Abstract

Fabricating resonant cavities with conventional methods to improve the coupling efficiency of a detector in the terahertz (THz) region is difficult for the wavelength is too long. Here, we propose a solution by using the substrate cavity effect given that the substrate wavelength and thickness of the preparation device are in the same order. The planar dipole antenna-coupled Nb5N6 microbolometers with different substrate thicknesses were fabricated. The interference effect of the substrate cavity on the optical voltage response of the detector is analyzed experimentally and theoretically. The experimental results show that the optical response of the detector is determined by the length of the substrate cavity. Thus, the THz devices with different detection frequencies can be designed by changing the substrate cavity length. Furthermore, on the basis of this substrate cavity effect, an asymmetric coupled Fabry-Pérot (FP) cavity is constituted by simply placing a movable metallic planar mirror at the backside of the Si substrate. The incident THz radiation on the Nb5N6 microbolometer can be effectively manipulated by changing the substrate-mirror distance to modulate the phase relation between the reflect wave and the incident wave. The distinct radiation control can be observed, and the experiments can be well explained by numerically analyzing the responsivity dynamics that highlights the role of the FP cavity effect during radiation. All of the results discussed here can be extended to a broad range of frequency and other type of THz detectors.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Diffractive microlens integrated into Nb5N6 microbolometers for THz detection

Xuecou Tu, Lin Kang, Chao Wan, Lei Xu, Qingkai Mao, Peng Xiao, Xiaoqing Jia, Wenbin Dou, Jian Chen, and Peiheng Wu
Opt. Express 23(11) 13794-13803 (2015)

Fabry–Pérot cavity-coupled microbolometer terahertz detector with a continuously tunable air spacer gap

Xuecou Tu, Chengtao Jiang, Peng Xiao, Shimin Zhai, Xiaoqing Jia, Yaqian Wu, Qingyu Meng, Boyan Chen, Lin Kang, Jian Chen, and Peiheng Wu
Opt. Lett. 44(4) 1019-1022 (2019)

References

  • View by:
  • |
  • |
  • |

  1. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [Crossref] [PubMed]
  2. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  3. K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar,” IEEE Trans. Microw. Theory Tech. 56(12), 2771–2778 (2008).
    [Crossref]
  4. S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
    [Crossref]
  5. M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78(2), 607–639 (1995).
    [Crossref]
  6. J. Wang, J. Hu, P. Becla, A. M. Agarwal, and L. C. Kimerling, “Resonant-cavity-enhanced mid-infrared photodetector on a silicon platform,” Opt. Express 18(12), 12890–12896 (2010).
    [Crossref] [PubMed]
  7. G. Kang, I. Vartiainen, B. Bai, and J. Turunen, “Enhanced dual-band infrared absorption in a Fabry-Perot cavity with subwavelength metallic grating,” Opt. Express 19(2), 770–778 (2011).
    [Crossref] [PubMed]
  8. B. C. Pile and G. W. Taylor, “Resonant Cavity Enhanced Thyristor-Based Photodetectors for Optical Receivers,” IEEE J. Quantum Electron. 52(11), 1–7 (2016).
    [Crossref]
  9. Q. Zhang, M. Lou, X. Li, J. L. Reno, W. Pan, J. D. Watson, M. J. Manfra, and J. Kono, “Collective non-perturbative coupling of 2D electrons with high-quality-factor terahertz cavity photons,” Nat. Phys. 12(11), 1005–1012 (2016).
    [Crossref]
  10. D. S. Bulgarevich, M. Watanabe, and M. Shiwa, “Highly-efficient aperture array terahertz band-pass filtering,” Opt. Express 18(24), 25250–25255 (2010).
    [Crossref] [PubMed]
  11. H. Y. Zheng, X. R. Jin, J. W. Park, Y. H. Lu, J. Y. Rhee, W. H. Jang, H. Cheong, and Y. P. Lee, “Tunable dual-band perfect absorbers based on extraordinary optical transmission and Fabry-Perot cavity resonance,” Opt. Express 20(21), 24002–24009 (2012).
    [Crossref] [PubMed]
  12. H. Shirai, E. Kishimoto, T. Kokuhata, H. Miyagawa, S. Koshiba, S. Nakanishi, H. Itoh, M. Hangyo, T. G. Kim, and N. Tsurumachi, “Enhancement and suppression of terahertz emission by a Fabry-Perot cavity structure with a nonlinear optical crystal,” Appl. Opt. 48(36), 6934–6939 (2009).
    [Crossref] [PubMed]
  13. L.-J. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, “A simple terahertz spectrometer based on a low-reflectivity Fabry-Perot interferometer using Fourier transform spectroscopy,” Opt. Express 14(9), 3840–3846 (2006).
    [Crossref] [PubMed]
  14. Y. Huang, H. Qin, B. Zhang, J. Wu, G. Zhou, and B. Jin, “Excitation of terahertz plasmon-polariton in a grating coupled two-dimensional electron gas with a Fabry-Pérot cavity,” Appl. Phys. Lett. 102(25), 253106 (2013).
    [Crossref]
  15. Y.-R. Huang, H.-P. Chen, P.-C. Chiu, J.-I. Chyi, B.-H. Wang, S.-Y. Chen, and C.-K. Sun, “Propagation, Resonance, and Radiation on Terahertz Optoelectronic Integrated Circuits,” IEEE Photonics J. 4(3), 699–706 (2012).
    [Crossref]
  16. D. Coquillat, J. Marczewski, P. Kopyt, N. Dyakonova, B. Giffard, and W. Knap, “Improvement of terahertz field effect transistor detectors by substrate thinning and radiation losses reduction,” Opt. Express 24(1), 272–281 (2016).
    [Crossref] [PubMed]
  17. P. Kopyt, B. Salski, P. Zagrajek, D. Obrębski, and J. Marczewski, “Modeling of Silicon-Based Substrates of Patch Antennas Operating in the Sub-THz Range,” IEEE Trans. Terahertz Sci. Technol. 7(4), 424–432 (2017).
    [Crossref]
  18. H. W. Hou, Z. Liu, J. H. Teng, T. Palacios, and S. J. Chua, “Enhancement of responsivity for a transistor terahertz detector by a Fabry-Pérot resonance-cavity,” Appl. Phys. Lett. 110(16), 162101 (2017).
    [Crossref]
  19. B. Zhang, W. Yan, Z. Li, L. Bai, and F. Yang, “Analysis of Substrate Effect in Field Effect Transistor Terahertz Detectors,” IEEE J. Sel. Top. Quantum Electron. 23(4), 8500607 (2017).
    [Crossref]
  20. G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Analysis of the thickness dependence of metamaterial absorbers at terahertz frequencies,” Opt. Express 26(3), 2242–2251 (2018).
    [Crossref] [PubMed]
  21. D. T. Nguyen, F. Simoens, J.-L. Ouvrier-Buffet, J. Meilhan, and J.-L. Coutaz, “Broadband THz uncooled antenna-coupled microbolometer array – electromagnetic design, simulations and measurements,” IEEE Trans. THz Sci. Technol. 2(3), 299–305 (2012).
  22. J. Oden, J. Meilhan, J. Lalanne-Dera, J. F. Roux, F. Garet, J. L. Coutaz, and F. Simoens, “Imaging of broadband terahertz beams using an array of antenna-coupled microbolometers operating at room temperature,” Opt. Express 21(4), 4817–4825 (2013).
    [Crossref] [PubMed]
  23. N. Nemoto, N. Kanda, R. Imai, K. onishi, M. Miyoshi, S. Kurashina, T. Sasaki, N. Oda, and M. Kuwata-Gonokami, “High-Sensitivity and Broadband Real-Time Terahertz Camera Incorporating a Micro-Bolometer Array With Resonant Cavity Structure,” IEEE Trans. THz Sci. Technol. 6(2), 175–182 (2016).
  24. M. Kominami, D. M. Pozar, and D. H. Schaubert, “Dipole and slot elements and arrays on semi-infinite substrates,” IEEE Trans. Antenn. Propag. 33(6), 600–607 (1995).
    [Crossref]
  25. H. Nakano, H. Yasui, and J. Yamauchi, “Numerical analysis of two-arm spiral antennas printed on a finite-size dielectric substrate,” IEEE Trans. Antenn. Propag. 50(3), 362–370 (2002).
    [Crossref]
  26. P. B. Katehi and N. G. Alexopoulos, “On the effect of substrate thickness and permittivity on printed circuit antennas,” IEEE Trans. Antenn. Propag. 31(1), 34–39 (1983).
    [Crossref]
  27. N. G. Alexopoulos, P. B. Katehi, and D. B. Rutledge, “Substrate optimization for integrated circuit antennas,” IEEE Trans. Microw. Theory Tech. 31(7), 550–557 (1983).
    [Crossref]
  28. J. Tong, M. Muthee, S.-Y. Chen, S. K. Yngvesson, and J. Yan, “Antenna Enhanced Graphene THz Emitter and Detector,” Nano Lett. 15(8), 5295–5301 (2015).
    [Crossref] [PubMed]
  29. S.-P. Han, H. Ko, J.-W. Park, N. Kim, Y.-J. Yoon, J.-H. Shin, D. Y. Kim, D. H. Lee, and K. H. Park, “InGaAs Schottky barrier diode array detector for a real-time compact terahertz line scanner,” Opt. Express 21(22), 25874–25882 (2013).
    [Crossref] [PubMed]
  30. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2003).
  31. X. Tu, L. Kang, X. Liu, Q. Mao, C. Wan, J. Chen, B. Jin, Z. Ji, W. Xu, and P. Wu, “Nb5N6 microbolometer array for terahertz detection,” Chin. Phys. B 22(4), 040701 (2013).
    [Crossref]
  32. X. Tu, L. Kang, C. Wan, L. Xu, Q. Mao, P. Xiao, X. Jia, W. Dou, J. Chen, and P. Wu, “Diffractive microlens integrated into Nb5N6 microbolometers for THz detection,” Opt. Express 23(11), 13794–13803 (2015).
    [Crossref] [PubMed]
  33. http://vadiodes.com/ .

