Abstract

We demonstrated Doppler-free two-photon absorption dual-comb spectroscopy of 5S1/2 - 5D5/2 and 5D3/2 transitions of Rb. We employed simple pulse-shaping of the dual-comb source and eliminated Doppler-broadening backgrounds, which cause fitting errors of the Doppler-free signals. Moreover, to improve sensitivity, we investigated the coherence in dual-comb fluorescence signals and the coherent averaging method was applied to fluorescence dual-comb detection for the first time. The detection sensitivity was significantly improved by coherent averaging to reduce the noise floor. Observed Doppler-free spectra was fitted to Voigt profiles and we performed absolute frequency determination with a precision of about 100 kHz.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Doppler-free dual-comb spectroscopy of Rb using optical-optical double resonance technique

Akiko Nishiyama, Satoru Yoshida, Yoshiaki Nakajima, Hiroyuki Sasada, Ken’ichi Nakagawa, Atsushi Onae, and Kaoru Minoshima
Opt. Express 24(22) 25894-25904 (2016)

Sensitivity improvement of dual-comb spectroscopy using mode-filtering technique

Akiko Nishiyama, Satoru Yoshida, Takuya Hariki, Yoshiaki Nakajima, and Kaoru Minoshima
Opt. Express 25(25) 31730-31738 (2017)

Computational coherent averaging for free-running dual-comb spectroscopy

Lukasz A. Sterczewski, Jonas Westberg, and Gerard Wysocki
Opt. Express 27(17) 23875-23893 (2019)

References

  • View by:
  • |
  • |
  • |

  1. E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
    [Crossref]
  2. A. M. Zolot, F. R. Giorgetta, E. Baumann, W. C. Swann, I. Coddington, and N. R. Newbury, “Broad-band frequency references in the near-infrared: Accurate dual comb spectroscopy of methane and acetylene,” Quant. Spectrosc. Radiat. Transf. 118, 26–39 (2013).
    [Crossref]
  3. S. Okubo, K. Iwakuni, K. M. T. Yamada, H. Inaba, A. Onae, F.-L. Hong, and H. Sasada, “Transition dipole-moment of the ν1 + ν3 band of acetylene measured with dual-comb Fourier-transform spectroscopy,” J. Mol. Spectrosc. 341, 10–16 (2017).
    [Crossref]
  4. I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
    [Crossref]
  5. P. Jacquet, J. Mandon, B. Bernhardt, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Frequency Comb Fourier Transform Spectroscopy with kHz Optical Resolution,” in Fourier Transform Spectroscopy, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FMB2.
  6. S. Okubo, Y.-D. Hsieh, H. Inaba, A. Onae, M. Hashimoto, and T. Yasui, “Near-infrared broadband dual-frequency-comb spectroscopy with a resolution beyond the Fourier limit determined by the observation time window,” Opt. Express 23(26), 33184–33193 (2015).
    [Crossref] [PubMed]
  7. A. Nishiyama, S. Yoshida, Y. Nakajima, H. Sasada, K. Nakagawa, A. Onae, and K. Minoshima, “Doppler-free dual-comb spectroscopy of Rb using optical-optical double resonance technique,” Opt. Express 24(22), 25894–25904 (2016).
    [Crossref] [PubMed]
  8. T. Ideguchi, B. Bernhardt, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Raman-induced Kerr-effect dual-comb spectroscopy,” Opt. Lett. 37(21), 4498–4500 (2012).
    [Crossref] [PubMed]
  9. T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
    [Crossref] [PubMed]
  10. B. Lomsadze and S. T. Cundiff, “Frequency comb-based four-wave-mixing spectroscopy,” Opt. Lett. 42(12), 2346–2349 (2017).
    [Crossref] [PubMed]
  11. A. Hipke, S. A. Meek, T. Ideguchi, T. W. Hänsch, and N. Picqué, “Broadband Doppler-limited two-photon and stepwise excitation spectroscopy with laser frequency combs,” Phys. Rev. A 90(1), 011805 (2014).
    [Crossref]
  12. A. Hipke, S. A. Meek, G. Guelachvili, T. W. Hänsch, and N. Picque, “Doppler-free broad spectral bandwidth two-photon spectroscopy with two laser frequency combs,” in Conference on Lasers and Electro Optics (Optical Society of America, 2013), paper CTh5C.8.
    [Crossref]
  13. S. A. Meek, A. Hipke, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Doppler-free Fourier transform spectroscopy,” Opt. Lett. 43(1), 162–165 (2018).
    [Crossref] [PubMed]
  14. A. Hipke, (2016) “Dual-frequency-comb two-photon spectroscopy,” Dissertation, LMU München: Faculty of Physics, https://edoc.ub.uni-muenchen.de/19360/ .
  15. R. Teets, J. Eckstein, and T. W. Hänsch, “Coherent two-photon excitation by multiple light pulses,” Phys. Rev. Lett. 38(14), 760–764 (1977).
    [Crossref]
  16. J. N. Eckstein, A. I. Ferguson, and T. W. Hänsch, “High-resolution two-photon spectroscopy with picosecond light pulses,” Phys. Rev. Lett. 40(13), 847–850 (1978).
    [Crossref]
  17. P. Fendel, S. D. Bergeson, T. Udem, and T. W. Hänsch, “Two-photon frequency comb spectroscopy of the 6s-8s transition in cesium,” Opt. Lett. 32(6), 701–703 (2007).
    [Crossref] [PubMed]
  18. S. Y. Zhang, J. T. Wu, Y. L. Zhang, J. X. Leng, W. P. Yang, Z. G. Zhang, and J. Y. Zhao, “Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms,” Sci. Rep. 5(1), 15114 (2015).
    [Crossref] [PubMed]
  19. A. Nishiyama, K. Nakashima, A. Matsuba, and M. Misono, “Doppler-free two-photon absorption spectroscopy of rovibronic transition of naphthalene calibrated with an optical frequency comb,” J. Mol. Spectrosc. 318, 40–45 (2015).
    [Crossref]
  20. M. Misono, J. Wang, M. Ushino, M. Okubo, H. Katô, M. Baba, and S. Nagakura, “Doppler-free two-photon absorption spectroscopy and the Zeeman effect of the A1B2u←X1A1g1401101 band of benzene,” J. Chem. Phys. 16(1), 162–272 (2002).
    [Crossref]
  21. I. Barmes, S. Witte, and K. S. E. Eikema, “High-Precision Spectroscopy with Counterpropagating Femtosecond Pulses,” Phys. Rev. Lett. 111(2), 023007 (2013).
    [Crossref] [PubMed]
  22. J. Wu, D. Hou, Z. Qin, X. Dai, Z. Zhang, and J. Zhao, “Erbium fiber laser-based direct frequency comb spectroscopy of Rb two-photon transitions,” Opt. Lett. 38(23), 5028–5031 (2013).
    [Crossref] [PubMed]
  23. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34(14), 2153–2155 (2009).
    [Crossref] [PubMed]
  24. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
    [Crossref]
  25. J. Snadden, R. Clarke, and E. Riis, “FM spectroscopy in fluorescence in laser-cooled rubidium,” Opt. Commun. 152(4–6), 283–288 (1998).
    [Crossref]
  26. Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, and F.-L. Hong, “A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator,” Opt. Express 18(2), 1667–1676 (2010).
    [Crossref] [PubMed]
  27. D. Sheng, A. Pérez Galván, and L. A. Orozco, “Lifetime measurements of the 5d states of rubidium,” Phys. Rev. A 78(6), 062506 (2008).
    [Crossref]
  28. T. J. Quinn, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),” Metrologia 40(2), 103–133 (2003).
    [Crossref]

