Abstract

Atmospheric air-filled hollow core (HC) fibers, representing the simplest yet reliable form of gas-filled hollow core fiber, show remarkable nonlinear properties and have several interesting applications such as pulse compression, frequency conversion and supercontinuum generation. Although the propagation of sub-picosecond and few hundred picosecond pulses are well-studied in air-filled fibers, the nonlinear response of air to pulses with a duration of a few picoseconds has interesting features that have not yet been explored fully. Here, we experimentally and theoretically study the nonlinear propagation of ~6 ps pulses in three different types of atmospheric air-filled HC fiber. With this pulse length, we were able to explore different nonlinear characteristics of air at different power levels. Using in-house-fabricated, state-of-the-art HC photonic bandgap, HC tubular and HC Kagomé fibers, we were able to associate the origin of the initial pulse broadening process in these fibers to rotational Raman scattering (RRS) at low power levels. Due to the broadband and low loss transmission window of the HC Kagomé fiber we used, we observed the transition from initial pulse broadening (by RRS) at lower powers, through long-range frequency conversion (2330 cm−1) with the help of vibrational Raman scattering, to broadband (~700 nm) supercontinuum generation at high power levels. To model such a wide range of nonlinear processes in a unified approach, we have implemented a semi-quantum model for air into the generalized nonlinear Schrodinger equation, which surpasses the limits of the common single damping oscillator model in this pulse length regime. The model has been validated by comparison with experimental results and provides a powerful tool for the design, modeling and optimization of nonlinear processes in air-filled HC fibers.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Multioctave supercontinuum from visible to mid-infrared and bend effects on ultrafast nonlinear dynamics in gas-filled hollow-core fiber

Md Selim Habib, Christos Markos, J. E. Antonio-Lopez, and Rodrigo Amezcua-Correa
Appl. Opt. 58(13) D7-D11 (2019)

Propagation dynamics of radially polarized pulses in a gas-filled hollow-core fiber

Ding Wang, Lingling Qiao, Ruirui Zhao, Yu Zhao, and Yuxin Leng
Opt. Express 25(4) 3083-3091 (2017)

Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited]

John C. Travers, Wonkeun Chang, Johannes Nold, Nicolas Y. Joly, and Philip St. J. Russell
J. Opt. Soc. Am. B 28(12) A11-A26 (2011)

