Abstract

An electrically pumped DFB laser integrated on and coupled to a silicon waveguide circuit is demonstrated by transfer printing a 40 × 970 μm2 III-V coupon, defined on a III-V epitaxial wafer. A second-order grating defined in the silicon device layer with a period of 477 nm and a duty cycle of 75% was used for realizing single mode emission, while an adiabatic taper structure is used for coupling to the silicon waveguide layer. 18 mA threshold current and a maximum single-sided waveguide-coupled output power above 2 mW is obtained at 20°C. Single mode operation around 1550 nm with > 40 dB side mode suppression ratio (SMSR) is realized. This new integration approach allows for the very efficient use of the III-V material and the massively parallel integration of these coupons on a silicon photonic integrated circuit wafer. It also allows for the intimate integration of III-V opto-electronic components based on different epitaxial layer structures.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Transfer-printing-based integration of single-mode waveguide-coupled III-V-on-silicon broadband light emitters

Andreas De Groote, Paolo Cardile, Ananth Z. Subramanian, Alin M. Fecioru, Christopher Bower, Danae Delbeke, Roel Baets, and Günther Roelkens
Opt. Express 24(13) 13754-13762 (2016)

Integration of etched facet, electrically pumped, C-band Fabry-Pérot lasers on a silicon photonic integrated circuit by transfer printing

Joan Juvert, Tommaso Cassese, Sarah Uvin, Andreas de Groote, Brad Snyder, Lieve Bogaerts, Geraldine Jamieson, Joris Van Campenhout, Günther Roelkens, and Dries Van Thourhout
Opt. Express 26(17) 21443-21454 (2018)

Novel adiabatic tapered couplers for active III–V/SOI devices fabricated through transfer printing

Sören Dhoore, Sarah Uvin, Dries Van Thourhout, Geert Morthier, and Gunther Roelkens
Opt. Express 24(12) 12976-12990 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. Liang and J. E. Bowers, “Photonic integration: Si or InP substrates?” Electron. Lett. 45(12), 578–581 (2009).
    [Crossref]
  2. A. Novack, M. Streshinsky, R. Ding, Y. Liu, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Progress in silicon platforms for integrated optics,” Nanophotonics 3(4-5), 205–214 (2014).
    [Crossref]
  3. F. Boeuf, S. Cremer, E. Temporiti, M. Fere’, M. Shaw, N. Vulliet, orlando, D. Ristoiu, A. Farcy, T. Pinguet, A. Mekis, G. Masini, P. Sun, Y. Chi, H. Petiton, S. Jan, J.-R. Manouvrier, C. Baudot, P. Le-Maitre, J. F. Carpentier, L. Salager, M. Traldi, L. Maggi, D. Rigamonti, C. Zaccherini, C. Elemi, B. Sautreuil, and L. Verga, “Recent Progress in Silicon Photonics R & D and Manufacturing on 300mm Wafer Platform,” in Optical Fiber Communication Conference (OFC), 34 (2015), paper W3A.1.
    [Crossref]
  4. D. Goodwill, “Technology for Ultra-Large Silicon Photonic Optical Switches,” Optical Fiber Communication Conference (OFC), M2B.2 (2017).
    [Crossref]
  5. A. Novack, M. Streshinsky, R. Ding, Y. Liu, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Progress in silicon platforms for integrated optics,” Nanophotonics 3(4-5), 205–214 (2014).
    [Crossref]
  6. T. H. Stievater, M. W. Pruessner, D. Park, W. S. Rabinovich, R. A. McGill, D. A. Kozak, R. Furstenberg, S. A. Holmstrom, and J. B. Khurgin, “Trace gas absorption spectroscopy using functionalized microring resonators,” Opt. Lett. 39(4), 969–972 (2014).
    [Crossref] [PubMed]
  7. W.-C. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, “Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing,” Opt. Lett. 37(7), 1208–1210 (2012).
    [Crossref] [PubMed]
  8. R. Wang, A. Vasiliev, M. Muneeb, A. Malik, S. Sprengel, G. Boehm, M.-C. Amann, I. Šimonytė, A. Vizbaras, K. Vizbaras, R. Baets, and G. Roelkens, “III–V-on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2–4 μm Wavelength Range,” Sensors (Basel) 17(12), 1788 (2017).
    [Crossref]
  9. A. Vasiliev, A. Malik, M. Muneeb, B. Kuyken, R. Baets, and G. Roelkens, “On-Chip Mid-Infrared Photothermal Spectroscopy Using Suspended Silicon-on-Insulator Microring Resonators,” ACS Sens. 1(11), 1301–1307 (2016).
    [Crossref]
  10. T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1501909 (2015).
    [Crossref]
  11. Y. Jhang, K. Tanabe, S. Iwamoto, and Y. Arakawa, “InAs/GaAs quantum dot lasers on silicon-on-insulator substrate by metal-stripe wafer bonding,” IEEE Photonics Technol. Lett. 27(8), 875–878 (2015).
    [Crossref]
  12. S. Keyvaninia, M. Muneeb, S. Stankovic, R. van Veldhoven, D. van Thourhout, and G. Roelkens, “Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate,” Opt. Mater. Express 3(1), 35–46 (2013).
    [Crossref]
  13. B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room Temperature O-band DFB Laser Array Directly Grown on (001) Silicon,” Nano Lett. 17(1), 559–564 (2017).
    [Crossref] [PubMed]
  14. L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111, 032105 (2017).
  15. R. Koerner, M. Oehme, M. Gollhofer, M. Schmid, K. Kostecki, S. Bechler, D. Widmann, E. Kasper, and J. Schulze, “Electrically pumped lasing from Ge Fabry-Perot resonators on Si,” Opt. Express 23(11), 14815–14822 (2015).
    [Crossref] [PubMed]
  16. B. Corbett, R. Loi, W. Zhou, D. Liu, and Z. Ma, “Transfer print techniques for heterogeneous integration of photonic components,” Prog. Quantum Electron. 52, 1–17 (2017).
    [Crossref]
  17. H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6(9), 615–622 (2012).
    [Crossref]
  18. A. De Groote, P. Cardile, A. Z. Subramanian, A. M. Fecioru, C. Bower, D. Delbeke, R. Baets, and G. Roelkens, “Transfer-printing-based integration of single-mode waveguide-coupled III-V-on-silicon broadband light emitters,” Opt. Express 24(13), 13754–13762 (2016).
    [Crossref] [PubMed]
  19. J. Zhang, A. De Groote, A. Abbasi, R. Loi, J. O’Callaghan, B. Corbett, A. J. Trindade, C. A. Bower, and G. Roelkens, “Silicon photonics fiber-to-the-home transceiver array based on transfer-printing-based integration of III-V photodetectors,” Opt. Express 25(13), 14290–14299 (2017).
    [Crossref] [PubMed]
  20. J. O’Callaghan, R. Loi, E. E. Mura, B. Roycroft, A. J. Trindade, K. Thomas, A. Gocalinska, E. Pelucchi, J. Zhang, R. Roelkens, C. A. Bower, and B. Corbett, “Comparison of InGaAs and InAlAs sacrificial layers for release of InP-based devices,” Opt. Express 7(12), 4408–4414 (2017).
    [Crossref]
  21. C. Bower, D. Gomez, K. Lucht, B. Cox, and D. Kneeburg, “Transfer-printed integrated circuits for display backplanes,” in Proceedings of International Display Workshop, (SID, 2010), pp. 1203–1206.
  22. J. Zhang, Y. Li, S. Dhoore, G. Morthier, and G. Roelkens, “Unidirectional, widely-tunable and narrow-linewidth heterogeneously integrated III-V-on-silicon laser,” Opt. Express 25(6), 7092–7100 (2017).
    [Crossref] [PubMed]
  23. G. Morthier, K. David, P. Vankwikelberge, and R. Baets, “A new DFB-laser diode with reduced spatial hole burning,” IEEE Photonics Technol. Lett. 2(6), 388–390 (1990).
    [Crossref]
  24. M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. De Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J. M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photonics Technol. Lett. 24(1), 76–78 (2012).
    [Crossref]