2018 (1)

2017 (2)

S. Okubo, K. Iwakuni, K. M. T. Yamada, H. Inaba, A. Onae, F.-L. Hong, and H. Sasada, “Transition dipole-moment of the ν1 + ν3 band of acetylene measured with dual-comb Fourier-transform spectroscopy,” J. Mol. Spectrosc. 341, 10–16 (2017).
[Crossref]

B. Lomsadze and S. T. Cundiff, “Frequency comb-based four-wave-mixing spectroscopy,” Opt. Lett. 42(12), 2346–2349 (2017).
[Crossref] [PubMed]

2016 (2)

2015 (3)

S. Okubo, Y.-D. Hsieh, H. Inaba, A. Onae, M. Hashimoto, and T. Yasui, “Near-infrared broadband dual-frequency-comb spectroscopy with a resolution beyond the Fourier limit determined by the observation time window,” Opt. Express 23(26), 33184–33193 (2015).
[Crossref] [PubMed]

S. Y. Zhang, J. T. Wu, Y. L. Zhang, J. X. Leng, W. P. Yang, Z. G. Zhang, and J. Y. Zhao, “Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms,” Sci. Rep. 5(1), 15114 (2015).
[Crossref] [PubMed]

A. Nishiyama, K. Nakashima, A. Matsuba, and M. Misono, “Doppler-free two-photon absorption spectroscopy of rovibronic transition of naphthalene calibrated with an optical frequency comb,” J. Mol. Spectrosc. 318, 40–45 (2015).
[Crossref]

2014 (1)

A. Hipke, S. A. Meek, T. Ideguchi, T. W. Hänsch, and N. Picqué, “Broadband Doppler-limited two-photon and stepwise excitation spectroscopy with laser frequency combs,” Phys. Rev. A 90(1), 011805 (2014).
[Crossref]