References

  • View by:
  • |
  • |
  • |

  1. C. L. Hoy, O. Ferhanoğlu, M. Yildirim, W. Piyawattanametha, H. Ra, O. Solgaard, and A. Ben-Yakar, “Optical design and imaging performance testing of a 9.6-mm diameter femtosecond laser microsurgery probe,” Opt. Express 19(11), 10536–10552 (2011).
    [Crossref] [PubMed]
  2. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
    [Crossref]
  3. M. Gu, D. Bird, D. Day, L. Fu, and D. Morrish, Femtosecond Biophotonics: Core Technology and Applications (Cambridge University Press, 2010).
  4. A. V. Smith and B. T. Do, “Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm,” Appl. Opt. 47(26), 4812–4832 (2008).
    [Crossref] [PubMed]
  5. F. Poletti, N. Petrovich Marco, and J. Richardson David, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2(5-6), 315 (2013).
    [Crossref]
  6. Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavik, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer Long, Longitudinally Uniform Hollow Core Photonic Bandgap Fibers for Broadband Low Latency Data Transmission,” J. Lightwave Technol. 34(1), 104–113 (2016).
    [Crossref]
  7. P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
    [Crossref]
  8. Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
    [Crossref] [PubMed]
  9. Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in optimized core-shape kagome hollow-core PCF,” in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010), CPDB4.
    [Crossref]
  10. L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18(22), 23133–23146 (2010).
    [Crossref] [PubMed]
  11. F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22(20), 23807–23828 (2014).
    [Crossref] [PubMed]
  12. J. Hayes, S. Sandoghchi, T. Bradley, Z. Liu, R. Slavík, M. A. Gouveia, N. Wheeler, G. Jasion, Y. Chen, E. Numkam-Fokoua, M. Petrovich, D. Richardson, and F. Poletti, “Antiresonant hollow core fiber with octave spanning bandwidth for short haul data communications,” in Optical Fiber Communication Conference Postdeadline Papers, (Optical Society of America, 2016), p. Th5A.3.
  13. E. T. J. Nibbering, G. Grillon, M. A. Franco, B. S. Prade, and A. Mysyrowicz, “Determination of the inertial contribution to the nonlinear refractive index of air, N2, and O2 by use of unfocused high-intensity femtosecond laser pulses,” J. Opt. Soc. Am. B 14(3), 650–660 (1997).
    [Crossref]
  14. M. Mlejnek, E. M. Wright, and J. V. Moloney, “Dynamic spatial replenishment of femtosecond pulses propagating in air,” Opt. Lett. 23(5), 382–384 (1998).
    [Crossref] [PubMed]
  15. Q. Lin and G. P. Agrawal, “Raman response function for silica fibers,” Opt. Lett. 31(21), 3086–3088 (2006).
    [Crossref] [PubMed]
  16. F. Guichard, A. Giree, Y. Zaouter, M. Hanna, G. Machinet, B. Debord, F. Gérôme, P. Dupriez, F. Druon, C. Hönninger, E. Mottay, F. Benabid, and P. Georges, “Nonlinear compression of high energy fiber amplifier pulses in air-filled hypocycloid-core Kagome fiber,” Opt. Express 23(6), 7416–7423 (2015).
    [Crossref] [PubMed]
  17. K. F. Mak, J. C. Travers, N. Y. Joly, A. Abdolvand, and P. S. Russell, “Two techniques for temporal pulse compression in gas-filled hollow-core kagomé photonic crystal fiber,” Opt. Lett. 38(18), 3592–3595 (2013).
    [Crossref] [PubMed]
  18. A. R. Bhagwat and A. L. Gaeta, “Nonlinear optics in hollow-core photonic bandgap fibers,” Opt. Express 16(7), 5035–5047 (2008).
    [Crossref] [PubMed]
  19. Y. P. Yatsenko, E. N. Pleteneva, A. G. Okhrimchuk, A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, and I. A. Bufetov, “Multiband supercontinuum generation in an air-core revolver fibre,” Quantum Electron. 47(6), 553–560 (2017).
    [Crossref]
  20. B. Debord, F. Gérôme, C. Hoenninger, E. Mottay, A. Husakou, and F. Benabid, “Milli-Joule energy-level comb and supercontinuum generation in atmospheric air-filled inhibited coupling Kagome fiber,” in CLEO: 2015 Postdeadline Paper Digest, (Optical Society of America, 2015), JTh5C.4.
  21. B. Debord, M. Alharbi, L. Vincetti, A. Husakou, C. Fourcade-Dutin, C. Hoenninger, E. Mottay, F. Gérôme, and F. Benabid, “Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining,” Opt. Express 22(9), 10735–10746 (2014).
    [Crossref] [PubMed]
  22. Y. P. Yatsenko, A. A. Krylov, A. D. Pryamikov, A. F. Kosolapov, A. N. Kolyadin, A. V. Gladyshev, and I. A. Bufetov, “Propagation of femtosecond pulses in a hollow-core revolver fibre,” Quantum Electron. 46(7), 617–626 (2016).
    [Crossref]
  23. P. Jaworski, F. Yu, R. R. Maier, W. J. Wadsworth, J. C. Knight, J. D. Shephard, and D. P. Hand, “Picosecond and nanosecond pulse delivery through a hollow-core Negative Curvature Fiber for micro-machining applications,” Opt. Express 21(19), 22742–22753 (2013).
    [Crossref] [PubMed]
  24. C. Li, K. P. Rishad, P. Horak, Y. Matsuura, and D. Faccio, “Spectral broadening and temporal compression of ∼ 100 fs pulses in air-filled hollow core capillary fibers,” Opt. Express 22(1), 1143–1151 (2014).
    [Crossref] [PubMed]
  25. F. Emaury, C. F. Dutin, C. J. Saraceno, M. Trant, O. H. Heckl, Y. Y. Wang, C. Schriber, F. Gerome, T. Südmeyer, F. Benabid, and U. Keller, “Beam delivery and pulse compression to sub-50 fs of a modelocked thin-disk laser in a gas-filled Kagome-type HC-PCF fiber,” Opt. Express 21(4), 4986–4994 (2013).
    [Crossref] [PubMed]
  26. Y. Chen, H. C. Mulvad, S. Sandoghchi, E. Numkam Fokoua, T. Bradley, J. Hayes, N. Wheeler, G. Jasion, S.-U. Alam, F. Poletti, M. Petrovich, and D. J. Richardson, “First Demonstration of Low Loss, Bend Insensitive 37-Cell Hollow-Core Photonic Bandgap Fiber at 1µm for High Power Delivery Applications,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), STu4P.1.
    [Crossref]
  27. N. V. Wheeler, T. D. Bradley, J. R. Hayes, M. A. Gouveia, S. Liang, Y. Chen, S. R. Sandoghchi, S. M. Abokhamis Mousavi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low-loss Kagome hollow-core fibers operating from the near- to the mid-IR,” Opt. Lett. 42(13), 2571–2574 (2017).
    [Crossref] [PubMed]
  28. W. Ding and Y. Wang, “Analytic model for light guidance in single-wall hollow-core anti-resonant fibers,” Opt. Express 22(22), 27242–27256 (2014).
    [Crossref] [PubMed]
  29. A. Hartung, J. Kobelke, A. Schwuchow, K. Wondraczek, J. Bierlich, J. Popp, T. Frosch, and M. A. Schmidt, “Double antiresonant hollow core fiber--guidance in the deep ultraviolet by modified tunneling leaky modes,” Opt. Express 22(16), 19131–19140 (2014).
    [Crossref] [PubMed]
  30. L. Chen, G. J. Pearce, T. A. Birks, and D. M. Bird, “Guidance in Kagome-like photonic crystal fibres I: analysis of an ideal fibre structure,” Opt. Express 19(7), 6945–6956 (2011).
    [Crossref] [PubMed]
  31. B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica 4(2), 209 (2017).
    [Crossref]
  32. F. Yu and J. C. Knight, “Negative Curvature Hollow-Core Optical Fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 146–155 (2016).
    [Crossref]
  33. B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part I: arc curvature effect on confinement loss,” Opt. Express 21(23), 28597–28608 (2013).
    [Crossref] [PubMed]
  34. F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2(5-6), 4 (2013).
    [Crossref]
  35. M. A. Finger, N. Y. Joly, T. Weiss, and P. S. Russell, “Accuracy of the capillary approximation for gas-filled kagomé-style photonic crystal fibers,” Opt. Lett. 39(4), 821–824 (2014).
    [Crossref] [PubMed]
  36. A. Börzsönyi, Z. Heiner, M. P. Kalashnikov, A. P. Kovács, and K. Osvay, “Dispersion measurement of inert gases and gas mixtures at 800 nm,” Appl. Opt. 47(27), 4856–4863 (2008).
    [Crossref] [PubMed]
  37. S. A. Mousavi, S. R. Sandoghchi, D. J. Richardson, and F. Poletti, “Broadband high birefringence and polarizing hollow core antiresonant fibers,” Opt. Express 24(20), 22943–22958 (2016).
    [Crossref] [PubMed]
  38. J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant Hollow Core Fiber With an Octave Spanning Bandwidth for Short Haul Data Communications,” J. Lightwave Technol. 35(3), 437–442 (2017).
    [Crossref]
  39. “TruMicro Series 5000”, retrieved http://www.uk.trumpf.com/en/products/laser-technology/products/solid-state-lasers/short-pulsed-lasers/trumicro-series-5000.html .
  40. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).
  41. Y. R. Shen and N. Bloembergen, “Theory of Stimulated Brillouin and Raman Scattering,” Phys. Rev. 137(6A), A1787–A1805 (1965).
    [Crossref]
  42. A. V. Gorbach and D. V. Skryabin, “Soliton self-frequency shift, non-solitonic radiation and self-induced transparency in air-core fibers,” Opt. Express 16(7), 4858–4865 (2008).
    [Crossref] [PubMed]
  43. J. Lægsgaard and P. J. Roberts, “Modeling of High-Power Pulse Compression and Soliton Formation in Hollow-Core Photonic Bandgap Fibers,” in Advances in Optical Sciences Congress, OSA Technical Digest (CD) (Optical Society of America, 2009), paper IMG1.
    [Crossref]
  44. K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25(12), 2665–2673 (1989).
    [Crossref]
  45. J. M. Brown and A. Carrington, Rotational Spectroscopy of Diatomic Molecules (Cambridge University Press, 2003).
  46. A. P. Hickman, J. A. Paisner, and W. K. Bischel, “Theory of multiwave propagation and frequency conversion in a Raman medium,” Phys. Rev. A Gen. Phys. 33(3), 1788–1797 (1986).
    [Crossref] [PubMed]
  47. J. R. Peñano, P. Sprangle, P. Serafim, B. Hafizi, and A. Ting, “Stimulated Raman scattering of intense laser pulses in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(5), 056502 (2003).
    [Crossref] [PubMed]
  48. W. D. Brewer, H. Haken, and H. C. Wolf, Molecular Physics and Elements of Quantum Chemistry: Introduction to Experiments and Theory (Springer Berlin Heidelberg, 2013).
  49. L. Martinsson, P. E. Bengtsson, M. Aldén, S. Kröll, and J. Bonamy, “A test of different rotational Raman linewidth models: Accuracy of rotational coherent anti‐Stokes Raman scattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99(4), 2466–2477 (1993).
    [Crossref]
  50. A. M. Zheltikov, “Raman response function of atmospheric air,” Opt. Lett. 32(14), 2052–2054 (2007).
    [Crossref] [PubMed]
  51. L. A. Rahn and R. E. Palmer, “Studies of nitrogen self-broadening at high temperature with inverse Raman spectroscopy,” J. Opt. Soc. Am. B 3(9), 1164 (1986).
    [Crossref]
  52. M. E. Kooi, L. Ulivi, and J. A. Schouten, “Vibrational Spectra of Nitrogen in Simple Mixtures at High Pressures,” Int. J. Thermophys. 20(3), 867–876 (1999).
    [Crossref]
  53. G. Agrawal, Nonlinear Fiber Optics (Academic Press, October 2012), p. 648.
  54. X. Liu, “Adaptive higher-order split-step Fourier algorithm for simulating lightwave propagation in optical fiber,” Opt. Commun. 282(7), 1435–1439 (2009).
    [Crossref]