2017 (7)

R. Wang, A. Vasiliev, M. Muneeb, A. Malik, S. Sprengel, G. Boehm, M.-C. Amann, I. Šimonytė, A. Vizbaras, K. Vizbaras, R. Baets, and G. Roelkens, “III–V-on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2–4 μm Wavelength Range,” Sensors (Basel) 17(12), 1788 (2017).
[Crossref]

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room Temperature O-band DFB Laser Array Directly Grown on (001) Silicon,” Nano Lett. 17(1), 559–564 (2017).
[Crossref] [PubMed]

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111, 032105 (2017).

B. Corbett, R. Loi, W. Zhou, D. Liu, and Z. Ma, “Transfer print techniques for heterogeneous integration of photonic components,” Prog. Quantum Electron. 52, 1–17 (2017).
[Crossref]

J. Zhang, A. De Groote, A. Abbasi, R. Loi, J. O’Callaghan, B. Corbett, A. J. Trindade, C. A. Bower, and G. Roelkens, “Silicon photonics fiber-to-the-home transceiver array based on transfer-printing-based integration of III-V photodetectors,” Opt. Express 25(13), 14290–14299 (2017).
[Crossref] [PubMed]

J. O’Callaghan, R. Loi, E. E. Mura, B. Roycroft, A. J. Trindade, K. Thomas, A. Gocalinska, E. Pelucchi, J. Zhang, R. Roelkens, C. A. Bower, and B. Corbett, “Comparison of InGaAs and InAlAs sacrificial layers for release of InP-based devices,” Opt. Express 7(12), 4408–4414 (2017).
[Crossref]

J. Zhang, Y. Li, S. Dhoore, G. Morthier, and G. Roelkens, “Unidirectional, widely-tunable and narrow-linewidth heterogeneously integrated III-V-on-silicon laser,” Opt. Express 25(6), 7092–7100 (2017).
[Crossref] [PubMed]

2016 (2)

A. Vasiliev, A. Malik, M. Muneeb, B. Kuyken, R. Baets, and G. Roelkens, “On-Chip Mid-Infrared Photothermal Spectroscopy Using Suspended Silicon-on-Insulator Microring Resonators,” ACS Sens. 1(11), 1301–1307 (2016).
[Crossref]

A. De Groote, P. Cardile, A. Z. Subramanian, A. M. Fecioru, C. Bower, D. Delbeke, R. Baets, and G. Roelkens, “Transfer-printing-based integration of single-mode waveguide-coupled III-V-on-silicon broadband light emitters,” Opt. Express 24(13), 13754–13762 (2016).
[Crossref] [PubMed]

2015 (3)

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1501909 (2015).
[Crossref]

Y. Jhang, K. Tanabe, S. Iwamoto, and Y. Arakawa, “InAs/GaAs quantum dot lasers on silicon-on-insulator substrate by metal-stripe wafer bonding,” IEEE Photonics Technol. Lett. 27(8), 875–878 (2015).
[Crossref]

R. Koerner, M. Oehme, M. Gollhofer, M. Schmid, K. Kostecki, S. Bechler, D. Widmann, E. Kasper, and J. Schulze, “Electrically pumped lasing from Ge Fabry-Perot resonators on Si,” Opt. Express 23(11), 14815–14822 (2015).
[Crossref] [PubMed]

2014 (3)

A. Novack, M. Streshinsky, R. Ding, Y. Liu, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Progress in silicon platforms for integrated optics,” Nanophotonics 3(4-5), 205–214 (2014).
[Crossref]

A. Novack, M. Streshinsky, R. Ding, Y. Liu, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Progress in silicon platforms for integrated optics,” Nanophotonics 3(4-5), 205–214 (2014).
[Crossref]