2013 (4)

A. M. Zolot, F. R. Giorgetta, E. Baumann, W. C. Swann, I. Coddington, and N. R. Newbury, “Broad-band frequency references in the near-infrared: Accurate dual comb spectroscopy of methane and acetylene,” Quant. Spectrosc. Radiat. Transf. 118, 26–39 (2013).
[Crossref]

I. Barmes, S. Witte, and K. S. E. Eikema, “High-Precision Spectroscopy with Counterpropagating Femtosecond Pulses,” Phys. Rev. Lett. 111(2), 023007 (2013).
[Crossref] [PubMed]

J. Wu, D. Hou, Z. Qin, X. Dai, Z. Zhang, and J. Zhao, “Erbium fiber laser-based direct frequency comb spectroscopy of Rb two-photon transitions,” Opt. Lett. 38(23), 5028–5031 (2013).
[Crossref] [PubMed]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (1)

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

2010 (2)

2009 (1)

2008 (1)

D. Sheng, A. Pérez Galván, and L. A. Orozco, “Lifetime measurements of the 5d states of rubidium,” Phys. Rev. A 78(6), 062506 (2008).
[Crossref]

2007 (1)

2003 (1)

T. J. Quinn, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),” Metrologia 40(2), 103–133 (2003).
[Crossref]

2002 (1)

M. Misono, J. Wang, M. Ushino, M. Okubo, H. Katô, M. Baba, and S. Nagakura, “Doppler-free two-photon absorption spectroscopy and the Zeeman effect of the A1B2u←X1A1g1401101 band of benzene,” J. Chem. Phys. 16(1), 162–272 (2002).
[Crossref]

1998 (1)

J. Snadden, R. Clarke, and E. Riis, “FM spectroscopy in fluorescence in laser-cooled rubidium,” Opt. Commun. 152(4–6), 283–288 (1998).
[Crossref]

1978 (1)

J. N. Eckstein, A. I. Ferguson, and T. W. Hänsch, “High-resolution two-photon spectroscopy with picosecond light pulses,” Phys. Rev. Lett. 40(13), 847–850 (1978).
[Crossref]

1977 (1)

R. Teets, J. Eckstein, and T. W. Hänsch, “Coherent two-photon excitation by multiple light pulses,” Phys. Rev. Lett. 38(14), 760–764 (1977).
[Crossref]

Baba, M.

M. Misono, J. Wang, M. Ushino, M. Okubo, H. Katô, M. Baba, and S. Nagakura, “Doppler-free two-photon absorption spectroscopy and the Zeeman effect of the A1B2u←X1A1g1401101 band of benzene,” J. Chem. Phys. 16(1), 162–272 (2002).
[Crossref]

Barmes, I.

I. Barmes, S. Witte, and K. S. E. Eikema, “High-Precision Spectroscopy with Counterpropagating Femtosecond Pulses,” Phys. Rev. Lett. 111(2), 023007 (2013).
[Crossref] [PubMed]

Baumann, E.

A. M. Zolot, F. R. Giorgetta, E. Baumann, W. C. Swann, I. Coddington, and N. R. Newbury, “Broad-band frequency references in the near-infrared: Accurate dual comb spectroscopy of methane and acetylene,” Quant. Spectrosc. Radiat. Transf. 118, 26–39 (2013).
[Crossref]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

Bergeson, S. D.

Bernhardt, B.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

T. Ideguchi, B. Bernhardt, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Raman-induced Kerr-effect dual-comb spectroscopy,” Opt. Lett. 37(21), 4498–4500 (2012).
[Crossref] [PubMed]

Clarke, R.

J. Snadden, R. Clarke, and E. Riis, “FM spectroscopy in fluorescence in laser-cooled rubidium,” Opt. Commun. 152(4–6), 283–288 (1998).
[Crossref]

Coddington, I.

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
[Crossref]

A. M. Zolot, F. R. Giorgetta, E. Baumann, W. C. Swann, I. Coddington, and N. R. Newbury, “Broad-band frequency references in the near-infrared: Accurate dual comb spectroscopy of methane and acetylene,” Quant. Spectrosc. Radiat. Transf. 118, 26–39 (2013).
[Crossref]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34(14), 2153–2155 (2009).
[Crossref] [PubMed]

Cundiff, S. T.

Dai, X.

Eckstein, J.

R. Teets, J. Eckstein, and T. W. Hänsch, “Coherent two-photon excitation by multiple light pulses,” Phys. Rev. Lett. 38(14), 760–764 (1977).
[Crossref]

Eckstein, J. N.