2017 (4)

2016 (4)

2015 (1)

2014 (7)

B. Debord, M. Alharbi, L. Vincetti, A. Husakou, C. Fourcade-Dutin, C. Hoenninger, E. Mottay, F. Gérôme, and F. Benabid, “Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining,” Opt. Express 22(9), 10735–10746 (2014).
[Crossref] [PubMed]

F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22(20), 23807–23828 (2014).
[Crossref] [PubMed]

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

C. Li, K. P. Rishad, P. Horak, Y. Matsuura, and D. Faccio, “Spectral broadening and temporal compression of ∼ 100 fs pulses in air-filled hollow core capillary fibers,” Opt. Express 22(1), 1143–1151 (2014).
[Crossref] [PubMed]

W. Ding and Y. Wang, “Analytic model for light guidance in single-wall hollow-core anti-resonant fibers,” Opt. Express 22(22), 27242–27256 (2014).
[Crossref] [PubMed]

A. Hartung, J. Kobelke, A. Schwuchow, K. Wondraczek, J. Bierlich, J. Popp, T. Frosch, and M. A. Schmidt, “Double antiresonant hollow core fiber--guidance in the deep ultraviolet by modified tunneling leaky modes,” Opt. Express 22(16), 19131–19140 (2014).
[Crossref] [PubMed]

M. A. Finger, N. Y. Joly, T. Weiss, and P. S. Russell, “Accuracy of the capillary approximation for gas-filled kagomé-style photonic crystal fibers,” Opt. Lett. 39(4), 821–824 (2014).
[Crossref] [PubMed]

2013 (6)

2011 (3)

2010 (1)

2009 (1)

X. Liu, “Adaptive higher-order split-step Fourier algorithm for simulating lightwave propagation in optical fiber,” Opt. Commun. 282(7), 1435–1439 (2009).
[Crossref]

2008 (4)

2007 (1)

2006 (1)

2003 (1)

J. R. Peñano, P. Sprangle, P. Serafim, B. Hafizi, and A. Ting, “Stimulated Raman scattering of intense laser pulses in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(5), 056502 (2003).
[Crossref] [PubMed]

1999 (1)

M. E. Kooi, L. Ulivi, and J. A. Schouten, “Vibrational Spectra of Nitrogen in Simple Mixtures at High Pressures,” Int. J. Thermophys. 20(3), 867–876 (1999).
[Crossref]

1998 (1)

1997 (1)

1996 (1)

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

1993 (1)

L. Martinsson, P. E. Bengtsson, M. Aldén, S. Kröll, and J. Bonamy, “A test of different rotational Raman linewidth models: Accuracy of rotational coherent anti‐Stokes Raman scattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99(4), 2466–2477 (1993).
[Crossref]

1989 (1)

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25(12), 2665–2673 (1989).
[Crossref]

1986 (2)

A. P. Hickman, J. A. Paisner, and W. K. Bischel, “Theory of multiwave propagation and frequency conversion in a Raman medium,” Phys. Rev. A Gen. Phys. 33(3), 1788–1797 (1986).
[Crossref] [PubMed]

L. A. Rahn and R. E. Palmer, “Studies of nitrogen self-broadening at high temperature with inverse Raman spectroscopy,” J. Opt. Soc. Am. B 3(9), 1164 (1986).
[Crossref]

1965 (1)

Y. R. Shen and N. Bloembergen, “Theory of Stimulated Brillouin and Raman Scattering,” Phys. Rev. 137(6A), A1787–A1805 (1965).
[Crossref]

Abdolvand, A.