2018 (1)

2017 (3)

P. Kopyt, B. Salski, P. Zagrajek, D. Obrębski, and J. Marczewski, “Modeling of Silicon-Based Substrates of Patch Antennas Operating in the Sub-THz Range,” IEEE Trans. Terahertz Sci. Technol. 7(4), 424–432 (2017).
[Crossref]

H. W. Hou, Z. Liu, J. H. Teng, T. Palacios, and S. J. Chua, “Enhancement of responsivity for a transistor terahertz detector by a Fabry-Pérot resonance-cavity,” Appl. Phys. Lett. 110(16), 162101 (2017).
[Crossref]

B. Zhang, W. Yan, Z. Li, L. Bai, and F. Yang, “Analysis of Substrate Effect in Field Effect Transistor Terahertz Detectors,” IEEE J. Sel. Top. Quantum Electron. 23(4), 8500607 (2017).
[Crossref]

2016 (4)

D. Coquillat, J. Marczewski, P. Kopyt, N. Dyakonova, B. Giffard, and W. Knap, “Improvement of terahertz field effect transistor detectors by substrate thinning and radiation losses reduction,” Opt. Express 24(1), 272–281 (2016).
[Crossref] [PubMed]

B. C. Pile and G. W. Taylor, “Resonant Cavity Enhanced Thyristor-Based Photodetectors for Optical Receivers,” IEEE J. Quantum Electron. 52(11), 1–7 (2016).
[Crossref]

Q. Zhang, M. Lou, X. Li, J. L. Reno, W. Pan, J. D. Watson, M. J. Manfra, and J. Kono, “Collective non-perturbative coupling of 2D electrons with high-quality-factor terahertz cavity photons,” Nat. Phys. 12(11), 1005–1012 (2016).
[Crossref]

N. Nemoto, N. Kanda, R. Imai, K. onishi, M. Miyoshi, S. Kurashina, T. Sasaki, N. Oda, and M. Kuwata-Gonokami, “High-Sensitivity and Broadband Real-Time Terahertz Camera Incorporating a Micro-Bolometer Array With Resonant Cavity Structure,” IEEE Trans. THz Sci. Technol. 6(2), 175–182 (2016).

2015 (2)

2013 (5)

J. Oden, J. Meilhan, J. Lalanne-Dera, J. F. Roux, F. Garet, J. L. Coutaz, and F. Simoens, “Imaging of broadband terahertz beams using an array of antenna-coupled microbolometers operating at room temperature,” Opt. Express 21(4), 4817–4825 (2013).
[Crossref] [PubMed]

S.-P. Han, H. Ko, J.-W. Park, N. Kim, Y.-J. Yoon, J.-H. Shin, D. Y. Kim, D. H. Lee, and K. H. Park, “InGaAs Schottky barrier diode array detector for a real-time compact terahertz line scanner,” Opt. Express 21(22), 25874–25882 (2013).
[Crossref] [PubMed]

X. Tu, L. Kang, X. Liu, Q. Mao, C. Wan, J. Chen, B. Jin, Z. Ji, W. Xu, and P. Wu, “Nb5N6 microbolometer array for terahertz detection,” Chin. Phys. B 22(4), 040701 (2013).
[Crossref]

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Y. Huang, H. Qin, B. Zhang, J. Wu, G. Zhou, and B. Jin, “Excitation of terahertz plasmon-polariton in a grating coupled two-dimensional electron gas with a Fabry-Pérot cavity,” Appl. Phys. Lett. 102(25), 253106 (2013).
[Crossref]

2012 (3)

Y.-R. Huang, H.-P. Chen, P.-C. Chiu, J.-I. Chyi, B.-H. Wang, S.-Y. Chen, and C.-K. Sun, “Propagation, Resonance, and Radiation on Terahertz Optoelectronic Integrated Circuits,” IEEE Photonics J. 4(3), 699–706 (2012).
[Crossref]

H. Y. Zheng, X. R. Jin, J. W. Park, Y. H. Lu, J. Y. Rhee, W. H. Jang, H. Cheong, and Y. P. Lee, “Tunable dual-band perfect absorbers based on extraordinary optical transmission and Fabry-Perot cavity resonance,” Opt. Express 20(21), 24002–24009 (2012).
[Crossref] [PubMed]

D. T. Nguyen, F. Simoens, J.-L. Ouvrier-Buffet, J. Meilhan, and J.-L. Coutaz, “Broadband THz uncooled antenna-coupled microbolometer array – electromagnetic design, simulations and measurements,” IEEE Trans. THz Sci. Technol. 2(3), 299–305 (2012).