T. H. Stievater, M. W. Pruessner, D. Park, W. S. Rabinovich, R. A. McGill, D. A. Kozak, R. Furstenberg, S. A. Holmstrom, and J. B. Khurgin, “Trace gas absorption spectroscopy using functionalized microring resonators,” Opt. Lett. 39(4), 969–972 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (3)

W.-C. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, “Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing,” Opt. Lett. 37(7), 1208–1210 (2012).
[Crossref] [PubMed]

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6(9), 615–622 (2012).
[Crossref]

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. De Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J. M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photonics Technol. Lett. 24(1), 76–78 (2012).
[Crossref]

2009 (1)

D. Liang and J. E. Bowers, “Photonic integration: Si or InP substrates?” Electron. Lett. 45(12), 578–581 (2009).
[Crossref]

1990 (1)

G. Morthier, K. David, P. Vankwikelberge, and R. Baets, “A new DFB-laser diode with reduced spatial hole burning,” IEEE Photonics Technol. Lett. 2(6), 388–390 (1990).
[Crossref]

Abbasi, A.

Absil, P.

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room Temperature O-band DFB Laser Array Directly Grown on (001) Silicon,” Nano Lett. 17(1), 559–564 (2017).
[Crossref] [PubMed]

Amann, M.-C.

R. Wang, A. Vasiliev, M. Muneeb, A. Malik, S. Sprengel, G. Boehm, M.-C. Amann, I. Šimonytė, A. Vizbaras, K. Vizbaras, R. Baets, and G. Roelkens, “III–V-on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2–4 μm Wavelength Range,” Sensors (Basel) 17(12), 1788 (2017).
[Crossref]

Arakawa, Y.

Y. Jhang, K. Tanabe, S. Iwamoto, and Y. Arakawa, “InAs/GaAs quantum dot lasers on silicon-on-insulator substrate by metal-stripe wafer bonding,” IEEE Photonics Technol. Lett. 27(8), 875–878 (2015).
[Crossref]

Baehr-Jones, T.

A. Novack, M. Streshinsky, R. Ding, Y. Liu, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Progress in silicon platforms for integrated optics,” Nanophotonics 3(4-5), 205–214 (2014).
[Crossref]

A. Novack, M. Streshinsky, R. Ding, Y. Liu, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Progress in silicon platforms for integrated optics,” Nanophotonics 3(4-5), 205–214 (2014).
[Crossref]

Baets, R.

R. Wang, A. Vasiliev, M. Muneeb, A. Malik, S. Sprengel, G. Boehm, M.-C. Amann, I. Šimonytė, A. Vizbaras, K. Vizbaras, R. Baets, and G. Roelkens, “III–V-on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2–4 μm Wavelength Range,” Sensors (Basel) 17(12), 1788 (2017).
[Crossref]

A. Vasiliev, A. Malik, M. Muneeb, B. Kuyken, R. Baets, and G. Roelkens, “On-Chip Mid-Infrared Photothermal Spectroscopy Using Suspended Silicon-on-Insulator Microring Resonators,” ACS Sens. 1(11), 1301–1307 (2016).
[Crossref]

A. De Groote, P. Cardile, A. Z. Subramanian, A. M. Fecioru, C. Bower, D. Delbeke, R. Baets, and G. Roelkens, “Transfer-printing-based integration of single-mode waveguide-coupled III-V-on-silicon broadband light emitters,” Opt. Express 24(13), 13754–13762 (2016).
[Crossref] [PubMed]

G. Morthier, K. David, P. Vankwikelberge, and R. Baets, “A new DFB-laser diode with reduced spatial hole burning,” IEEE Photonics Technol. Lett. 2(6), 388–390 (1990).
[Crossref]

Bechler, S.

Berggren, J.

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6(9), 615–622 (2012).
[Crossref]

Boehm, G.

R. Wang, A. Vasiliev, M. Muneeb, A. Malik, S. Sprengel, G. Boehm, M.-C. Amann, I. Šimonytė, A. Vizbaras, K. Vizbaras, R. Baets, and G. Roelkens, “III–V-on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2–4 μm Wavelength Range,” Sensors (Basel) 17(12), 1788 (2017).
[Crossref]

Bonef, B.

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111, 032105 (2017).

Bower, C.

Bower, C. A.

J. O’Callaghan, R. Loi, E. E. Mura, B. Roycroft, A. J. Trindade, K. Thomas, A. Gocalinska, E. Pelucchi, J. Zhang, R. Roelkens, C. A. Bower, and B. Corbett, “Comparison of InGaAs and InAlAs sacrificial layers for release of InP-based devices,” Opt. Express 7(12), 4408–4414 (2017).
[Crossref]

J. Zhang, A. De Groote, A. Abbasi, R. Loi, J. O’Callaghan, B. Corbett, A. J. Trindade, C. A. Bower, and G. Roelkens, “Silicon photonics fiber-to-the-home transceiver array based on transfer-printing-based integration of III-V photodetectors,” Opt. Express 25(13), 14290–14299 (2017).
[Crossref] [PubMed]

Bowers, J. E.

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111, 032105 (2017).

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1501909 (2015).
[Crossref]

D. Liang and J. E. Bowers, “Photonic integration: Si or InP substrates?” Electron. Lett. 45(12), 578–581 (2009).
[Crossref]

Cabinian, B. C.

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111, 032105 (2017).

Cardile, P.

Chakravarty, S.

Chen, R. T.

Chuwongin, S.

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6(9), 615–622 (2012).
[Crossref]

Corbett, B.