J. N. Eckstein, A. I. Ferguson, and T. W. Hänsch, “High-resolution two-photon spectroscopy with picosecond light pulses,” Phys. Rev. Lett. 40(13), 847–850 (1978).
[Crossref]

Eikema, K. S. E.

I. Barmes, S. Witte, and K. S. E. Eikema, “High-Precision Spectroscopy with Counterpropagating Femtosecond Pulses,” Phys. Rev. Lett. 111(2), 023007 (2013).
[Crossref] [PubMed]

Fendel, P.

Ferguson, A. I.

J. N. Eckstein, A. I. Ferguson, and T. W. Hänsch, “High-resolution two-photon spectroscopy with picosecond light pulses,” Phys. Rev. Lett. 40(13), 847–850 (1978).
[Crossref]

Giorgetta, F. R.

A. M. Zolot, F. R. Giorgetta, E. Baumann, W. C. Swann, I. Coddington, and N. R. Newbury, “Broad-band frequency references in the near-infrared: Accurate dual comb spectroscopy of methane and acetylene,” Quant. Spectrosc. Radiat. Transf. 118, 26–39 (2013).
[Crossref]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

Guelachvili, G.

Hänsch, T. W.

S. A. Meek, A. Hipke, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Doppler-free Fourier transform spectroscopy,” Opt. Lett. 43(1), 162–165 (2018).
[Crossref] [PubMed]

A. Hipke, S. A. Meek, T. Ideguchi, T. W. Hänsch, and N. Picqué, “Broadband Doppler-limited two-photon and stepwise excitation spectroscopy with laser frequency combs,” Phys. Rev. A 90(1), 011805 (2014).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

T. Ideguchi, B. Bernhardt, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Raman-induced Kerr-effect dual-comb spectroscopy,” Opt. Lett. 37(21), 4498–4500 (2012).
[Crossref] [PubMed]

P. Fendel, S. D. Bergeson, T. Udem, and T. W. Hänsch, “Two-photon frequency comb spectroscopy of the 6s-8s transition in cesium,” Opt. Lett. 32(6), 701–703 (2007).
[Crossref] [PubMed]

J. N. Eckstein, A. I. Ferguson, and T. W. Hänsch, “High-resolution two-photon spectroscopy with picosecond light pulses,” Phys. Rev. Lett. 40(13), 847–850 (1978).
[Crossref]

R. Teets, J. Eckstein, and T. W. Hänsch, “Coherent two-photon excitation by multiple light pulses,” Phys. Rev. Lett. 38(14), 760–764 (1977).
[Crossref]

Hashimoto, M.

Hipke, A.

S. A. Meek, A. Hipke, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Doppler-free Fourier transform spectroscopy,” Opt. Lett. 43(1), 162–165 (2018).
[Crossref] [PubMed]

A. Hipke, S. A. Meek, T. Ideguchi, T. W. Hänsch, and N. Picqué, “Broadband Doppler-limited two-photon and stepwise excitation spectroscopy with laser frequency combs,” Phys. Rev. A 90(1), 011805 (2014).
[Crossref]

Holzner, S.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Hong, F.-L.

S. Okubo, K. Iwakuni, K. M. T. Yamada, H. Inaba, A. Onae, F.-L. Hong, and H. Sasada, “Transition dipole-moment of the ν1 + ν3 band of acetylene measured with dual-comb Fourier-transform spectroscopy,” J. Mol. Spectrosc. 341, 10–16 (2017).
[Crossref]

Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, and F.-L. Hong, “A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator,” Opt. Express 18(2), 1667–1676 (2010).
[Crossref] [PubMed]

Hosaka, K.

Hou, D.

Hsieh, Y.-D.

Ideguchi, T.

A. Hipke, S. A. Meek, T. Ideguchi, T. W. Hänsch, and N. Picqué, “Broadband Doppler-limited two-photon and stepwise excitation spectroscopy with laser frequency combs,” Phys. Rev. A 90(1), 011805 (2014).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

T. Ideguchi, B. Bernhardt, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Raman-induced Kerr-effect dual-comb spectroscopy,” Opt. Lett. 37(21), 4498–4500 (2012).
[Crossref] [PubMed]

Inaba, H.

Iwakuni, K.

S. Okubo, K. Iwakuni, K. M. T. Yamada, H. Inaba, A. Onae, F.-L. Hong, and H. Sasada, “Transition dipole-moment of the ν1 + ν3 band of acetylene measured with dual-comb Fourier-transform spectroscopy,” J. Mol. Spectrosc. 341, 10–16 (2017).
[Crossref]

Katô, H.

M. Misono, J. Wang, M. Ushino, M. Okubo, H. Katô, M. Baba, and S. Nagakura, “Doppler-free two-photon absorption spectroscopy and the Zeeman effect of the A1B2u←X1A1g1401101 band of benzene,” J. Chem. Phys. 16(1), 162–272 (2002).
[Crossref]

Katsuyama, T.

