lett. 37(19), 3984–3986 (2012).
[Crossref] [PubMed]

S. Vatnik, I. Vedin, M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, V. Petrov, and U. Griebner, “Efficient thin-disk Tm-laser operation based on Tm:KLu(WO4)2/KLu(WO4)2 epitaxies,” Opt. Lett. 37(3), 356–358 (2012).
[Crossref] [PubMed]

X. Mateos, S. Lamrini, K. Scholle, P. Fuhrberg, S. Vatnik, P. Loiko, I. Vedin, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Holmium thin-disk laser based on Ho:KY(WO4)2/KY(WO4)2 epitaxy with 60% slope efficiency and simplified pump geometry,” Opt. Lett. 42(17), 3490–3493 (2017).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Phys. Status Solidi (1)

J. Paajaste, S. Suomalainen, R. Koskinen, A. Härkönen, G. Steinmeyer, and M. Guina, “GaSb-based semiconductor saturable absorber mirrors for mode-locking 2 μm semiconductor disk lasers,” Phys. Status Solidi 9(2), 294–297 (2012).
[Crossref]

Proc. SPIE (1)

J. Speiser, G. Renz, and A. Giesen, “Thin disk laser in the 2 µm wavelength range,” Proc. SPIE 8547, 85470E (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Scheme of the PQS Ho:KYW thin-disk laser: OC – output coupler, HR – highly-reflective mirror, CL and FL – collimating and focusing lenses, respectively.
Fig. 2
Fig. 2 Linear spectroscopy of the SESAM: (a) reflectivity spectrum (AR-coated sample); (b) photoluminescence (PL) spectra for uncoated and AR-coated samples, λexc = 690 nm, the arrow in (a,b) indicates the laser wavelength.
Fig. 3
Fig. 3 Pump-probe trace for the uncoated SESAM measured at 2040 nm: symbols – experimental data, curve – their bi-exponential fit to determine the recovery times, τ1(2). R and ΔR: reflectivity and its change, respectively.
Fig. 4
Fig. 4 CW and PQS Ho:KYW TDLs: (a) input-output dependences, η – slope efficiency, inset: spatial profile of the output beam for the PQS laser, Pabs = 1.40 W, (b) typical laser emission spectra measured at Pabs = 1.40 W, TOC = 3%.
Fig. 5
Fig. 5 PQS Ho:KYW TDL: pulse duration (FWHM) and pulse energy (a), pulse repetition frequency (PRF) and peak power (b).
Fig. 6
Fig. 6 Oscilloscope traces of the single Q-switched pulses captured at various Pabs (a) and the corresponding pulse train at Pabs = 1.40 W (b) for the PQS Ho:KYW TDL.

Metrics