B. Corbett, R. Loi, W. Zhou, D. Liu, and Z. Ma, “Transfer print techniques for heterogeneous integration of photonic components,” Prog. Quantum Electron. 52, 1–17 (2017).
[Crossref]

J. O’Callaghan, R. Loi, E. E. Mura, B. Roycroft, A. J. Trindade, K. Thomas, A. Gocalinska, E. Pelucchi, J. Zhang, R. Roelkens, C. A. Bower, and B. Corbett, “Comparison of InGaAs and InAlAs sacrificial layers for release of InP-based devices,” Opt. Express 7(12), 4408–4414 (2017).
[Crossref]

J. Zhang, A. De Groote, A. Abbasi, R. Loi, J. O’Callaghan, B. Corbett, A. J. Trindade, C. A. Bower, and G. Roelkens, “Silicon photonics fiber-to-the-home transceiver array based on transfer-printing-based integration of III-V photodetectors,” Opt. Express 25(13), 14290–14299 (2017).
[Crossref] [PubMed]

Davenport, M.

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1501909 (2015).
[Crossref]

David, K.

G. Morthier, K. David, P. Vankwikelberge, and R. Baets, “A new DFB-laser diode with reduced spatial hole burning,” IEEE Photonics Technol. Lett. 2(6), 388–390 (1990).
[Crossref]

De Groote, A.

De Valicourt, G.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. De Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J. M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photonics Technol. Lett. 24(1), 76–78 (2012).
[Crossref]

Delbeke, D.

Dhoore, S.

Ding, R.

A. Novack, M. Streshinsky, R. Ding, Y. Liu, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Progress in silicon platforms for integrated optics,” Nanophotonics 3(4-5), 205–214 (2014).
[Crossref]

A. Novack, M. Streshinsky, R. Ding, Y. Liu, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Progress in silicon platforms for integrated optics,” Nanophotonics 3(4-5), 205–214 (2014).
[Crossref]

Duan, G. H.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. De Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J. M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photonics Technol. Lett. 24(1), 76–78 (2012).
[Crossref]

Fecioru, A. M.

Fedeli, J. M.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. De Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J. M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photonics Technol. Lett. 24(1), 76–78 (2012).
[Crossref]

Fish, G.

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1501909 (2015).
[Crossref]

Furstenberg, R.

Gocalinska, A.

J. O’Callaghan, R. Loi, E. E. Mura, B. Roycroft, A. J. Trindade, K. Thomas, A. Gocalinska, E. Pelucchi, J. Zhang, R. Roelkens, C. A. Bower, and B. Corbett, “Comparison of InGaAs and InAlAs sacrificial layers for release of InP-based devices,” Opt. Express 7(12), 4408–4414 (2017).
[Crossref]

Gollhofer, M.

Hammar, M.

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6(9), 615–622 (2012).
[Crossref]

Hochberg, M.

A. Novack, M. Streshinsky, R. Ding, Y. Liu, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Progress in silicon platforms for integrated optics,” Nanophotonics 3(4-5), 205–214 (2014).
[Crossref]

A. Novack, M. Streshinsky, R. Ding, Y. Liu, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Progress in silicon platforms for integrated optics,” Nanophotonics 3(4-5), 205–214 (2014).
[Crossref]

Holmstrom, S. A.

Iwamoto, S.

Y. Jhang, K. Tanabe, S. Iwamoto, and Y. Arakawa, “InAs/GaAs quantum dot lasers on silicon-on-insulator substrate by metal-stripe wafer bonding,” IEEE Photonics Technol. Lett. 27(8), 875–878 (2015).
[Crossref]

Jany, C.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. De Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J. M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photonics Technol. Lett. 24(1), 76–78 (2012).
[Crossref]

Jhang, Y.

Y. Jhang, K. Tanabe, S. Iwamoto, and Y. Arakawa, “InAs/GaAs quantum dot lasers on silicon-on-insulator substrate by metal-stripe wafer bonding,” IEEE Photonics Technol. Lett. 27(8), 875–878 (2015).
[Crossref]

Kasper, E.

Keyvaninia, S.

S. Keyvaninia, M. Muneeb, S. Stankovic, R. van Veldhoven, D. van Thourhout, and G. Roelkens, “Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate,” Opt. Mater. Express 3(1), 35–46 (2013).
[Crossref]

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. De Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J. M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photonics Technol. Lett. 24(1), 76–78 (2012).
[Crossref]

Khurgin, J. B.

Klamkin, J.

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111, 032105 (2017).

Koerner, R.

Komljenovic, T.

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1501909 (2015).
[Crossref]

Kostecki, K.

Kozak, D. A.

Kuyken, B.

A. Vasiliev, A. Malik, M. Muneeb, B. Kuyken, R. Baets, and G. Roelkens, “On-Chip Mid-Infrared Photothermal Spectroscopy Using Suspended Silicon-on-Insulator Microring Resonators,” ACS Sens. 1(11), 1301–1307 (2016).
[Crossref]

Lai, W.-C.

Lamponi, M.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. De Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J. M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photonics Technol. Lett. 24(1), 76–78 (2012).
[Crossref]

Lelarge, F.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. De Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J. M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photonics Technol. Lett. 24(1), 76–78 (2012).
[Crossref]

Li, Y.

Liang, D.

D. Liang and J. E. Bowers, “Photonic integration: Si or InP substrates?” Electron. Lett. 45(12), 578–581 (2009).
[Crossref]

Lim, A. E. J.

A. Novack, M. Streshinsky, R. Ding, Y. Liu, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Progress in silicon platforms for integrated optics,” Nanophotonics 3(4-5), 205–214 (2014).
[Crossref]

A. Novack, M. Streshinsky, R. Ding, Y. Liu, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Progress in silicon platforms for integrated optics,” Nanophotonics 3(4-5), 205–214 (2014).
[Crossref]

Liu, D.

B. Corbett, R. Loi, W. Zhou, D. Liu, and Z. Ma, “Transfer print techniques for heterogeneous integration of photonic components,” Prog. Quantum Electron. 52, 1–17 (2017).
[Crossref]

Liu, Y.

A. Novack, M. Streshinsky, R. Ding, Y. Liu, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Progress in silicon platforms for integrated optics,” Nanophotonics 3(4-5), 205–214 (2014).
[Crossref]

A. Novack, M. Streshinsky, R. Ding, Y. Liu, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Progress in silicon platforms for integrated optics,” Nanophotonics 3(4-5), 205–214 (2014).
[Crossref]

Lo, G. Q.