2011 (1)

2010 (2)

2009 (1)

2008 (1)

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar,” IEEE Trans. Microw. Theory Tech. 56(12), 2771–2778 (2008).
[Crossref]

2007 (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

2006 (1)

2002 (2)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

H. Nakano, H. Yasui, and J. Yamauchi, “Numerical analysis of two-arm spiral antennas printed on a finite-size dielectric substrate,” IEEE Trans. Antenn. Propag. 50(3), 362–370 (2002).
[Crossref]

1995 (2)

M. Kominami, D. M. Pozar, and D. H. Schaubert, “Dipole and slot elements and arrays on semi-infinite substrates,” IEEE Trans. Antenn. Propag. 33(6), 600–607 (1995).
[Crossref]

M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78(2), 607–639 (1995).
[Crossref]

1983 (2)

P. B. Katehi and N. G. Alexopoulos, “On the effect of substrate thickness and permittivity on printed circuit antennas,” IEEE Trans. Antenn. Propag. 31(1), 34–39 (1983).
[Crossref]

N. G. Alexopoulos, P. B. Katehi, and D. B. Rutledge, “Substrate optimization for integrated circuit antennas,” IEEE Trans. Microw. Theory Tech. 31(7), 550–557 (1983).
[Crossref]

Agarwal, A. M.

Alexopoulos, N. G.

P. B. Katehi and N. G. Alexopoulos, “On the effect of substrate thickness and permittivity on printed circuit antennas,” IEEE Trans. Antenn. Propag. 31(1), 34–39 (1983).
[Crossref]

N. G. Alexopoulos, P. B. Katehi, and D. B. Rutledge, “Substrate optimization for integrated circuit antennas,” IEEE Trans. Microw. Theory Tech. 31(7), 550–557 (1983).
[Crossref]

Ambacher, O.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Antes, J.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Averitt, R. D.

Bai, B.

Bai, L.

B. Zhang, W. Yan, Z. Li, L. Bai, and F. Yang, “Analysis of Substrate Effect in Field Effect Transistor Terahertz Detectors,” IEEE J. Sel. Top. Quantum Electron. 23(4), 8500607 (2017).
[Crossref]

Becla, P.

Boes, F.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Bryllert, T.

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar,” IEEE Trans. Microw. Theory Tech. 56(12), 2771–2778 (2008).
[Crossref]

Bulgarevich, D. S.

Chattopadhyay, G.

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar,” IEEE Trans. Microw. Theory Tech. 56(12), 2771–2778 (2008).
[Crossref]

Chen, H.-P.

Y.-R. Huang, H.-P. Chen, P.-C. Chiu, J.-I. Chyi, B.-H. Wang, S.-Y. Chen, and C.-K. Sun, “Propagation, Resonance, and Radiation on Terahertz Optoelectronic Integrated Circuits,” IEEE Photonics J. 4(3), 699–706 (2012).
[Crossref]

Chen, J.

X. Tu, L. Kang, C. Wan, L. Xu, Q. Mao, P. Xiao, X. Jia, W. Dou, J. Chen, and P. Wu, “Diffractive microlens integrated into Nb5N6 microbolometers for THz detection,” Opt. Express 23(11), 13794–13803 (2015).
[Crossref] [PubMed]

X. Tu, L. Kang, X. Liu, Q. Mao, C. Wan, J. Chen, B. Jin, Z. Ji, W. Xu, and P. Wu, “Nb5N6 microbolometer array for terahertz detection,” Chin. Phys. B 22(4), 040701 (2013).
[Crossref]

Chen, L.-J.

Chen, S.-Y.

J. Tong, M. Muthee, S.-Y. Chen, S. K. Yngvesson, and J. Yan, “Antenna Enhanced Graphene THz Emitter and Detector,” Nano Lett. 15(8), 5295–5301 (2015).
[Crossref] [PubMed]

Y.-R. Huang, H.-P. Chen, P.-C. Chiu, J.-I. Chyi, B.-H. Wang, S.-Y. Chen, and C.-K. Sun, “Propagation, Resonance, and Radiation on Terahertz Optoelectronic Integrated Circuits,” IEEE Photonics J. 4(3), 699–706 (2012).
[Crossref]

Cheong, H.

Chiu, P.-C.

Y.-R. Huang, H.-P. Chen, P.-C. Chiu, J.-I. Chyi, B.-H. Wang, S.-Y. Chen, and C.-K. Sun, “Propagation, Resonance, and Radiation on Terahertz Optoelectronic Integrated Circuits,” IEEE Photonics J. 4(3), 699–706 (2012).
[Crossref]

Chua, S. J.

H. W. Hou, Z. Liu, J. H. Teng, T. Palacios, and S. J. Chua, “Enhancement of responsivity for a transistor terahertz detector by a Fabry-Pérot resonance-cavity,” Appl. Phys. Lett. 110(16), 162101 (2017).
[Crossref]

Chyi, J.-I.

Y.-R. Huang, H.-P. Chen, P.-C. Chiu, J.-I. Chyi, B.-H. Wang, S.-Y. Chen, and C.-K. Sun, “Propagation, Resonance, and Radiation on Terahertz Optoelectronic Integrated Circuits,” IEEE Photonics J. 4(3), 699–706 (2012).
[Crossref]

Cooper, K. B.

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar,” IEEE Trans. Microw. Theory Tech. 56(12), 2771–2778 (2008).
[Crossref]

Coquillat, D.

Coutaz, J. L.

Coutaz, J.-L.

D. T. Nguyen, F. Simoens, J.-L. Ouvrier-Buffet, J. Meilhan, and J.-L. Coutaz, “Broadband THz uncooled antenna-coupled microbolometer array – electromagnetic design, simulations and measurements,” IEEE Trans. THz Sci. Technol. 2(3), 299–305 (2012).

Dengler, R. J.

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar,” IEEE Trans. Microw. Theory Tech. 56(12), 2771–2778 (2008).
[Crossref]

Dou, W.

Duan, G.

Dyakonova, N.

Ferguson, B.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Freude, W.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Garet, F.

Giffard, B.

Gill, J.

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar,” IEEE Trans. Microw. Theory Tech. 56(12), 2771–2778 (2008).
[Crossref]

Han, S.-P.

Hangyo, M.

Henneberger, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Hillerkuss, D.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Hou, H. W.

H. W. Hou, Z. Liu, J. H. Teng, T. Palacios, and S. J. Chua, “Enhancement of responsivity for a transistor terahertz detector by a Fabry-Pérot resonance-cavity,” Appl. Phys. Lett. 110(16), 162101 (2017).
[Crossref]

Hu, J.

Huang, Y.

Y. Huang, H. Qin, B. Zhang, J. Wu, G. Zhou, and B. Jin, “Excitation of terahertz plasmon-polariton in a grating coupled two-dimensional electron gas with a Fabry-Pérot cavity,” Appl. Phys. Lett. 102(25), 253106 (2013).
[Crossref]

Huang, Y.-R.