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

K. F. Mak, J. C. Travers, N. Y. Joly, A. Abdolvand, and P. S. Russell, “Two techniques for temporal pulse compression in gas-filled hollow-core kagomé photonic crystal fiber,” Opt. Lett. 38(18), 3592–3595 (2013).
[Crossref] [PubMed]

Abokhamis Mousavi, S. M.

Agrawal, G. P.

Aldén, M.

L. Martinsson, P. E. Bengtsson, M. Aldén, S. Kröll, and J. Bonamy, “A test of different rotational Raman linewidth models: Accuracy of rotational coherent anti‐Stokes Raman scattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99(4), 2466–2477 (1993).
[Crossref]

Alharbi, M.

Amsanpally, A.

Baz, A.

Benabid, F.

B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica 4(2), 209 (2017).
[Crossref]

F. Guichard, A. Giree, Y. Zaouter, M. Hanna, G. Machinet, B. Debord, F. Gérôme, P. Dupriez, F. Druon, C. Hönninger, E. Mottay, F. Benabid, and P. Georges, “Nonlinear compression of high energy fiber amplifier pulses in air-filled hypocycloid-core Kagome fiber,” Opt. Express 23(6), 7416–7423 (2015).
[Crossref] [PubMed]

B. Debord, M. Alharbi, L. Vincetti, A. Husakou, C. Fourcade-Dutin, C. Hoenninger, E. Mottay, F. Gérôme, and F. Benabid, “Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining,” Opt. Express 22(9), 10735–10746 (2014).
[Crossref] [PubMed]

B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part I: arc curvature effect on confinement loss,” Opt. Express 21(23), 28597–28608 (2013).
[Crossref] [PubMed]

F. Emaury, C. F. Dutin, C. J. Saraceno, M. Trant, O. H. Heckl, Y. Y. Wang, C. Schriber, F. Gerome, T. Südmeyer, F. Benabid, and U. Keller, “Beam delivery and pulse compression to sub-50 fs of a modelocked thin-disk laser in a gas-filled Kagome-type HC-PCF fiber,” Opt. Express 21(4), 4986–4994 (2013).
[Crossref] [PubMed]

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[Crossref] [PubMed]

Bengtsson, P. E.

L. Martinsson, P. E. Bengtsson, M. Aldén, S. Kröll, and J. Bonamy, “A test of different rotational Raman linewidth models: Accuracy of rotational coherent anti‐Stokes Raman scattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99(4), 2466–2477 (1993).
[Crossref]

Ben-Yakar, A.

Bhagwat, A. R.

Bierlich, J.

Bird, D. M.

Birks, T. A.

Bischel, W. K.

A. P. Hickman, J. A. Paisner, and W. K. Bischel, “Theory of multiwave propagation and frequency conversion in a Raman medium,” Phys. Rev. A Gen. Phys. 33(3), 1788–1797 (1986).
[Crossref] [PubMed]

Bloembergen, N.

Y. R. Shen and N. Bloembergen, “Theory of Stimulated Brillouin and Raman Scattering,” Phys. Rev. 137(6A), A1787–A1805 (1965).
[Crossref]

Blondy, J. M.

Blow, K. J.

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25(12), 2665–2673 (1989).
[Crossref]

Bonamy, J.

L. Martinsson, P. E. Bengtsson, M. Aldén, S. Kröll, and J. Bonamy, “A test of different rotational Raman linewidth models: Accuracy of rotational coherent anti‐Stokes Raman scattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99(4), 2466–2477 (1993).
[Crossref]

Börzsönyi, A.

Bradley, T.

Bradley, T. D.

Bufetov, I. A.

Y. P. Yatsenko, E. N. Pleteneva, A. G. Okhrimchuk, A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, and I. A. Bufetov, “Multiband supercontinuum generation in an air-core revolver fibre,” Quantum Electron. 47(6), 553–560 (2017).
[Crossref]

Y. P. Yatsenko, A. A. Krylov, A. D. Pryamikov, A. F. Kosolapov, A. N. Kolyadin, A. V. Gladyshev, and I. A. Bufetov, “Propagation of femtosecond pulses in a hollow-core revolver fibre,” Quantum Electron. 46(7), 617–626 (2016).
[Crossref]

Chafer, M.

Chang, W.

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

Chen, L.

Chen, Y.

Chichkov, B. N.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Couny, F.

Debord, B.

Ding, W.

Do, B. T.

Druon, F.

Dupriez, P.

Dutin, C. F.

Emaury, F.

Faccio, D.

Ferhanoglu, O.

Finger, M. A.

Fokoua, E. N.

Fourcade-Dutin, C.

Franco, M. A.

Frosch, T.

Gaeta, A. L.

Georges, P.

Gerome, F.

Gérôme, F.

Giree, A.

Gladyshev, A. V.

Y. P. Yatsenko, E. N. Pleteneva, A. G. Okhrimchuk, A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, and I. A. Bufetov, “Multiband supercontinuum generation in an air-core revolver fibre,” Quantum Electron. 47(6), 553–560 (2017).
[Crossref]

Y. P. Yatsenko, A. A. Krylov, A. D. Pryamikov, A. F. Kosolapov, A. N. Kolyadin, A. V. Gladyshev, and I. A. Bufetov, “Propagation of femtosecond pulses in a hollow-core revolver fibre,” Quantum Electron. 46(7), 617–626 (2016).
[Crossref]

Gorbach, A. V.

Gouveia, M. A.

Gray, D. R.

Grillon, G.

Guichard, F.

Hafizi, B.

J. R. Peñano, P. Sprangle, P. Serafim, B. Hafizi, and A. Ting, “Stimulated Raman scattering of intense laser pulses in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(5), 056502 (2003).
[Crossref] [PubMed]

Hand, D. P.

Hanna, M.

Hartung, A.

Hayes, J. R.

Heckl, O. H.

Heiner, Z.