A. Novack, M. Streshinsky, R. Ding, Y. Liu, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Progress in silicon platforms for integrated optics,” Nanophotonics 3(4-5), 205–214 (2014).
[Crossref]

A. Novack, M. Streshinsky, R. Ding, Y. Liu, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Progress in silicon platforms for integrated optics,” Nanophotonics 3(4-5), 205–214 (2014).
[Crossref]

Loi, R.

B. Corbett, R. Loi, W. Zhou, D. Liu, and Z. Ma, “Transfer print techniques for heterogeneous integration of photonic components,” Prog. Quantum Electron. 52, 1–17 (2017).
[Crossref]

J. O’Callaghan, R. Loi, E. E. Mura, B. Roycroft, A. J. Trindade, K. Thomas, A. Gocalinska, E. Pelucchi, J. Zhang, R. Roelkens, C. A. Bower, and B. Corbett, “Comparison of InGaAs and InAlAs sacrificial layers for release of InP-based devices,” Opt. Express 7(12), 4408–4414 (2017).
[Crossref]

J. Zhang, A. De Groote, A. Abbasi, R. Loi, J. O’Callaghan, B. Corbett, A. J. Trindade, C. A. Bower, and G. Roelkens, “Silicon photonics fiber-to-the-home transceiver array based on transfer-printing-based integration of III-V photodetectors,” Opt. Express 25(13), 14290–14299 (2017).
[Crossref] [PubMed]

Ma, Z.

B. Corbett, R. Loi, W. Zhou, D. Liu, and Z. Ma, “Transfer print techniques for heterogeneous integration of photonic components,” Prog. Quantum Electron. 52, 1–17 (2017).
[Crossref]

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6(9), 615–622 (2012).
[Crossref]

Malik, A.

R. Wang, A. Vasiliev, M. Muneeb, A. Malik, S. Sprengel, G. Boehm, M.-C. Amann, I. Šimonytė, A. Vizbaras, K. Vizbaras, R. Baets, and G. Roelkens, “III–V-on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2–4 μm Wavelength Range,” Sensors (Basel) 17(12), 1788 (2017).
[Crossref]

A. Vasiliev, A. Malik, M. Muneeb, B. Kuyken, R. Baets, and G. Roelkens, “On-Chip Mid-Infrared Photothermal Spectroscopy Using Suspended Silicon-on-Insulator Microring Resonators,” ACS Sens. 1(11), 1301–1307 (2016).
[Crossref]

McGill, R. A.

Megalini, L.

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111, 032105 (2017).

Merckling, C.

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room Temperature O-band DFB Laser Array Directly Grown on (001) Silicon,” Nano Lett. 17(1), 559–564 (2017).
[Crossref] [PubMed]

Messaoudene, S.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. De Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J. M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photonics Technol. Lett. 24(1), 76–78 (2012).
[Crossref]

Morthier, G.

J. Zhang, Y. Li, S. Dhoore, G. Morthier, and G. Roelkens, “Unidirectional, widely-tunable and narrow-linewidth heterogeneously integrated III-V-on-silicon laser,” Opt. Express 25(6), 7092–7100 (2017).
[Crossref] [PubMed]

G. Morthier, K. David, P. Vankwikelberge, and R. Baets, “A new DFB-laser diode with reduced spatial hole burning,” IEEE Photonics Technol. Lett. 2(6), 388–390 (1990).
[Crossref]

Muneeb, M.

R. Wang, A. Vasiliev, M. Muneeb, A. Malik, S. Sprengel, G. Boehm, M.-C. Amann, I. Šimonytė, A. Vizbaras, K. Vizbaras, R. Baets, and G. Roelkens, “III–V-on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2–4 μm Wavelength Range,” Sensors (Basel) 17(12), 1788 (2017).
[Crossref]

A. Vasiliev, A. Malik, M. Muneeb, B. Kuyken, R. Baets, and G. Roelkens, “On-Chip Mid-Infrared Photothermal Spectroscopy Using Suspended Silicon-on-Insulator Microring Resonators,” ACS Sens. 1(11), 1301–1307 (2016).
[Crossref]

S. Keyvaninia, M. Muneeb, S. Stankovic, R. van Veldhoven, D. van Thourhout, and G. Roelkens, “Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate,” Opt. Mater. Express 3(1), 35–46 (2013).
[Crossref]

Mura, E. E.

J. O’Callaghan, R. Loi, E. E. Mura, B. Roycroft, A. J. Trindade, K. Thomas, A. Gocalinska, E. Pelucchi, J. Zhang, R. Roelkens, C. A. Bower, and B. Corbett, “Comparison of InGaAs and InAlAs sacrificial layers for release of InP-based devices,” Opt. Express 7(12), 4408–4414 (2017).
[Crossref]

Norberg, E.

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1501909 (2015).
[Crossref]

Novack, A.

A. Novack, M. Streshinsky, R. Ding, Y. Liu, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Progress in silicon platforms for integrated optics,” Nanophotonics 3(4-5), 205–214 (2014).
[Crossref]

A. Novack, M. Streshinsky, R. Ding, Y. Liu, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Progress in silicon platforms for integrated optics,” Nanophotonics 3(4-5), 205–214 (2014).
[Crossref]

O’Callaghan, J.

J. O’Callaghan, R. Loi, E. E. Mura, B. Roycroft, A. J. Trindade, K. Thomas, A. Gocalinska, E. Pelucchi, J. Zhang, R. Roelkens, C. A. Bower, and B. Corbett, “Comparison of InGaAs and InAlAs sacrificial layers for release of InP-based devices,” Opt. Express 7(12), 4408–4414 (2017).
[Crossref]

J. Zhang, A. De Groote, A. Abbasi, R. Loi, J. O’Callaghan, B. Corbett, A. J. Trindade, C. A. Bower, and G. Roelkens, “Silicon photonics fiber-to-the-home transceiver array based on transfer-printing-based integration of III-V photodetectors,” Opt. Express 25(13), 14290–14299 (2017).
[Crossref] [PubMed]

Oehme, M.