Kawato, S.

Kobayashi, T.

Kohno, T.

Leng, J. X.

S. Y. Zhang, J. T. Wu, Y. L. Zhang, J. X. Leng, W. P. Yang, Z. G. Zhang, and J. Y. Zhao, “Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms,” Sci. Rep. 5(1), 15114 (2015).
[Crossref] [PubMed]

Lomsadze, B.

Matsuba, A.

A. Nishiyama, K. Nakashima, A. Matsuba, and M. Misono, “Doppler-free two-photon absorption spectroscopy of rovibronic transition of naphthalene calibrated with an optical frequency comb,” J. Mol. Spectrosc. 318, 40–45 (2015).
[Crossref]

Meek, S. A.

S. A. Meek, A. Hipke, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Doppler-free Fourier transform spectroscopy,” Opt. Lett. 43(1), 162–165 (2018).
[Crossref] [PubMed]

A. Hipke, S. A. Meek, T. Ideguchi, T. W. Hänsch, and N. Picqué, “Broadband Doppler-limited two-photon and stepwise excitation spectroscopy with laser frequency combs,” Phys. Rev. A 90(1), 011805 (2014).
[Crossref]

Minoshima, K.

Misono, M.

A. Nishiyama, K. Nakashima, A. Matsuba, and M. Misono, “Doppler-free two-photon absorption spectroscopy of rovibronic transition of naphthalene calibrated with an optical frequency comb,” J. Mol. Spectrosc. 318, 40–45 (2015).
[Crossref]

M. Misono, J. Wang, M. Ushino, M. Okubo, H. Katô, M. Baba, and S. Nagakura, “Doppler-free two-photon absorption spectroscopy and the Zeeman effect of the A1B2u←X1A1g1401101 band of benzene,” J. Chem. Phys. 16(1), 162–272 (2002).
[Crossref]

Nagakura, S.

M. Misono, J. Wang, M. Ushino, M. Okubo, H. Katô, M. Baba, and S. Nagakura, “Doppler-free two-photon absorption spectroscopy and the Zeeman effect of the A1B2u←X1A1g1401101 band of benzene,” J. Chem. Phys. 16(1), 162–272 (2002).
[Crossref]

Nakagawa, K.

Nakajima, Y.

Nakashima, K.

A. Nishiyama, K. Nakashima, A. Matsuba, and M. Misono, “Doppler-free two-photon absorption spectroscopy of rovibronic transition of naphthalene calibrated with an optical frequency comb,” J. Mol. Spectrosc. 318, 40–45 (2015).
[Crossref]

Newbury, N.

Newbury, N. R.

A. M. Zolot, F. R. Giorgetta, E. Baumann, W. C. Swann, I. Coddington, and N. R. Newbury, “Broad-band frequency references in the near-infrared: Accurate dual comb spectroscopy of methane and acetylene,” Quant. Spectrosc. Radiat. Transf. 118, 26–39 (2013).
[Crossref]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34(14), 2153–2155 (2009).
[Crossref] [PubMed]

Nishiyama, A.

A. Nishiyama, S. Yoshida, Y. Nakajima, H. Sasada, K. Nakagawa, A. Onae, and K. Minoshima, “Doppler-free dual-comb spectroscopy of Rb using optical-optical double resonance technique,” Opt. Express 24(22), 25894–25904 (2016).
[Crossref] [PubMed]

A. Nishiyama, K. Nakashima, A. Matsuba, and M. Misono, “Doppler-free two-photon absorption spectroscopy of rovibronic transition of naphthalene calibrated with an optical frequency comb,” J. Mol. Spectrosc. 318, 40–45 (2015).
[Crossref]

Okubo, M.

M. Misono, J. Wang, M. Ushino, M. Okubo, H. Katô, M. Baba, and S. Nagakura, “Doppler-free two-photon absorption spectroscopy and the Zeeman effect of the A1B2u←X1A1g1401101 band of benzene,” J. Chem. Phys. 16(1), 162–272 (2002).
[Crossref]

Okubo, S.

S. Okubo, K. Iwakuni, K. M. T. Yamada, H. Inaba, A. Onae, F.-L. Hong, and H. Sasada, “Transition dipole-moment of the ν1 + ν3 band of acetylene measured with dual-comb Fourier-transform spectroscopy,” J. Mol. Spectrosc. 341, 10–16 (2017).
[Crossref]

S. Okubo, Y.-D. Hsieh, H. Inaba, A. Onae, M. Hashimoto, and T. Yasui, “Near-infrared broadband dual-frequency-comb spectroscopy with a resolution beyond the Fourier limit determined by the observation time window,” Opt. Express 23(26), 33184–33193 (2015).
[Crossref] [PubMed]

Onae, A.