Y.-R. Huang, H.-P. Chen, P.-C. Chiu, J.-I. Chyi, B.-H. Wang, S.-Y. Chen, and C.-K. Sun, “Propagation, Resonance, and Radiation on Terahertz Optoelectronic Integrated Circuits,” IEEE Photonics J. 4(3), 699–706 (2012).
[Crossref]

Imai, R.

N. Nemoto, N. Kanda, R. Imai, K. onishi, M. Miyoshi, S. Kurashina, T. Sasaki, N. Oda, and M. Kuwata-Gonokami, “High-Sensitivity and Broadband Real-Time Terahertz Camera Incorporating a Micro-Bolometer Array With Resonant Cavity Structure,” IEEE Trans. THz Sci. Technol. 6(2), 175–182 (2016).

Itoh, H.

Jang, W. H.

Ji, Z.

X. Tu, L. Kang, X. Liu, Q. Mao, C. Wan, J. Chen, B. Jin, Z. Ji, W. Xu, and P. Wu, “Nb5N6 microbolometer array for terahertz detection,” Chin. Phys. B 22(4), 040701 (2013).
[Crossref]

Jia, X.

Jin, B.

X. Tu, L. Kang, X. Liu, Q. Mao, C. Wan, J. Chen, B. Jin, Z. Ji, W. Xu, and P. Wu, “Nb5N6 microbolometer array for terahertz detection,” Chin. Phys. B 22(4), 040701 (2013).
[Crossref]

Y. Huang, H. Qin, B. Zhang, J. Wu, G. Zhou, and B. Jin, “Excitation of terahertz plasmon-polariton in a grating coupled two-dimensional electron gas with a Fabry-Pérot cavity,” Appl. Phys. Lett. 102(25), 253106 (2013).
[Crossref]

Jin, X. R.

Kallfass, I.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Kanda, N.

N. Nemoto, N. Kanda, R. Imai, K. onishi, M. Miyoshi, S. Kurashina, T. Sasaki, N. Oda, and M. Kuwata-Gonokami, “High-Sensitivity and Broadband Real-Time Terahertz Camera Incorporating a Micro-Bolometer Array With Resonant Cavity Structure,” IEEE Trans. THz Sci. Technol. 6(2), 175–182 (2016).

Kang, G.

Kang, L.

X. Tu, L. Kang, C. Wan, L. Xu, Q. Mao, P. Xiao, X. Jia, W. Dou, J. Chen, and P. Wu, “Diffractive microlens integrated into Nb5N6 microbolometers for THz detection,” Opt. Express 23(11), 13794–13803 (2015).
[Crossref] [PubMed]

X. Tu, L. Kang, X. Liu, Q. Mao, C. Wan, J. Chen, B. Jin, Z. Ji, W. Xu, and P. Wu, “Nb5N6 microbolometer array for terahertz detection,” Chin. Phys. B 22(4), 040701 (2013).
[Crossref]

Kao, T.-F.

Katehi, P. B.

P. B. Katehi and N. G. Alexopoulos, “On the effect of substrate thickness and permittivity on printed circuit antennas,” IEEE Trans. Antenn. Propag. 31(1), 34–39 (1983).
[Crossref]

N. G. Alexopoulos, P. B. Katehi, and D. B. Rutledge, “Substrate optimization for integrated circuit antennas,” IEEE Trans. Microw. Theory Tech. 31(7), 550–557 (1983).
[Crossref]

Kim, D. Y.

Kim, N.

Kim, T. G.

Kimerling, L. C.

Kishimoto, E.

Knap, W.

Ko, H.

Koenig, S.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Kokuhata, T.

Kominami, M.

M. Kominami, D. M. Pozar, and D. H. Schaubert, “Dipole and slot elements and arrays on semi-infinite substrates,” IEEE Trans. Antenn. Propag. 33(6), 600–607 (1995).
[Crossref]

Kono, J.

Q. Zhang, M. Lou, X. Li, J. L. Reno, W. Pan, J. D. Watson, M. J. Manfra, and J. Kono, “Collective non-perturbative coupling of 2D electrons with high-quality-factor terahertz cavity photons,” Nat. Phys. 12(11), 1005–1012 (2016).
[Crossref]

Koos, C.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Kopyt, P.

P. Kopyt, B. Salski, P. Zagrajek, D. Obrębski, and J. Marczewski, “Modeling of Silicon-Based Substrates of Patch Antennas Operating in the Sub-THz Range,” IEEE Trans. Terahertz Sci. Technol. 7(4), 424–432 (2017).
[Crossref]

D. Coquillat, J. Marczewski, P. Kopyt, N. Dyakonova, B. Giffard, and W. Knap, “Improvement of terahertz field effect transistor detectors by substrate thinning and radiation losses reduction,” Opt. Express 24(1), 272–281 (2016).
[Crossref] [PubMed]

Koshiba, S.

Kurashina, S.

N. Nemoto, N. Kanda, R. Imai, K. onishi, M. Miyoshi, S. Kurashina, T. Sasaki, N. Oda, and M. Kuwata-Gonokami, “High-Sensitivity and Broadband Real-Time Terahertz Camera Incorporating a Micro-Bolometer Array With Resonant Cavity Structure,” IEEE Trans. THz Sci. Technol. 6(2), 175–182 (2016).

Kuwata-Gonokami, M.

N. Nemoto, N. Kanda, R. Imai, K. onishi, M. Miyoshi, S. Kurashina, T. Sasaki, N. Oda, and M. Kuwata-Gonokami, “High-Sensitivity and Broadband Real-Time Terahertz Camera Incorporating a Micro-Bolometer Array With Resonant Cavity Structure,” IEEE Trans. THz Sci. Technol. 6(2), 175–182 (2016).

Lalanne-Dera, J.

Lee, C.

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar,” IEEE Trans. Microw. Theory Tech. 56(12), 2771–2778 (2008).
[Crossref]

Lee, D. H.

Lee, Y. P.

Leuther, A.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Leuthold, J.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Li, X.

Q. Zhang, M. Lou, X. Li, J. L. Reno, W. Pan, J. D. Watson, M. J. Manfra, and J. Kono, “Collective non-perturbative coupling of 2D electrons with high-quality-factor terahertz cavity photons,” Nat. Phys. 12(11), 1005–1012 (2016).
[Crossref]

Li, Z.

B. Zhang, W. Yan, Z. Li, L. Bai, and F. Yang, “Analysis of Substrate Effect in Field Effect Transistor Terahertz Detectors,” IEEE J. Sel. Top. Quantum Electron. 23(4), 8500607 (2017).
[Crossref]

Liu, X.

X. Tu, L. Kang, X. Liu, Q. Mao, C. Wan, J. Chen, B. Jin, Z. Ji, W. Xu, and P. Wu, “Nb5N6 microbolometer array for terahertz detection,” Chin. Phys. B 22(4), 040701 (2013).
[Crossref]

Liu, Z.

H. W. Hou, Z. Liu, J. H. Teng, T. Palacios, and S. J. Chua, “Enhancement of responsivity for a transistor terahertz detector by a Fabry-Pérot resonance-cavity,” Appl. Phys. Lett. 110(16), 162101 (2017).
[Crossref]

Llombart, N.