Pantouvaki, M.

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room Temperature O-band DFB Laser Array Directly Grown on (001) Silicon,” Nano Lett. 17(1), 559–564 (2017).
[Crossref] [PubMed]

Park, D.

Pelucchi, E.

J. O’Callaghan, R. Loi, E. E. Mura, B. Roycroft, A. J. Trindade, K. Thomas, A. Gocalinska, E. Pelucchi, J. Zhang, R. Roelkens, C. A. Bower, and B. Corbett, “Comparison of InGaAs and InAlAs sacrificial layers for release of InP-based devices,” Opt. Express 7(12), 4408–4414 (2017).
[Crossref]

Poingt, F.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. De Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J. M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photonics Technol. Lett. 24(1), 76–78 (2012).
[Crossref]

Pruessner, M. W.

Rabinovich, W. S.

Roelkens, G.

R. Wang, A. Vasiliev, M. Muneeb, A. Malik, S. Sprengel, G. Boehm, M.-C. Amann, I. Šimonytė, A. Vizbaras, K. Vizbaras, R. Baets, and G. Roelkens, “III–V-on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2–4 μm Wavelength Range,” Sensors (Basel) 17(12), 1788 (2017).
[Crossref]

J. Zhang, Y. Li, S. Dhoore, G. Morthier, and G. Roelkens, “Unidirectional, widely-tunable and narrow-linewidth heterogeneously integrated III-V-on-silicon laser,” Opt. Express 25(6), 7092–7100 (2017).
[Crossref] [PubMed]

J. Zhang, A. De Groote, A. Abbasi, R. Loi, J. O’Callaghan, B. Corbett, A. J. Trindade, C. A. Bower, and G. Roelkens, “Silicon photonics fiber-to-the-home transceiver array based on transfer-printing-based integration of III-V photodetectors,” Opt. Express 25(13), 14290–14299 (2017).
[Crossref] [PubMed]

A. Vasiliev, A. Malik, M. Muneeb, B. Kuyken, R. Baets, and G. Roelkens, “On-Chip Mid-Infrared Photothermal Spectroscopy Using Suspended Silicon-on-Insulator Microring Resonators,” ACS Sens. 1(11), 1301–1307 (2016).
[Crossref]

A. De Groote, P. Cardile, A. Z. Subramanian, A. M. Fecioru, C. Bower, D. Delbeke, R. Baets, and G. Roelkens, “Transfer-printing-based integration of single-mode waveguide-coupled III-V-on-silicon broadband light emitters,” Opt. Express 24(13), 13754–13762 (2016).
[Crossref] [PubMed]

S. Keyvaninia, M. Muneeb, S. Stankovic, R. van Veldhoven, D. van Thourhout, and G. Roelkens, “Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate,” Opt. Mater. Express 3(1), 35–46 (2013).
[Crossref]

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. De Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J. M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photonics Technol. Lett. 24(1), 76–78 (2012).
[Crossref]

Roelkens, R.

J. O’Callaghan, R. Loi, E. E. Mura, B. Roycroft, A. J. Trindade, K. Thomas, A. Gocalinska, E. Pelucchi, J. Zhang, R. Roelkens, C. A. Bower, and B. Corbett, “Comparison of InGaAs and InAlAs sacrificial layers for release of InP-based devices,” Opt. Express 7(12), 4408–4414 (2017).
[Crossref]

Roycroft, B.

J. O’Callaghan, R. Loi, E. E. Mura, B. Roycroft, A. J. Trindade, K. Thomas, A. Gocalinska, E. Pelucchi, J. Zhang, R. Roelkens, C. A. Bower, and B. Corbett, “Comparison of InGaAs and InAlAs sacrificial layers for release of InP-based devices,” Opt. Express 7(12), 4408–4414 (2017).
[Crossref]

Schmid, M.

Schulze, J.

Seo, J.-H.

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6(9), 615–622 (2012).
[Crossref]

Shuai, Y.

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6(9), 615–622 (2012).
[Crossref]

Šimonyte, I.

R. Wang, A. Vasiliev, M. Muneeb, A. Malik, S. Sprengel, G. Boehm, M.-C. Amann, I. Šimonytė, A. Vizbaras, K. Vizbaras, R. Baets, and G. Roelkens, “III–V-on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2–4 μm Wavelength Range,” Sensors (Basel) 17(12), 1788 (2017).
[Crossref]

Speck, J. S.

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111, 032105 (2017).

Sprengel, S.

R. Wang, A. Vasiliev, M. Muneeb, A. Malik, S. Sprengel, G. Boehm, M.-C. Amann, I. Šimonytė, A. Vizbaras, K. Vizbaras, R. Baets, and G. Roelkens, “III–V-on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2–4 μm Wavelength Range,” Sensors (Basel) 17(12), 1788 (2017).
[Crossref]

Srinivasan, S.

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1501909 (2015).
[Crossref]

Stankovic, S.

Stievater, T. H.

Streshinsky, M.

A. Novack, M. Streshinsky, R. Ding, Y. Liu, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Progress in silicon platforms for integrated optics,” Nanophotonics 3(4-5), 205–214 (2014).
[Crossref]

A. Novack, M. Streshinsky, R. Ding, Y. Liu, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Progress in silicon platforms for integrated optics,” Nanophotonics 3(4-5), 205–214 (2014).
[Crossref]

Subramanian, A. Z.

Tanabe, K.

Y. Jhang, K. Tanabe, S. Iwamoto, and Y. Arakawa, “InAs/GaAs quantum dot lasers on silicon-on-insulator substrate by metal-stripe wafer bonding,” IEEE Photonics Technol. Lett. 27(8), 875–878 (2015).
[Crossref]

Taylor, A.

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111, 032105 (2017).

Thomas, K.