Orozco, L. A.

D. Sheng, A. Pérez Galván, and L. A. Orozco, “Lifetime measurements of the 5d states of rubidium,” Phys. Rev. A 78(6), 062506 (2008).
[Crossref]

Pérez Galván, A.

D. Sheng, A. Pérez Galván, and L. A. Orozco, “Lifetime measurements of the 5d states of rubidium,” Phys. Rev. A 78(6), 062506 (2008).
[Crossref]

Picqué, N.

S. A. Meek, A. Hipke, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Doppler-free Fourier transform spectroscopy,” Opt. Lett. 43(1), 162–165 (2018).
[Crossref] [PubMed]

A. Hipke, S. A. Meek, T. Ideguchi, T. W. Hänsch, and N. Picqué, “Broadband Doppler-limited two-photon and stepwise excitation spectroscopy with laser frequency combs,” Phys. Rev. A 90(1), 011805 (2014).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

T. Ideguchi, B. Bernhardt, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Raman-induced Kerr-effect dual-comb spectroscopy,” Opt. Lett. 37(21), 4498–4500 (2012).
[Crossref] [PubMed]

Qin, Z.

Quinn, T. J.

T. J. Quinn, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),” Metrologia 40(2), 103–133 (2003).
[Crossref]

Riis, E.

J. Snadden, R. Clarke, and E. Riis, “FM spectroscopy in fluorescence in laser-cooled rubidium,” Opt. Commun. 152(4–6), 283–288 (1998).
[Crossref]

Sasada, H.

S. Okubo, K. Iwakuni, K. M. T. Yamada, H. Inaba, A. Onae, F.-L. Hong, and H. Sasada, “Transition dipole-moment of the ν1 + ν3 band of acetylene measured with dual-comb Fourier-transform spectroscopy,” J. Mol. Spectrosc. 341, 10–16 (2017).
[Crossref]

A. Nishiyama, S. Yoshida, Y. Nakajima, H. Sasada, K. Nakagawa, A. Onae, and K. Minoshima, “Doppler-free dual-comb spectroscopy of Rb using optical-optical double resonance technique,” Opt. Express 24(22), 25894–25904 (2016).
[Crossref] [PubMed]

Sheng, D.

D. Sheng, A. Pérez Galván, and L. A. Orozco, “Lifetime measurements of the 5d states of rubidium,” Phys. Rev. A 78(6), 062506 (2008).
[Crossref]

Snadden, J.

J. Snadden, R. Clarke, and E. Riis, “FM spectroscopy in fluorescence in laser-cooled rubidium,” Opt. Commun. 152(4–6), 283–288 (1998).
[Crossref]

Swann, W.

Swann, W. C.

A. M. Zolot, F. R. Giorgetta, E. Baumann, W. C. Swann, I. Coddington, and N. R. Newbury, “Broad-band frequency references in the near-infrared: Accurate dual comb spectroscopy of methane and acetylene,” Quant. Spectrosc. Radiat. Transf. 118, 26–39 (2013).
[Crossref]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34(14), 2153–2155 (2009).
[Crossref] [PubMed]

Teets, R.

R. Teets, J. Eckstein, and T. W. Hänsch, “Coherent two-photon excitation by multiple light pulses,” Phys. Rev. Lett. 38(14), 760–764 (1977).
[Crossref]

Udem, T.

Ushino, M.

M. Misono, J. Wang, M. Ushino, M. Okubo, H. Katô, M. Baba, and S. Nagakura, “Doppler-free two-photon absorption spectroscopy and the Zeeman effect of the A1B2u←X1A1g1401101 band of benzene,” J. Chem. Phys. 16(1), 162–272 (2002).
[Crossref]

Wang, J.

M. Misono, J. Wang, M. Ushino, M. Okubo, H. Katô, M. Baba, and S. Nagakura, “Doppler-free two-photon absorption spectroscopy and the Zeeman effect of the A1B2u←X1A1g1401101 band of benzene,” J. Chem. Phys. 16(1), 162–272 (2002).
[Crossref]

Witte, S.

I. Barmes, S. Witte, and K. S. E. Eikema, “High-Precision Spectroscopy with Counterpropagating Femtosecond Pulses,” Phys. Rev. Lett. 111(2), 023007 (2013).
[Crossref] [PubMed]

Wu, J.

Wu, J. T.

S. Y. Zhang, J. T. Wu, Y. L. Zhang, J. X. Leng, W. P. Yang, Z. G. Zhang, and J. Y. Zhao, “Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms,” Sci. Rep. 5(1), 15114 (2015).
[Crossref] [PubMed]

Yamada, K. M. T.