Hickman, A. P.

A. P. Hickman, J. A. Paisner, and W. K. Bischel, “Theory of multiwave propagation and frequency conversion in a Raman medium,” Phys. Rev. A Gen. Phys. 33(3), 1788–1797 (1986).
[Crossref] [PubMed]

Hoenninger, C.

Hölzer, P.

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

Hönninger, C.

Horak, P.

Hoy, C. L.

Hugonnot, E.

Husakou, A.

Jasion, G.

Jasion, G. T.

Jaworski, P.

Joly, N. Y.

Kalashnikov, M. P.

Keller, U.

Knight, J. C.

Kobelke, J.

Kolyadin, A. N.

Y. P. Yatsenko, E. N. Pleteneva, A. G. Okhrimchuk, A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, and I. A. Bufetov, “Multiband supercontinuum generation in an air-core revolver fibre,” Quantum Electron. 47(6), 553–560 (2017).
[Crossref]

Y. P. Yatsenko, A. A. Krylov, A. D. Pryamikov, A. F. Kosolapov, A. N. Kolyadin, A. V. Gladyshev, and I. A. Bufetov, “Propagation of femtosecond pulses in a hollow-core revolver fibre,” Quantum Electron. 46(7), 617–626 (2016).
[Crossref]

Kooi, M. E.

M. E. Kooi, L. Ulivi, and J. A. Schouten, “Vibrational Spectra of Nitrogen in Simple Mixtures at High Pressures,” Int. J. Thermophys. 20(3), 867–876 (1999).
[Crossref]

Kosolapov, A. F.

Y. P. Yatsenko, E. N. Pleteneva, A. G. Okhrimchuk, A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, and I. A. Bufetov, “Multiband supercontinuum generation in an air-core revolver fibre,” Quantum Electron. 47(6), 553–560 (2017).
[Crossref]

Y. P. Yatsenko, A. A. Krylov, A. D. Pryamikov, A. F. Kosolapov, A. N. Kolyadin, A. V. Gladyshev, and I. A. Bufetov, “Propagation of femtosecond pulses in a hollow-core revolver fibre,” Quantum Electron. 46(7), 617–626 (2016).
[Crossref]

Kovács, A. P.

Kröll, S.

L. Martinsson, P. E. Bengtsson, M. Aldén, S. Kröll, and J. Bonamy, “A test of different rotational Raman linewidth models: Accuracy of rotational coherent anti‐Stokes Raman scattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99(4), 2466–2477 (1993).
[Crossref]

Krylov, A. A.

Y. P. Yatsenko, A. A. Krylov, A. D. Pryamikov, A. F. Kosolapov, A. N. Kolyadin, A. V. Gladyshev, and I. A. Bufetov, “Propagation of femtosecond pulses in a hollow-core revolver fibre,” Quantum Electron. 46(7), 617–626 (2016).
[Crossref]

Li, C.

Liang, S.

Lin, Q.

Liu, X.

X. Liu, “Adaptive higher-order split-step Fourier algorithm for simulating lightwave propagation in optical fiber,” Opt. Commun. 282(7), 1435–1439 (2009).
[Crossref]

Liu, Z.

Machinet, G.

Maier, R. R.

Mak, K. F.

Mangan, B. J.

Martinsson, L.

L. Martinsson, P. E. Bengtsson, M. Aldén, S. Kröll, and J. Bonamy, “A test of different rotational Raman linewidth models: Accuracy of rotational coherent anti‐Stokes Raman scattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99(4), 2466–2477 (1993).
[Crossref]

Matsuura, Y.

Maurel, M.

Mlejnek, M.

Moloney, J. V.

Momma, C.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Mottay, E.

Mousavi, S. A.

Mysyrowicz, A.

Nibbering, E. T. J.

Nolte, S.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Numkam Fokoua, E.

Okhrimchuk, A. G.

Y. P. Yatsenko, E. N. Pleteneva, A. G. Okhrimchuk, A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, and I. A. Bufetov, “Multiband supercontinuum generation in an air-core revolver fibre,” Quantum Electron. 47(6), 553–560 (2017).
[Crossref]

Osvay, K.

Paisner, J. A.

A. P. Hickman, J. A. Paisner, and W. K. Bischel, “Theory of multiwave propagation and frequency conversion in a Raman medium,” Phys. Rev. A Gen. Phys. 33(3), 1788–1797 (1986).
[Crossref] [PubMed]

Palmer, R. E.

Pearce, G. J.

Peñano, J. R.

J. R. Peñano, P. Sprangle, P. Serafim, B. Hafizi, and A. Ting, “Stimulated Raman scattering of intense laser pulses in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(5), 056502 (2003).
[Crossref] [PubMed]

Petrovich, M. N.

Petrovich Marco, N.

F. Poletti, N. Petrovich Marco, and J. Richardson David, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2(5-6), 315 (2013).
[Crossref]

Piyawattanametha, W.

Pleteneva, E. N.

Y. P. Yatsenko, E. N. Pleteneva, A. G. Okhrimchuk, A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, and I. A. Bufetov, “Multiband supercontinuum generation in an air-core revolver fibre,” Quantum Electron. 47(6), 553–560 (2017).
[Crossref]

Poletti, F.

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavik, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant Hollow Core Fiber With an Octave Spanning Bandwidth for Short Haul Data Communications,” J. Lightwave Technol. 35(3), 437–442 (2017).
[Crossref]

N. V. Wheeler, T. D. Bradley, J. R. Hayes, M. A. Gouveia, S. Liang, Y. Chen, S. R. Sandoghchi, S. M. Abokhamis Mousavi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low-loss Kagome hollow-core fibers operating from the near- to the mid-IR,” Opt. Lett. 42(13), 2571–2574 (2017).
[Crossref] [PubMed]

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavik, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer Long, Longitudinally Uniform Hollow Core Photonic Bandgap Fibers for Broadband Low Latency Data Transmission,” J. Lightwave Technol. 34(1), 104–113 (2016).
[Crossref]

S. A. Mousavi, S. R. Sandoghchi, D. J. Richardson, and F. Poletti, “Broadband high birefringence and polarizing hollow core antiresonant fibers,” Opt. Express 24(20), 22943–22958 (2016).
[Crossref] [PubMed]

F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22(20), 23807–23828 (2014).
[Crossref] [PubMed]

F. Poletti, N. Petrovich Marco, and J. Richardson David, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2(5-6), 315 (2013).
[Crossref]

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2(5-6), 4 (2013).
[Crossref]

Popp, J.