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar,” IEEE Trans. Microw. Theory Tech. 56(12), 2771–2778 (2008).
[Crossref]

Lopez-Diaz, D.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Lou, M.

Q. Zhang, M. Lou, X. Li, J. L. Reno, W. Pan, J. D. Watson, M. J. Manfra, and J. Kono, “Collective non-perturbative coupling of 2D electrons with high-quality-factor terahertz cavity photons,” Nat. Phys. 12(11), 1005–1012 (2016).
[Crossref]

Lu, J.-Y.

Lu, Y. H.

Manfra, M. J.

Q. Zhang, M. Lou, X. Li, J. L. Reno, W. Pan, J. D. Watson, M. J. Manfra, and J. Kono, “Collective non-perturbative coupling of 2D electrons with high-quality-factor terahertz cavity photons,” Nat. Phys. 12(11), 1005–1012 (2016).
[Crossref]

Mao, Q.

X. Tu, L. Kang, C. Wan, L. Xu, Q. Mao, P. Xiao, X. Jia, W. Dou, J. Chen, and P. Wu, “Diffractive microlens integrated into Nb5N6 microbolometers for THz detection,” Opt. Express 23(11), 13794–13803 (2015).
[Crossref] [PubMed]

X. Tu, L. Kang, X. Liu, Q. Mao, C. Wan, J. Chen, B. Jin, Z. Ji, W. Xu, and P. Wu, “Nb5N6 microbolometer array for terahertz detection,” Chin. Phys. B 22(4), 040701 (2013).
[Crossref]

Marczewski, J.

P. Kopyt, B. Salski, P. Zagrajek, D. Obrębski, and J. Marczewski, “Modeling of Silicon-Based Substrates of Patch Antennas Operating in the Sub-THz Range,” IEEE Trans. Terahertz Sci. Technol. 7(4), 424–432 (2017).
[Crossref]

D. Coquillat, J. Marczewski, P. Kopyt, N. Dyakonova, B. Giffard, and W. Knap, “Improvement of terahertz field effect transistor detectors by substrate thinning and radiation losses reduction,” Opt. Express 24(1), 272–281 (2016).
[Crossref] [PubMed]

Mehdi, I.

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar,” IEEE Trans. Microw. Theory Tech. 56(12), 2771–2778 (2008).
[Crossref]

Meilhan, J.

J. Oden, J. Meilhan, J. Lalanne-Dera, J. F. Roux, F. Garet, J. L. Coutaz, and F. Simoens, “Imaging of broadband terahertz beams using an array of antenna-coupled microbolometers operating at room temperature,” Opt. Express 21(4), 4817–4825 (2013).
[Crossref] [PubMed]

D. T. Nguyen, F. Simoens, J.-L. Ouvrier-Buffet, J. Meilhan, and J.-L. Coutaz, “Broadband THz uncooled antenna-coupled microbolometer array – electromagnetic design, simulations and measurements,” IEEE Trans. THz Sci. Technol. 2(3), 299–305 (2012).

Miyagawa, H.

Miyoshi, M.

N. Nemoto, N. Kanda, R. Imai, K. onishi, M. Miyoshi, S. Kurashina, T. Sasaki, N. Oda, and M. Kuwata-Gonokami, “High-Sensitivity and Broadband Real-Time Terahertz Camera Incorporating a Micro-Bolometer Array With Resonant Cavity Structure,” IEEE Trans. THz Sci. Technol. 6(2), 175–182 (2016).

Muthee, M.

J. Tong, M. Muthee, S.-Y. Chen, S. K. Yngvesson, and J. Yan, “Antenna Enhanced Graphene THz Emitter and Detector,” Nano Lett. 15(8), 5295–5301 (2015).
[Crossref] [PubMed]

Nakanishi, S.

Nakano, H.

H. Nakano, H. Yasui, and J. Yamauchi, “Numerical analysis of two-arm spiral antennas printed on a finite-size dielectric substrate,” IEEE Trans. Antenn. Propag. 50(3), 362–370 (2002).
[Crossref]

Nemoto, N.

N. Nemoto, N. Kanda, R. Imai, K. onishi, M. Miyoshi, S. Kurashina, T. Sasaki, N. Oda, and M. Kuwata-Gonokami, “High-Sensitivity and Broadband Real-Time Terahertz Camera Incorporating a Micro-Bolometer Array With Resonant Cavity Structure,” IEEE Trans. THz Sci. Technol. 6(2), 175–182 (2016).

Nguyen, D. T.

D. T. Nguyen, F. Simoens, J.-L. Ouvrier-Buffet, J. Meilhan, and J.-L. Coutaz, “Broadband THz uncooled antenna-coupled microbolometer array – electromagnetic design, simulations and measurements,” IEEE Trans. THz Sci. Technol. 2(3), 299–305 (2012).

Obrebski, D.

P. Kopyt, B. Salski, P. Zagrajek, D. Obrębski, and J. Marczewski, “Modeling of Silicon-Based Substrates of Patch Antennas Operating in the Sub-THz Range,” IEEE Trans. Terahertz Sci. Technol. 7(4), 424–432 (2017).
[Crossref]

Oda, N.

N. Nemoto, N. Kanda, R. Imai, K. onishi, M. Miyoshi, S. Kurashina, T. Sasaki, N. Oda, and M. Kuwata-Gonokami, “High-Sensitivity and Broadband Real-Time Terahertz Camera Incorporating a Micro-Bolometer Array With Resonant Cavity Structure,” IEEE Trans. THz Sci. Technol. 6(2), 175–182 (2016).

Oden, J.

onishi, K.

N. Nemoto, N. Kanda, R. Imai, K. onishi, M. Miyoshi, S. Kurashina, T. Sasaki, N. Oda, and M. Kuwata-Gonokami, “High-Sensitivity and Broadband Real-Time Terahertz Camera Incorporating a Micro-Bolometer Array With Resonant Cavity Structure,” IEEE Trans. THz Sci. Technol. 6(2), 175–182 (2016).

Ouvrier-Buffet, J.-L.

D. T. Nguyen, F. Simoens, J.-L. Ouvrier-Buffet, J. Meilhan, and J.-L. Coutaz, “Broadband THz uncooled antenna-coupled microbolometer array – electromagnetic design, simulations and measurements,” IEEE Trans. THz Sci. Technol. 2(3), 299–305 (2012).

Palacios, T.

H. W. Hou, Z. Liu, J. H. Teng, T. Palacios, and S. J. Chua, “Enhancement of responsivity for a transistor terahertz detector by a Fabry-Pérot resonance-cavity,” Appl. Phys. Lett. 110(16), 162101 (2017).
[Crossref]

Palmer, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Pan, W.

Q. Zhang, M. Lou, X. Li, J. L. Reno, W. Pan, J. D. Watson, M. J. Manfra, and J. Kono, “Collective non-perturbative coupling of 2D electrons with high-quality-factor terahertz cavity photons,” Nat. Phys. 12(11), 1005–1012 (2016).
[Crossref]

Park, J. W.

Park, J.-W.

Park, K. H.

Pile, B. C.