S. Okubo, K. Iwakuni, K. M. T. Yamada, H. Inaba, A. Onae, F.-L. Hong, and H. Sasada, “Transition dipole-moment of the ν1 + ν3 band of acetylene measured with dual-comb Fourier-transform spectroscopy,” J. Mol. Spectrosc. 341, 10–16 (2017).
[Crossref]

Yang, W. P.

S. Y. Zhang, J. T. Wu, Y. L. Zhang, J. X. Leng, W. P. Yang, Z. G. Zhang, and J. Y. Zhao, “Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms,” Sci. Rep. 5(1), 15114 (2015).
[Crossref] [PubMed]

Yasuda, M.

Yasui, T.

Yoshida, S.

Zhang, S. Y.

S. Y. Zhang, J. T. Wu, Y. L. Zhang, J. X. Leng, W. P. Yang, Z. G. Zhang, and J. Y. Zhao, “Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms,” Sci. Rep. 5(1), 15114 (2015).
[Crossref] [PubMed]

Zhang, Y. L.

S. Y. Zhang, J. T. Wu, Y. L. Zhang, J. X. Leng, W. P. Yang, Z. G. Zhang, and J. Y. Zhao, “Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms,” Sci. Rep. 5(1), 15114 (2015).
[Crossref] [PubMed]

Zhang, Z.

Zhang, Z. G.

S. Y. Zhang, J. T. Wu, Y. L. Zhang, J. X. Leng, W. P. Yang, Z. G. Zhang, and J. Y. Zhao, “Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms,” Sci. Rep. 5(1), 15114 (2015).
[Crossref] [PubMed]

Zhao, J.

Zhao, J. Y.

S. Y. Zhang, J. T. Wu, Y. L. Zhang, J. X. Leng, W. P. Yang, Z. G. Zhang, and J. Y. Zhao, “Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms,” Sci. Rep. 5(1), 15114 (2015).
[Crossref] [PubMed]

Zolot, A. M.

A. M. Zolot, F. R. Giorgetta, E. Baumann, W. C. Swann, I. Coddington, and N. R. Newbury, “Broad-band frequency references in the near-infrared: Accurate dual comb spectroscopy of methane and acetylene,” Quant. Spectrosc. Radiat. Transf. 118, 26–39 (2013).
[Crossref]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

J. Chem. Phys. (1)

M. Misono, J. Wang, M. Ushino, M. Okubo, H. Katô, M. Baba, and S. Nagakura, “Doppler-free two-photon absorption spectroscopy and the Zeeman effect of the A1B2u←X1A1g1401101 band of benzene,” J. Chem. Phys. 16(1), 162–272 (2002).
[Crossref]

J. Mol. Spectrosc. (2)

A. Nishiyama, K. Nakashima, A. Matsuba, and M. Misono, “Doppler-free two-photon absorption spectroscopy of rovibronic transition of naphthalene calibrated with an optical frequency comb,” J. Mol. Spectrosc. 318, 40–45 (2015).
[Crossref]

S. Okubo, K. Iwakuni, K. M. T. Yamada, H. Inaba, A. Onae, F.-L. Hong, and H. Sasada, “Transition dipole-moment of the ν1 + ν3 band of acetylene measured with dual-comb Fourier-transform spectroscopy,” J. Mol. Spectrosc. 341, 10–16 (2017).
[Crossref]

Metrologia (1)

T. J. Quinn, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),” Metrologia 40(2), 103–133 (2003).
[Crossref]

Nature (1)

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Opt. Commun. (1)

J. Snadden, R. Clarke, and E. Riis, “FM spectroscopy in fluorescence in laser-cooled rubidium,” Opt. Commun. 152(4–6), 283–288 (1998).
[Crossref]

Opt. Express (3)

Opt. Lett. (6)

Optica (1)

Phys. Rev. A (4)

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

A. Hipke, S. A. Meek, T. Ideguchi, T. W. Hänsch, and N. Picqué, “Broadband Doppler-limited two-photon and stepwise excitation spectroscopy with laser frequency combs,” Phys. Rev. A 90(1), 011805 (2014).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
[Crossref]

D. Sheng, A. Pérez Galván, and L. A. Orozco, “Lifetime measurements of the 5d states of rubidium,” Phys. Rev. A 78(6), 062506 (2008).
[Crossref]

Phys. Rev. Lett. (3)

I. Barmes, S. Witte, and K. S. E. Eikema, “High-Precision Spectroscopy with Counterpropagating Femtosecond Pulses,” Phys. Rev. Lett. 111(2), 023007 (2013).
[Crossref] [PubMed]

R. Teets, J. Eckstein, and T. W. Hänsch, “Coherent two-photon excitation by multiple light pulses,” Phys. Rev. Lett. 38(14), 760–764 (1977).
[Crossref]