Prade, B. S.

Pryamikov, A. D.

Y. P. Yatsenko, A. A. Krylov, A. D. Pryamikov, A. F. Kosolapov, A. N. Kolyadin, A. V. Gladyshev, and I. A. Bufetov, “Propagation of femtosecond pulses in a hollow-core revolver fibre,” Quantum Electron. 46(7), 617–626 (2016).
[Crossref]

Ra, H.

Rahn, L. A.

Richardson, D. J.

Richardson David, J.

F. Poletti, N. Petrovich Marco, and J. Richardson David, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2(5-6), 315 (2013).
[Crossref]

Rishad, K. P.

Roberts, P. J.

Russell, P. S.

Russell, P. S. J.

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

Sandoghchi, S. R.

Saraceno, C. J.

Schmidt, M. A.

Schouten, J. A.

M. E. Kooi, L. Ulivi, and J. A. Schouten, “Vibrational Spectra of Nitrogen in Simple Mixtures at High Pressures,” Int. J. Thermophys. 20(3), 867–876 (1999).
[Crossref]

Schriber, C.

Schwuchow, A.

Scol, F.

Serafim, P.

J. R. Peñano, P. Sprangle, P. Serafim, B. Hafizi, and A. Ting, “Stimulated Raman scattering of intense laser pulses in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(5), 056502 (2003).
[Crossref] [PubMed]

Setti, V.

Shen, Y. R.

Y. R. Shen and N. Bloembergen, “Theory of Stimulated Brillouin and Raman Scattering,” Phys. Rev. 137(6A), A1787–A1805 (1965).
[Crossref]

Shephard, J. D.

Skryabin, D. V.

Slavik, R.

Smith, A. V.

Solgaard, O.

Sprangle, P.

J. R. Peñano, P. Sprangle, P. Serafim, B. Hafizi, and A. Ting, “Stimulated Raman scattering of intense laser pulses in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(5), 056502 (2003).
[Crossref] [PubMed]

Südmeyer, T.

Ting, A.

J. R. Peñano, P. Sprangle, P. Serafim, B. Hafizi, and A. Ting, “Stimulated Raman scattering of intense laser pulses in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(5), 056502 (2003).
[Crossref] [PubMed]

Trant, M.

Travers, J. C.

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

K. F. Mak, J. C. Travers, N. Y. Joly, A. Abdolvand, and P. S. Russell, “Two techniques for temporal pulse compression in gas-filled hollow-core kagomé photonic crystal fiber,” Opt. Lett. 38(18), 3592–3595 (2013).
[Crossref] [PubMed]

Tünnermann, A.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Ulivi, L.

M. E. Kooi, L. Ulivi, and J. A. Schouten, “Vibrational Spectra of Nitrogen in Simple Mixtures at High Pressures,” Int. J. Thermophys. 20(3), 867–876 (1999).
[Crossref]

Vincetti, L.

von Alvensleben, F.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Wadsworth, W. J.

Wang, Y.

Wang, Y. Y.

Weiss, T.

Wheeler, N. V.

Wondraczek, K.

Wood, D.

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25(12), 2665–2673 (1989).
[Crossref]

Wright, E. M.

Yatsenko, Y. P.

Y. P. Yatsenko, E. N. Pleteneva, A. G. Okhrimchuk, A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, and I. A. Bufetov, “Multiband supercontinuum generation in an air-core revolver fibre,” Quantum Electron. 47(6), 553–560 (2017).
[Crossref]

Y. P. Yatsenko, A. A. Krylov, A. D. Pryamikov, A. F. Kosolapov, A. N. Kolyadin, A. V. Gladyshev, and I. A. Bufetov, “Propagation of femtosecond pulses in a hollow-core revolver fibre,” Quantum Electron. 46(7), 617–626 (2016).
[Crossref]

Yildirim, M.

Yu, F.

Zaouter, Y.

Zheltikov, A. M.

Appl. Opt. (2)

Appl. Phys., A Mater. Sci. Process. (1)

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

IEEE J. Quantum Electron. (1)

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25(12), 2665–2673 (1989).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

F. Yu and J. C. Knight, “Negative Curvature Hollow-Core Optical Fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 146–155 (2016).
[Crossref]

Int. J. Thermophys. (1)

M. E. Kooi, L. Ulivi, and J. A. Schouten, “Vibrational Spectra of Nitrogen in Simple Mixtures at High Pressures,” Int. J. Thermophys. 20(3), 867–876 (1999).
[Crossref]

J. Chem. Phys. (1)

L. Martinsson, P. E. Bengtsson, M. Aldén, S. Kröll, and J. Bonamy, “A test of different rotational Raman linewidth models: Accuracy of rotational coherent anti‐Stokes Raman scattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99(4), 2466–2477 (1993).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (2)

Nanophotonics (2)

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2(5-6), 4 (2013).
[Crossref]

F. Poletti, N. Petrovich Marco, and J. Richardson David, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2(5-6), 315 (2013).
[Crossref]

Nat. Photonics (1)

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photonics 8(4), 278–286 (2014).
[Crossref]

Opt. Commun. (1)

X. Liu, “Adaptive higher-order split-step Fourier algorithm for simulating lightwave propagation in optical fiber,” Opt. Commun. 282(7), 1435–1439 (2009).
[Crossref]

Opt. Express (15)

A. V. Gorbach and D. V. Skryabin, “Soliton self-frequency shift, non-solitonic radiation and self-induced transparency in air-core fibers,” Opt. Express 16(7), 4858–4865 (2008).
[Crossref] [PubMed]