J. O’Callaghan, R. Loi, E. E. Mura, B. Roycroft, A. J. Trindade, K. Thomas, A. Gocalinska, E. Pelucchi, J. Zhang, R. Roelkens, C. A. Bower, and B. Corbett, “Comparison of InGaAs and InAlAs sacrificial layers for release of InP-based devices,” Opt. Express 7(12), 4408–4414 (2017).
[Crossref]

Tian, B.

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room Temperature O-band DFB Laser Array Directly Grown on (001) Silicon,” Nano Lett. 17(1), 559–564 (2017).
[Crossref] [PubMed]

Trindade, A. J.

J. O’Callaghan, R. Loi, E. E. Mura, B. Roycroft, A. J. Trindade, K. Thomas, A. Gocalinska, E. Pelucchi, J. Zhang, R. Roelkens, C. A. Bower, and B. Corbett, “Comparison of InGaAs and InAlAs sacrificial layers for release of InP-based devices,” Opt. Express 7(12), 4408–4414 (2017).
[Crossref]

J. Zhang, A. De Groote, A. Abbasi, R. Loi, J. O’Callaghan, B. Corbett, A. J. Trindade, C. A. Bower, and G. Roelkens, “Silicon photonics fiber-to-the-home transceiver array based on transfer-printing-based integration of III-V photodetectors,” Opt. Express 25(13), 14290–14299 (2017).
[Crossref] [PubMed]

Van Campenhout, J.

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room Temperature O-band DFB Laser Array Directly Grown on (001) Silicon,” Nano Lett. 17(1), 559–564 (2017).
[Crossref] [PubMed]

Van Thourhout, D.

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room Temperature O-band DFB Laser Array Directly Grown on (001) Silicon,” Nano Lett. 17(1), 559–564 (2017).
[Crossref] [PubMed]

S. Keyvaninia, M. Muneeb, S. Stankovic, R. van Veldhoven, D. van Thourhout, and G. Roelkens, “Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate,” Opt. Mater. Express 3(1), 35–46 (2013).
[Crossref]

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. De Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J. M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photonics Technol. Lett. 24(1), 76–78 (2012).
[Crossref]

van Veldhoven, R.

Vankwikelberge, P.

G. Morthier, K. David, P. Vankwikelberge, and R. Baets, “A new DFB-laser diode with reduced spatial hole burning,” IEEE Photonics Technol. Lett. 2(6), 388–390 (1990).
[Crossref]

Vasiliev, A.

R. Wang, A. Vasiliev, M. Muneeb, A. Malik, S. Sprengel, G. Boehm, M.-C. Amann, I. Šimonytė, A. Vizbaras, K. Vizbaras, R. Baets, and G. Roelkens, “III–V-on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2–4 μm Wavelength Range,” Sensors (Basel) 17(12), 1788 (2017).
[Crossref]

A. Vasiliev, A. Malik, M. Muneeb, B. Kuyken, R. Baets, and G. Roelkens, “On-Chip Mid-Infrared Photothermal Spectroscopy Using Suspended Silicon-on-Insulator Microring Resonators,” ACS Sens. 1(11), 1301–1307 (2016).
[Crossref]

Vizbaras, A.

R. Wang, A. Vasiliev, M. Muneeb, A. Malik, S. Sprengel, G. Boehm, M.-C. Amann, I. Šimonytė, A. Vizbaras, K. Vizbaras, R. Baets, and G. Roelkens, “III–V-on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2–4 μm Wavelength Range,” Sensors (Basel) 17(12), 1788 (2017).
[Crossref]

Vizbaras, K.

R. Wang, A. Vasiliev, M. Muneeb, A. Malik, S. Sprengel, G. Boehm, M.-C. Amann, I. Šimonytė, A. Vizbaras, K. Vizbaras, R. Baets, and G. Roelkens, “III–V-on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2–4 μm Wavelength Range,” Sensors (Basel) 17(12), 1788 (2017).
[Crossref]

Wang, R.

R. Wang, A. Vasiliev, M. Muneeb, A. Malik, S. Sprengel, G. Boehm, M.-C. Amann, I. Šimonytė, A. Vizbaras, K. Vizbaras, R. Baets, and G. Roelkens, “III–V-on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2–4 μm Wavelength Range,” Sensors (Basel) 17(12), 1788 (2017).
[Crossref]

Wang, Z.

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room Temperature O-band DFB Laser Array Directly Grown on (001) Silicon,” Nano Lett. 17(1), 559–564 (2017).
[Crossref] [PubMed]

Widmann, D.

Yang, H.

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6(9), 615–622 (2012).
[Crossref]

Yang, W.

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6(9), 615–622 (2012).
[Crossref]

Zhang, J.

Zhao, D.

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6(9), 615–622 (2012).
[Crossref]

Zhao, H.

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111, 032105 (2017).

Zhou, W.

B. Corbett, R. Loi, W. Zhou, D. Liu, and Z. Ma, “Transfer print techniques for heterogeneous integration of photonic components,” Prog. Quantum Electron. 52, 1–17 (2017).
[Crossref]

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6(9), 615–622 (2012).
[Crossref]

Zou, Y.

ACS Sens. (1)

A. Vasiliev, A. Malik, M. Muneeb, B. Kuyken, R. Baets, and G. Roelkens, “On-Chip Mid-Infrared Photothermal Spectroscopy Using Suspended Silicon-on-Insulator Microring Resonators,” ACS Sens. 1(11), 1301–1307 (2016).
[Crossref]

Appl. Phys. Lett. (1)

L. Megalini, B. Bonef, B. C. Cabinian, H. Zhao, A. Taylor, J. S. Speck, J. E. Bowers, and J. Klamkin, “1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates,” Appl. Phys. Lett. 111, 032105 (2017).