B. C. Pile and G. W. Taylor, “Resonant Cavity Enhanced Thyristor-Based Photodetectors for Optical Receivers,” IEEE J. Quantum Electron. 52(11), 1–7 (2016).
[Crossref]

Pozar, D. M.

M. Kominami, D. M. Pozar, and D. H. Schaubert, “Dipole and slot elements and arrays on semi-infinite substrates,” IEEE Trans. Antenn. Propag. 33(6), 600–607 (1995).
[Crossref]

Qin, H.

Y. Huang, H. Qin, B. Zhang, J. Wu, G. Zhou, and B. Jin, “Excitation of terahertz plasmon-polariton in a grating coupled two-dimensional electron gas with a Fabry-Pérot cavity,” Appl. Phys. Lett. 102(25), 253106 (2013).
[Crossref]

Reno, J. L.

Q. Zhang, M. Lou, X. Li, J. L. Reno, W. Pan, J. D. Watson, M. J. Manfra, and J. Kono, “Collective non-perturbative coupling of 2D electrons with high-quality-factor terahertz cavity photons,” Nat. Phys. 12(11), 1005–1012 (2016).
[Crossref]

Rhee, J. Y.

Roux, J. F.

Rutledge, D. B.

N. G. Alexopoulos, P. B. Katehi, and D. B. Rutledge, “Substrate optimization for integrated circuit antennas,” IEEE Trans. Microw. Theory Tech. 31(7), 550–557 (1983).
[Crossref]

Salski, B.

P. Kopyt, B. Salski, P. Zagrajek, D. Obrębski, and J. Marczewski, “Modeling of Silicon-Based Substrates of Patch Antennas Operating in the Sub-THz Range,” IEEE Trans. Terahertz Sci. Technol. 7(4), 424–432 (2017).
[Crossref]

Sasaki, T.

N. Nemoto, N. Kanda, R. Imai, K. onishi, M. Miyoshi, S. Kurashina, T. Sasaki, N. Oda, and M. Kuwata-Gonokami, “High-Sensitivity and Broadband Real-Time Terahertz Camera Incorporating a Micro-Bolometer Array With Resonant Cavity Structure,” IEEE Trans. THz Sci. Technol. 6(2), 175–182 (2016).

Schalch, J.

Schaubert, D. H.

M. Kominami, D. M. Pozar, and D. H. Schaubert, “Dipole and slot elements and arrays on semi-infinite substrates,” IEEE Trans. Antenn. Propag. 33(6), 600–607 (1995).
[Crossref]

Schlecht, E.

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar,” IEEE Trans. Microw. Theory Tech. 56(12), 2771–2778 (2008).
[Crossref]

Schmogrow, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Shin, J.-H.

Shirai, H.

Shiwa, M.

Siegel, P. H.

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar,” IEEE Trans. Microw. Theory Tech. 56(12), 2771–2778 (2008).
[Crossref]

Simoens, F.

J. Oden, J. Meilhan, J. Lalanne-Dera, J. F. Roux, F. Garet, J. L. Coutaz, and F. Simoens, “Imaging of broadband terahertz beams using an array of antenna-coupled microbolometers operating at room temperature,” Opt. Express 21(4), 4817–4825 (2013).
[Crossref] [PubMed]

D. T. Nguyen, F. Simoens, J.-L. Ouvrier-Buffet, J. Meilhan, and J.-L. Coutaz, “Broadband THz uncooled antenna-coupled microbolometer array – electromagnetic design, simulations and measurements,” IEEE Trans. THz Sci. Technol. 2(3), 299–305 (2012).

Skalare, A.

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar,” IEEE Trans. Microw. Theory Tech. 56(12), 2771–2778 (2008).
[Crossref]

Strite, S.

M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78(2), 607–639 (1995).
[Crossref]

Sun, C.-K.

Y.-R. Huang, H.-P. Chen, P.-C. Chiu, J.-I. Chyi, B.-H. Wang, S.-Y. Chen, and C.-K. Sun, “Propagation, Resonance, and Radiation on Terahertz Optoelectronic Integrated Circuits,” IEEE Photonics J. 4(3), 699–706 (2012).
[Crossref]

L.-J. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, “A simple terahertz spectrometer based on a low-reflectivity Fabry-Perot interferometer using Fourier transform spectroscopy,” Opt. Express 14(9), 3840–3846 (2006).
[Crossref] [PubMed]

Taylor, G. W.

B. C. Pile and G. W. Taylor, “Resonant Cavity Enhanced Thyristor-Based Photodetectors for Optical Receivers,” IEEE J. Quantum Electron. 52(11), 1–7 (2016).
[Crossref]

Teng, J. H.

H. W. Hou, Z. Liu, J. H. Teng, T. Palacios, and S. J. Chua, “Enhancement of responsivity for a transistor terahertz detector by a Fabry-Pérot resonance-cavity,” Appl. Phys. Lett. 110(16), 162101 (2017).
[Crossref]

Tessmann, A.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Tong, J.

J. Tong, M. Muthee, S.-Y. Chen, S. K. Yngvesson, and J. Yan, “Antenna Enhanced Graphene THz Emitter and Detector,” Nano Lett. 15(8), 5295–5301 (2015).
[Crossref] [PubMed]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Tsurumachi, N.

Tu, X.

X. Tu, L. Kang, C. Wan, L. Xu, Q. Mao, P. Xiao, X. Jia, W. Dou, J. Chen, and P. Wu, “Diffractive microlens integrated into Nb5N6 microbolometers for THz detection,” Opt. Express 23(11), 13794–13803 (2015).
[Crossref] [PubMed]

X. Tu, L. Kang, X. Liu, Q. Mao, C. Wan, J. Chen, B. Jin, Z. Ji, W. Xu, and P. Wu, “Nb5N6 microbolometer array for terahertz detection,” Chin. Phys. B 22(4), 040701 (2013).
[Crossref]

Turunen, J.

Ünlü, M. S.

M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78(2), 607–639 (1995).
[Crossref]

Vartiainen, I.

Wan, C.

X. Tu, L. Kang, C. Wan, L. Xu, Q. Mao, P. Xiao, X. Jia, W. Dou, J. Chen, and P. Wu, “Diffractive microlens integrated into Nb5N6 microbolometers for THz detection,” Opt. Express 23(11), 13794–13803 (2015).
[Crossref] [PubMed]

X. Tu, L. Kang, X. Liu, Q. Mao, C. Wan, J. Chen, B. Jin, Z. Ji, W. Xu, and P. Wu, “Nb5N6 microbolometer array for terahertz detection,” Chin. Phys. B 22(4), 040701 (2013).
[Crossref]

Wang, B.-H.

Y.-R. Huang, H.-P. Chen, P.-C. Chiu, J.-I. Chyi, B.-H. Wang, S.-Y. Chen, and C.-K. Sun, “Propagation, Resonance, and Radiation on Terahertz Optoelectronic Integrated Circuits,” IEEE Photonics J. 4(3), 699–706 (2012).
[Crossref]

Wang, J.

Watanabe, M.

Watson, J. D.