A. R. Bhagwat and A. L. Gaeta, “Nonlinear optics in hollow-core photonic bandgap fibers,” Opt. Express 16(7), 5035–5047 (2008).
[Crossref] [PubMed]

L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18(22), 23133–23146 (2010).
[Crossref] [PubMed]

S. A. Mousavi, S. R. Sandoghchi, D. J. Richardson, and F. Poletti, “Broadband high birefringence and polarizing hollow core antiresonant fibers,” Opt. Express 24(20), 22943–22958 (2016).
[Crossref] [PubMed]

B. Debord, M. Alharbi, L. Vincetti, A. Husakou, C. Fourcade-Dutin, C. Hoenninger, E. Mottay, F. Gérôme, and F. Benabid, “Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining,” Opt. Express 22(9), 10735–10746 (2014).
[Crossref] [PubMed]

A. Hartung, J. Kobelke, A. Schwuchow, K. Wondraczek, J. Bierlich, J. Popp, T. Frosch, and M. A. Schmidt, “Double antiresonant hollow core fiber--guidance in the deep ultraviolet by modified tunneling leaky modes,” Opt. Express 22(16), 19131–19140 (2014).
[Crossref] [PubMed]

F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22(20), 23807–23828 (2014).
[Crossref] [PubMed]

W. Ding and Y. Wang, “Analytic model for light guidance in single-wall hollow-core anti-resonant fibers,” Opt. Express 22(22), 27242–27256 (2014).
[Crossref] [PubMed]

F. Guichard, A. Giree, Y. Zaouter, M. Hanna, G. Machinet, B. Debord, F. Gérôme, P. Dupriez, F. Druon, C. Hönninger, E. Mottay, F. Benabid, and P. Georges, “Nonlinear compression of high energy fiber amplifier pulses in air-filled hypocycloid-core Kagome fiber,” Opt. Express 23(6), 7416–7423 (2015).
[Crossref] [PubMed]

L. Chen, G. J. Pearce, T. A. Birks, and D. M. Bird, “Guidance in Kagome-like photonic crystal fibres I: analysis of an ideal fibre structure,” Opt. Express 19(7), 6945–6956 (2011).
[Crossref] [PubMed]

C. L. Hoy, O. Ferhanoğlu, M. Yildirim, W. Piyawattanametha, H. Ra, O. Solgaard, and A. Ben-Yakar, “Optical design and imaging performance testing of a 9.6-mm diameter femtosecond laser microsurgery probe,” Opt. Express 19(11), 10536–10552 (2011).
[Crossref] [PubMed]

F. Emaury, C. F. Dutin, C. J. Saraceno, M. Trant, O. H. Heckl, Y. Y. Wang, C. Schriber, F. Gerome, T. Südmeyer, F. Benabid, and U. Keller, “Beam delivery and pulse compression to sub-50 fs of a modelocked thin-disk laser in a gas-filled Kagome-type HC-PCF fiber,” Opt. Express 21(4), 4986–4994 (2013).
[Crossref] [PubMed]

P. Jaworski, F. Yu, R. R. Maier, W. J. Wadsworth, J. C. Knight, J. D. Shephard, and D. P. Hand, “Picosecond and nanosecond pulse delivery through a hollow-core Negative Curvature Fiber for micro-machining applications,” Opt. Express 21(19), 22742–22753 (2013).
[Crossref] [PubMed]

B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part I: arc curvature effect on confinement loss,” Opt. Express 21(23), 28597–28608 (2013).
[Crossref] [PubMed]

C. Li, K. P. Rishad, P. Horak, Y. Matsuura, and D. Faccio, “Spectral broadening and temporal compression of ∼ 100 fs pulses in air-filled hollow core capillary fibers,” Opt. Express 22(1), 1143–1151 (2014).
[Crossref] [PubMed]

Opt. Lett. (7)

Optica (1)

Phys. Rev. (1)

Y. R. Shen and N. Bloembergen, “Theory of Stimulated Brillouin and Raman Scattering,” Phys. Rev. 137(6A), A1787–A1805 (1965).
[Crossref]

Phys. Rev. A Gen. Phys. (1)

A. P. Hickman, J. A. Paisner, and W. K. Bischel, “Theory of multiwave propagation and frequency conversion in a Raman medium,” Phys. Rev. A Gen. Phys. 33(3), 1788–1797 (1986).
[Crossref] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

J. R. Peñano, P. Sprangle, P. Serafim, B. Hafizi, and A. Ting, “Stimulated Raman scattering of intense laser pulses in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(5), 056502 (2003).
[Crossref] [PubMed]

Quantum Electron. (2)

Y. P. Yatsenko, A. A. Krylov, A. D. Pryamikov, A. F. Kosolapov, A. N. Kolyadin, A. V. Gladyshev, and I. A. Bufetov, “Propagation of femtosecond pulses in a hollow-core revolver fibre,” Quantum Electron. 46(7), 617–626 (2016).
[Crossref]

Y. P. Yatsenko, E. N. Pleteneva, A. G. Okhrimchuk, A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, and I. A. Bufetov, “Multiband supercontinuum generation in an air-core revolver fibre,” Quantum Electron. 47(6), 553–560 (2017).
[Crossref]

Other (11)

B. Debord, F. Gérôme, C. Hoenninger, E. Mottay, A. Husakou, and F. Benabid, “Milli-Joule energy-level comb and supercontinuum generation in atmospheric air-filled inhibited coupling Kagome fiber,” in CLEO: 2015 Postdeadline Paper Digest, (Optical Society of America, 2015), JTh5C.4.

M. Gu, D. Bird, D. Day, L. Fu, and D. Morrish, Femtosecond Biophotonics: Core Technology and Applications (Cambridge University Press, 2010).

Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in optimized core-shape kagome hollow-core PCF,” in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010), CPDB4.
[Crossref]

J. Hayes, S. Sandoghchi, T. Bradley, Z. Liu, R. Slavík, M. A. Gouveia, N. Wheeler, G. Jasion, Y. Chen, E. Numkam-Fokoua, M. Petrovich, D. Richardson, and F. Poletti, “Antiresonant hollow core fiber with octave spanning bandwidth for short haul data communications,” in Optical Fiber Communication Conference Postdeadline Papers, (Optical Society of America, 2016), p. Th5A.3.