J. N. Eckstein, A. I. Ferguson, and T. W. Hänsch, “High-resolution two-photon spectroscopy with picosecond light pulses,” Phys. Rev. Lett. 40(13), 847–850 (1978).
[Crossref]

Quant. Spectrosc. Radiat. Transf. (1)

A. M. Zolot, F. R. Giorgetta, E. Baumann, W. C. Swann, I. Coddington, and N. R. Newbury, “Broad-band frequency references in the near-infrared: Accurate dual comb spectroscopy of methane and acetylene,” Quant. Spectrosc. Radiat. Transf. 118, 26–39 (2013).
[Crossref]

Sci. Rep. (1)

S. Y. Zhang, J. T. Wu, Y. L. Zhang, J. X. Leng, W. P. Yang, Z. G. Zhang, and J. Y. Zhao, “Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms,” Sci. Rep. 5(1), 15114 (2015).
[Crossref] [PubMed]

Other (3)

A. Hipke, (2016) “Dual-frequency-comb two-photon spectroscopy,” Dissertation, LMU München: Faculty of Physics, https://edoc.ub.uni-muenchen.de/19360/ .

P. Jacquet, J. Mandon, B. Bernhardt, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Frequency Comb Fourier Transform Spectroscopy with kHz Optical Resolution,” in Fourier Transform Spectroscopy, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FMB2.

A. Hipke, S. A. Meek, G. Guelachvili, T. W. Hänsch, and N. Picque, “Doppler-free broad spectral bandwidth two-photon spectroscopy with two laser frequency combs,” in Conference on Lasers and Electro Optics (Optical Society of America, 2013), paper CTh5C.8.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Figure 1. Energy level diagram for two-photon transition in 85,87Rb. Non-resonant 5S - 5D transitions (2 × 778 nm) and stepwise 5S - 5P - 5D (780nm, 776 nm) transitions are excited by using the pair of comb modes. Excited atoms decay from 5D states to ground states via the 6P state with a fluorescence at 420 nm.
Fig. 2
Fig. 2 Experimental setup for Doppler-free two-photon absorption spectroscopy. EDFA: Er-doped fiber amplifiers, PPLN: periodically-poled lithium niobate, DG: diffraction grating, PMT: photomultiplier tube, C-V: current-to-voltage converter, LP: low-pass filter.
Fig. 3
Fig. 3 (a) Time-domain fluorescence signal measured by co-propagating pulses. The inset shows a magnified view of around center burst signal. (b) Doppler-limited two-photon absorption spectrum (770.47 – 70.59 THz) including the 5S1/2 - 5D5/2 and 5D3/2 transitions obtained from FFT of (a) averaged over 20 s. (c) Fluorescence signal measured by counter-propagating pulses. The inset shows a magnified view of a part of the signal. (d) Doppler-free spectrum showing same region of (b). The spectrum was obtained from FFTs of fluorescence signals averaged over 40 s, and frequency intervals are interleaved by frequency scan of the comb modes.
Fig. 4
Fig. 4 (a) Doppler-fee spectra of the 5S1/2 - 5D5/2 transition measured with split pulse delays of 1 mm (green), 5 mm (blue), and 10 mm (red). (b) Magnified view around the Doppler-broadening background.
Fig. 5
Fig. 5 (a) RF spectrum of fluorescence signal measured by an RF spectrum analyzer resulting in the mode-resolved Doppler-limited 5S1/2 - 5D5/2 spectrum. (b) Magnified view of the spectrum. The mode intervals are corresponding to Δfrep = 50 Hz, and the full-width half-maximum (FWHM) = 1.1 Hz.
Fig. 6
Fig. 6 (a) Single-shot of fluorescence signal (blue) and coherently averaged signal over 10 times (red). Obtained spectrum of (b) the 5S1/2 - 5D3/2 and (c) the 5S1/2 - 5D5/2 transition after same averaging time of 20 s and spectral interleaving. Noise floor of the spectrum resulting from the single-shot fluorescence signal (blue) was higher than the noise floor obtained from the coherently averaged signal (red)
Fig. 7
Fig. 7 Doppler-free two-photon absorption spectra, fitted Voigt functions and residuals of hyperfine components of 5S1/2 - 5D5/2 transition. Assignments of the transitions are shown above the graph, (a) 5S1/2 (87Rb, F” = 2) - 5D5/2, (b), 5S1/2 (85Rb, F” = 3) - 5D5/2, (c), 5S1/2 (85Rb, F” = 2) - 5D5/2, (d) 5S1/2 (87Rb, F” = 1) - 5D5/2.

Tables (1)

Tables Icon

Table 1 Absolute frequencies of hyperfine components of 5S1/2 - 5D5/2 transition

Metrics