Electron. Lett. (1)

D. Liang and J. E. Bowers, “Photonic integration: Si or InP substrates?” Electron. Lett. 45(12), 578–581 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1501909 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (3)

Y. Jhang, K. Tanabe, S. Iwamoto, and Y. Arakawa, “InAs/GaAs quantum dot lasers on silicon-on-insulator substrate by metal-stripe wafer bonding,” IEEE Photonics Technol. Lett. 27(8), 875–878 (2015).
[Crossref]

G. Morthier, K. David, P. Vankwikelberge, and R. Baets, “A new DFB-laser diode with reduced spatial hole burning,” IEEE Photonics Technol. Lett. 2(6), 388–390 (1990).
[Crossref]

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. De Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J. M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photonics Technol. Lett. 24(1), 76–78 (2012).
[Crossref]

Nano Lett. (1)

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room Temperature O-band DFB Laser Array Directly Grown on (001) Silicon,” Nano Lett. 17(1), 559–564 (2017).
[Crossref] [PubMed]

Nanophotonics (2)

A. Novack, M. Streshinsky, R. Ding, Y. Liu, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Progress in silicon platforms for integrated optics,” Nanophotonics 3(4-5), 205–214 (2014).
[Crossref]

A. Novack, M. Streshinsky, R. Ding, Y. Liu, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Progress in silicon platforms for integrated optics,” Nanophotonics 3(4-5), 205–214 (2014).
[Crossref]

Nat. Photonics (1)

H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6(9), 615–622 (2012).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Opt. Mater. Express (1)

Prog. Quantum Electron. (1)

B. Corbett, R. Loi, W. Zhou, D. Liu, and Z. Ma, “Transfer print techniques for heterogeneous integration of photonic components,” Prog. Quantum Electron. 52, 1–17 (2017).
[Crossref]

Sensors (Basel) (1)

R. Wang, A. Vasiliev, M. Muneeb, A. Malik, S. Sprengel, G. Boehm, M.-C. Amann, I. Šimonytė, A. Vizbaras, K. Vizbaras, R. Baets, and G. Roelkens, “III–V-on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2–4 μm Wavelength Range,” Sensors (Basel) 17(12), 1788 (2017).
[Crossref]

Other (3)

F. Boeuf, S. Cremer, E. Temporiti, M. Fere’, M. Shaw, N. Vulliet, orlando, D. Ristoiu, A. Farcy, T. Pinguet, A. Mekis, G. Masini, P. Sun, Y. Chi, H. Petiton, S. Jan, J.-R. Manouvrier, C. Baudot, P. Le-Maitre, J. F. Carpentier, L. Salager, M. Traldi, L. Maggi, D. Rigamonti, C. Zaccherini, C. Elemi, B. Sautreuil, and L. Verga, “Recent Progress in Silicon Photonics R & D and Manufacturing on 300mm Wafer Platform,” in Optical Fiber Communication Conference (OFC), 34 (2015), paper W3A.1.
[Crossref]

D. Goodwill, “Technology for Ultra-Large Silicon Photonic Optical Switches,” Optical Fiber Communication Conference (OFC), M2B.2 (2017).
[Crossref]

C. Bower, D. Gomez, K. Lucht, B. Cox, and D. Kneeburg, “Transfer-printed integrated circuits for display backplanes,” in Proceedings of International Display Workshop, (SID, 2010), pp. 1203–1206.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Micro-transfer-printing concept, illustrating the release, picking and printing of a single coupon/device. The concept can readily be extended to massively parallel printing, by using a properly structured stamp.
Fig. 2
Fig. 2 Schematic of an integrated photonic circuit built on a passive SOI waveguide circuit based on transfer printing combining different III-V epitaxial layer stacks densely integrated together.
Fig. 3
Fig. 3 Process flow of coupon patterning and release. (a) The initial III-V layer stack, (b) Sacrificial layer removal and first mesa definition, (c) Second mesa definition, (d) Etching of the release layer, (e) Resist encapsulation and under etch of the release layer, (f) Layout of the device coupon after photoresist encapsulation.
Fig. 4
Fig. 4 The released coupon arrays patterned on the native InP substrate, (a) Dense coupon array, (b) Surface of the InP substrate after picking an array of coupons, (c) Bottom surface of the coupons, (d) Focused ion beam (FIB) cross section image of a released coupon, (e) Zoom-in image of the cross section.
Fig. 5
Fig. 5 Transfer printing of the III-V coupons: (a) Laminating the PDMS stamp to the released coupon on the source substrate, (b) Picking up the III-V coupon by rapidly lifting up the stamp, (c) Laminating the III-V coupon against photonic target substrate with a slight overdrive, (d) Applying a shear force to detach the III-V coupon from the stamp, (e) Lifting up the stamp, (f) The transfer printed III-V coupon on the target photonic circuit.
Fig. 6
Fig. 6 (a) Array of printed III-V coupons on a silicon photonic target substrate (before photoresist encapsulation removal). (b) Cross section image at end of the coupon; (c) Cross section image in the middle of the coupon.
Fig. 7
Fig. 7 Process flow for the definition of the III-V mesa structure in the transfer-printed coupon. (a) Transfer printed III-V coupon onto Si PIC, (b) Resist removal, (c) SiN deposition, (d) Resist planarization, (e) Etching back to expose the p-InGaAs layer, (f) Laser mesa and taper definition, (g) QW patterning and n-contact metal deposition, (h) SiN passivation, (i) DVS-BCB planarization, (j) p-contact metal deposition, (k) n-via opening, (l) Final Ti/Au metallization.
Fig. 8
Fig. 8 (a) Top-view microscope image of a transfer-printed DFB laser, (b) FIB cross section image in the middle of the DFB laser, (c) FIB cross section image near the III-V/Si taper tip, showing a misalignment of less than 250 nm.
Fig. 9
Fig. 9 Performance of the fabricated DFB laser. (a) V-I curve and differential resistance, (b) P-I curve at different temperatures, (c) Superposition of the output spectra at different bias currents, the inset shows the laser wavelength evolution as a function of current (d) Wavelength shift as a function of the stage temperature.

Tables (1)

Tables Icon

Table 1 III-V laser epitaxial layer stack

Metrics