Q. Zhang, M. Lou, X. Li, J. L. Reno, W. Pan, J. D. Watson, M. J. Manfra, and J. Kono, “Collective non-perturbative coupling of 2D electrons with high-quality-factor terahertz cavity photons,” Nat. Phys. 12(11), 1005–1012 (2016).
[Crossref]

Wu, J.

Y. Huang, H. Qin, B. Zhang, J. Wu, G. Zhou, and B. Jin, “Excitation of terahertz plasmon-polariton in a grating coupled two-dimensional electron gas with a Fabry-Pérot cavity,” Appl. Phys. Lett. 102(25), 253106 (2013).
[Crossref]

Wu, P.

X. Tu, L. Kang, C. Wan, L. Xu, Q. Mao, P. Xiao, X. Jia, W. Dou, J. Chen, and P. Wu, “Diffractive microlens integrated into Nb5N6 microbolometers for THz detection,” Opt. Express 23(11), 13794–13803 (2015).
[Crossref] [PubMed]

X. Tu, L. Kang, X. Liu, Q. Mao, C. Wan, J. Chen, B. Jin, Z. Ji, W. Xu, and P. Wu, “Nb5N6 microbolometer array for terahertz detection,” Chin. Phys. B 22(4), 040701 (2013).
[Crossref]

Xiao, P.

Xu, L.

Xu, W.

X. Tu, L. Kang, X. Liu, Q. Mao, C. Wan, J. Chen, B. Jin, Z. Ji, W. Xu, and P. Wu, “Nb5N6 microbolometer array for terahertz detection,” Chin. Phys. B 22(4), 040701 (2013).
[Crossref]

Yamauchi, J.

H. Nakano, H. Yasui, and J. Yamauchi, “Numerical analysis of two-arm spiral antennas printed on a finite-size dielectric substrate,” IEEE Trans. Antenn. Propag. 50(3), 362–370 (2002).
[Crossref]

Yan, J.

J. Tong, M. Muthee, S.-Y. Chen, S. K. Yngvesson, and J. Yan, “Antenna Enhanced Graphene THz Emitter and Detector,” Nano Lett. 15(8), 5295–5301 (2015).
[Crossref] [PubMed]

Yan, W.

B. Zhang, W. Yan, Z. Li, L. Bai, and F. Yang, “Analysis of Substrate Effect in Field Effect Transistor Terahertz Detectors,” IEEE J. Sel. Top. Quantum Electron. 23(4), 8500607 (2017).
[Crossref]

Yang, F.

B. Zhang, W. Yan, Z. Li, L. Bai, and F. Yang, “Analysis of Substrate Effect in Field Effect Transistor Terahertz Detectors,” IEEE J. Sel. Top. Quantum Electron. 23(4), 8500607 (2017).
[Crossref]

Yasui, H.

H. Nakano, H. Yasui, and J. Yamauchi, “Numerical analysis of two-arm spiral antennas printed on a finite-size dielectric substrate,” IEEE Trans. Antenn. Propag. 50(3), 362–370 (2002).
[Crossref]

Yngvesson, S. K.

J. Tong, M. Muthee, S.-Y. Chen, S. K. Yngvesson, and J. Yan, “Antenna Enhanced Graphene THz Emitter and Detector,” Nano Lett. 15(8), 5295–5301 (2015).
[Crossref] [PubMed]

Yoon, Y.-J.

Zagrajek, P.

P. Kopyt, B. Salski, P. Zagrajek, D. Obrębski, and J. Marczewski, “Modeling of Silicon-Based Substrates of Patch Antennas Operating in the Sub-THz Range,” IEEE Trans. Terahertz Sci. Technol. 7(4), 424–432 (2017).
[Crossref]

Zhang, B.

B. Zhang, W. Yan, Z. Li, L. Bai, and F. Yang, “Analysis of Substrate Effect in Field Effect Transistor Terahertz Detectors,” IEEE J. Sel. Top. Quantum Electron. 23(4), 8500607 (2017).
[Crossref]

Y. Huang, H. Qin, B. Zhang, J. Wu, G. Zhou, and B. Jin, “Excitation of terahertz plasmon-polariton in a grating coupled two-dimensional electron gas with a Fabry-Pérot cavity,” Appl. Phys. Lett. 102(25), 253106 (2013).
[Crossref]

Zhang, J.

Zhang, Q.

Q. Zhang, M. Lou, X. Li, J. L. Reno, W. Pan, J. D. Watson, M. J. Manfra, and J. Kono, “Collective non-perturbative coupling of 2D electrons with high-quality-factor terahertz cavity photons,” Nat. Phys. 12(11), 1005–1012 (2016).
[Crossref]

Zhang, X.

Zhang, X. C.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Zhao, X.

Zheng, H. Y.

Zhou, G.

Y. Huang, H. Qin, B. Zhang, J. Wu, G. Zhou, and B. Jin, “Excitation of terahertz plasmon-polariton in a grating coupled two-dimensional electron gas with a Fabry-Pérot cavity,” Appl. Phys. Lett. 102(25), 253106 (2013).
[Crossref]

Zwick, T.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

Y. Huang, H. Qin, B. Zhang, J. Wu, G. Zhou, and B. Jin, “Excitation of terahertz plasmon-polariton in a grating coupled two-dimensional electron gas with a Fabry-Pérot cavity,” Appl. Phys. Lett. 102(25), 253106 (2013).
[Crossref]

H. W. Hou, Z. Liu, J. H. Teng, T. Palacios, and S. J. Chua, “Enhancement of responsivity for a transistor terahertz detector by a Fabry-Pérot resonance-cavity,” Appl. Phys. Lett. 110(16), 162101 (2017).
[Crossref]

Chin. Phys. B (1)

X. Tu, L. Kang, X. Liu, Q. Mao, C. Wan, J. Chen, B. Jin, Z. Ji, W. Xu, and P. Wu, “Nb5N6 microbolometer array for terahertz detection,” Chin. Phys. B 22(4), 040701 (2013).
[Crossref]

IEEE J. Quantum Electron. (1)

B. C. Pile and G. W. Taylor, “Resonant Cavity Enhanced Thyristor-Based Photodetectors for Optical Receivers,” IEEE J. Quantum Electron. 52(11), 1–7 (2016).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

B. Zhang, W. Yan, Z. Li, L. Bai, and F. Yang, “Analysis of Substrate Effect in Field Effect Transistor Terahertz Detectors,” IEEE J. Sel. Top. Quantum Electron. 23(4), 8500607 (2017).
[Crossref]

IEEE Photonics J. (1)

Y.-R. Huang, H.-P. Chen, P.-C. Chiu, J.-I. Chyi, B.-H. Wang, S.-Y. Chen, and C.-K. Sun, “Propagation, Resonance, and Radiation on Terahertz Optoelectronic Integrated Circuits,” IEEE Photonics J. 4(3), 699–706 (2012).
[Crossref]

IEEE Trans. Antenn. Propag. (3)

M. Kominami, D. M. Pozar, and D. H. Schaubert, “Dipole and slot elements and arrays on semi-infinite substrates,” IEEE Trans. Antenn. Propag. 33(6), 600–607 (1995).
[Crossref]

H. Nakano, H. Yasui, and J. Yamauchi, “Numerical analysis of two-arm spiral antennas printed on a finite-size dielectric substrate,” IEEE Trans. Antenn. Propag. 50(3), 362–370 (2002).
[Crossref]