Y. Chen, H. C. Mulvad, S. Sandoghchi, E. Numkam Fokoua, T. Bradley, J. Hayes, N. Wheeler, G. Jasion, S.-U. Alam, F. Poletti, M. Petrovich, and D. J. Richardson, “First Demonstration of Low Loss, Bend Insensitive 37-Cell Hollow-Core Photonic Bandgap Fiber at 1µm for High Power Delivery Applications,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), STu4P.1.
[Crossref]

J. Lægsgaard and P. J. Roberts, “Modeling of High-Power Pulse Compression and Soliton Formation in Hollow-Core Photonic Bandgap Fibers,” in Advances in Optical Sciences Congress, OSA Technical Digest (CD) (Optical Society of America, 2009), paper IMG1.
[Crossref]

W. D. Brewer, H. Haken, and H. C. Wolf, Molecular Physics and Elements of Quantum Chemistry: Introduction to Experiments and Theory (Springer Berlin Heidelberg, 2013).

J. M. Brown and A. Carrington, Rotational Spectroscopy of Diatomic Molecules (Cambridge University Press, 2003).

“TruMicro Series 5000”, retrieved http://www.uk.trumpf.com/en/products/laser-technology/products/solid-state-lasers/short-pulsed-lasers/trumicro-series-5000.html .

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).

G. Agrawal, Nonlinear Fiber Optics (Academic Press, October 2012), p. 648.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Scanning electron micrographs (SEMs) of the cross-section of fabricated (a) HC-PBGF, (c) HC-KF, (e) the optical microscopic image of the cross-section of fabricated HC-TF. The loss and dispersion profile of (b) HC-PBGF, (d) HC-KF, (f) HC-TF.
Fig. 2
Fig. 2 Experimental setup including free space launching mechanism and measurement systems.
Fig. 3
Fig. 3 The measured output spectrum of the pulsed laser with ~6 ps pulse length at 1030 nm launched in (a) 5 m of HC-PBGF with average laser power (Pavg) range of 1 - 6W and (b) 9.6 m of HC-TF with Pavg of 1 - 7W. The phase matching condition (PMC) detuning wavelengths are superposed over the experimental results for (c) HC-PBGF and (d) HC-TF with 10 dBm shift for each plot (10 dBm/div). The PMC is out of the plot range for HC-PBGF (d) due to the higher nonlinear coefficient of this fiber.
Fig. 4
Fig. 4 The output spectrum of the pulsed laser with ~6ps length at 1030 nm launched in to (a) HC-TF with average laser power (Pavg) of 10, 15, 20 W and (b) HC-KF with Pavg of 2, 5, 10, 15, 20 W. The higher power output spectrums from overlapping sidebands to broad supercontinuum are presented for Pavg = 25, 30, 35, 40, 45 and 50W in (a) HC-TF and (b) HC-KF.
Fig. 5
Fig. 5 Comparison between experimental results of air-filled HC-KF (Fig. 4(b)) and GNLSE simulation results using SDO model for air (a) Pavg = 10 W, (b) Pavg = 15 W, (c) Pavg = 25 W. The SDO model cannot properly predict A. the position of the RRS at low power. B. VRS is not reproduced at all. C. The broadening effect is not correctly reproduced due to lack of VRS.
Fig. 6
Fig. 6 (a) Comparison between the time domain rotational Raman response for Nitrogen by the SDO model and SQM, (c) real and imaginary parts of the frequency response of the SDO model for Nitrogen, (c) real and imaginary parts of the frequency response of SQM for Nitrogen.
Fig. 7
Fig. 7 (a) Experimental output spectra for HC-KF at different Pavg (Fig. 4(b.d)), (b) simulation results using SQM in the GNLSE for the HC-KF (averaged over 20 shots). The comparison of simulation and experimental results for (c) 5 W, (d) 15 W, (e) 25 W, (f) 35 W, (g) 50 W.
Fig. 8
Fig. 8 Comparison of experimental output spectrum and simulation results using the SQM in the GNLSE for HC-KF for Pavg of (a) 15 W, (b) 25 W, (c) 35 W.
Fig. 9
Fig. 9 Power spectrum evolution of a 800 fs pulse (a) propagating along HC-KF at 1030 nm with 200 µJ energy, (b) at the output of the fiber; (c) Power spectrum evolution of a 50 ps pulse propagating along HC-KF at 1030 nm with 200 µJ energy, (d) the power spectrum of the 50 ps pulse at the output of the fiber.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

β(ω)= ω c n gas 2 (ω,P,T) ( 2.4048c ωa(ω) ) 2
E ¯ (z,ω) z iD(ω) E ¯ (z,ω)= i j=1 2 K j γ j (ω)F{ E(z,t) + R (T) j | E(z,tT) | 2 dT } ,j=1,2.
R j (t)=(1 f r j )δ(t)+ f r j H j (t),j=1,2. + R j (t)dt=1.
H ro t k (t)=u(t) C ro t k J e (t/ τ ro t k J ) A k J sin(4π B k c(2J+3)) , A k J =( N k (J+2) N k J ) q k J (J+2)(J+1) (2J+3) , N k J =exp[ hc B k J(J+1)/ KT ].k=1,2.
H vi b k (t)=u(t) C vi b k J e (t/ τ vib k J ) M k J sin( ω k J t) , ω k J 2πc( Ω ¯ k η k J(J+1) ), M k J = q k J (2J+1)exp[ hc B k J(J+1)/ KT ],k=1,2.
H 1 (t)= k=1 2 σ k n ¯ 1 [ μ ro t k H ro t k (t)+(1 μ ro t k ) H vi b k (t) ] ,
E ¯ (z,ω) z iD(ω) E ¯ (z,ω)=i γ total (ω)F{ E(z,t) + R (T) total | E(z,tT) | 2 dT }.

Metrics