P. B. Katehi and N. G. Alexopoulos, “On the effect of substrate thickness and permittivity on printed circuit antennas,” IEEE Trans. Antenn. Propag. 31(1), 34–39 (1983).
[Crossref]

IEEE Trans. Microw. Theory Tech. (2)

N. G. Alexopoulos, P. B. Katehi, and D. B. Rutledge, “Substrate optimization for integrated circuit antennas,” IEEE Trans. Microw. Theory Tech. 31(7), 550–557 (1983).
[Crossref]

K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar,” IEEE Trans. Microw. Theory Tech. 56(12), 2771–2778 (2008).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

P. Kopyt, B. Salski, P. Zagrajek, D. Obrębski, and J. Marczewski, “Modeling of Silicon-Based Substrates of Patch Antennas Operating in the Sub-THz Range,” IEEE Trans. Terahertz Sci. Technol. 7(4), 424–432 (2017).
[Crossref]

IEEE Trans. THz Sci. Technol. (2)

N. Nemoto, N. Kanda, R. Imai, K. onishi, M. Miyoshi, S. Kurashina, T. Sasaki, N. Oda, and M. Kuwata-Gonokami, “High-Sensitivity and Broadband Real-Time Terahertz Camera Incorporating a Micro-Bolometer Array With Resonant Cavity Structure,” IEEE Trans. THz Sci. Technol. 6(2), 175–182 (2016).

D. T. Nguyen, F. Simoens, J.-L. Ouvrier-Buffet, J. Meilhan, and J.-L. Coutaz, “Broadband THz uncooled antenna-coupled microbolometer array – electromagnetic design, simulations and measurements,” IEEE Trans. THz Sci. Technol. 2(3), 299–305 (2012).

J. Appl. Phys. (1)

M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78(2), 607–639 (1995).
[Crossref]

Nano Lett. (1)

J. Tong, M. Muthee, S.-Y. Chen, S. K. Yngvesson, and J. Yan, “Antenna Enhanced Graphene THz Emitter and Detector,” Nano Lett. 15(8), 5295–5301 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Nat. Photonics (2)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Nat. Phys. (1)

Q. Zhang, M. Lou, X. Li, J. L. Reno, W. Pan, J. D. Watson, M. J. Manfra, and J. Kono, “Collective non-perturbative coupling of 2D electrons with high-quality-factor terahertz cavity photons,” Nat. Phys. 12(11), 1005–1012 (2016).
[Crossref]

Opt. Express (10)

D. S. Bulgarevich, M. Watanabe, and M. Shiwa, “Highly-efficient aperture array terahertz band-pass filtering,” Opt. Express 18(24), 25250–25255 (2010).
[Crossref] [PubMed]

H. Y. Zheng, X. R. Jin, J. W. Park, Y. H. Lu, J. Y. Rhee, W. H. Jang, H. Cheong, and Y. P. Lee, “Tunable dual-band perfect absorbers based on extraordinary optical transmission and Fabry-Perot cavity resonance,” Opt. Express 20(21), 24002–24009 (2012).
[Crossref] [PubMed]

J. Wang, J. Hu, P. Becla, A. M. Agarwal, and L. C. Kimerling, “Resonant-cavity-enhanced mid-infrared photodetector on a silicon platform,” Opt. Express 18(12), 12890–12896 (2010).
[Crossref] [PubMed]

G. Kang, I. Vartiainen, B. Bai, and J. Turunen, “Enhanced dual-band infrared absorption in a Fabry-Perot cavity with subwavelength metallic grating,” Opt. Express 19(2), 770–778 (2011).
[Crossref] [PubMed]

L.-J. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, “A simple terahertz spectrometer based on a low-reflectivity Fabry-Perot interferometer using Fourier transform spectroscopy,” Opt. Express 14(9), 3840–3846 (2006).
[Crossref] [PubMed]

D. Coquillat, J. Marczewski, P. Kopyt, N. Dyakonova, B. Giffard, and W. Knap, “Improvement of terahertz field effect transistor detectors by substrate thinning and radiation losses reduction,” Opt. Express 24(1), 272–281 (2016).
[Crossref] [PubMed]

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Analysis of the thickness dependence of metamaterial absorbers at terahertz frequencies,” Opt. Express 26(3), 2242–2251 (2018).
[Crossref] [PubMed]

S.-P. Han, H. Ko, J.-W. Park, N. Kim, Y.-J. Yoon, J.-H. Shin, D. Y. Kim, D. H. Lee, and K. H. Park, “InGaAs Schottky barrier diode array detector for a real-time compact terahertz line scanner,” Opt. Express 21(22), 25874–25882 (2013).
[Crossref] [PubMed]

J. Oden, J. Meilhan, J. Lalanne-Dera, J. F. Roux, F. Garet, J. L. Coutaz, and F. Simoens, “Imaging of broadband terahertz beams using an array of antenna-coupled microbolometers operating at room temperature,” Opt. Express 21(4), 4817–4825 (2013).
[Crossref] [PubMed]

X. Tu, L. Kang, C. Wan, L. Xu, Q. Mao, P. Xiao, X. Jia, W. Dou, J. Chen, and P. Wu, “Diffractive microlens integrated into Nb5N6 microbolometers for THz detection,” Opt. Express 23(11), 13794–13803 (2015).
[Crossref] [PubMed]

Other (2)

http://vadiodes.com/ .

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic diagram of an antenna-coupled Nb5N6 microbolometer with substrate cavity length of L. (b) Optical microscopy image of the Nb5N6 microbolometer THz detector.
Fig. 2
Fig. 2 Fixed frequency of the incident THz signal. Device voltage response with different substrate cavity thicknesses: dots represent the measured response voltages of the detector with different substrate device cavity lengths while blue lines represent the simulation results of electric field intensity on the square device with different thicknesses when incident THz frequency is (a) f = 0.2 THz, (b) f = 0.24 THz, (c) f = 0.3 THz, and (d) f = 0.35 THz.
Fig. 3
Fig. 3 Voltage response of the Nb5N6 microbolometer THz detector with different incident frequencies when the substrate cavity length is fixed. Dots represent relative voltage responses of the device while blue lines represent the simulation results of the electric field intensity at the device location with substrate thickness of (a) L = 300 μm, (b) L = 440 μm, (c) L = 580 μm, and (d) L = 720 μm.
Fig. 4
Fig. 4 (a) Schematic of the asymmetric FP cavity with tunable distance between Si substrate and movable Cu plate, in which L is the substrate thickness and the d is the distance from the metal piece to the backside surface of the device, ∆d is moving distance. Here L = 670 µm, d is about 2.6 mm, and ∆d = 100 µm. (b) Measured optical responsivity of the microbolometer with different mirror distances (dotted line) and calculated electric intensity by FDTD as a simple model (blue line).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d r e s o n a n t = 2 n + 1 4 ε r λ 0 = ( 2 n + 1 ) λ g 4 , ( n = 0 , 1 , 2.... )
f r e s o n a n t = ( 2 n + 1 ) c 4 ε r L = ( 2 n + 1 ) f 0 , ( n = 0 , 1 , 2.... )

Metrics