Abstract

Magnetic skyrmions are chiral quasiparticles that show promise for future spintronic applications such as skyrmion racetrack memories and logic devices because of their topological stability, small size (typically ∼ 3 – 500 nm), and ultralow threshold force to drive their motion. On the other hand, the ability of light to carry and deliver orbital angular momentum (OAM) in the form of optical vortices has attracted a lot of interest. In this work, we predict a photonic OAM transfer effect, by studying the dynamics of magnetic skyrmions subject to Laguerre-Gaussian optical vortices, which manifests a rotational motion of the skyrmionic quasiparticle around the beam axis. The topological charge of the optical vortex determines both the magnitude and the handedness of the rotation velocity of skyrmions. In our proposal, the twisted light beam acts as an optical tweezer to enable us displacing skyrmions over large-scale defects in magnetic films to avoid being captured.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Orbital angular momentum transfer in helical Mathieu beams

Carlos Lóxpez-Mariscal, Julio C. Gutiérrez-Vega, Graham Milne, and Kishan Dholakia
Opt. Express 14(9) 4182-4187 (2006)

Interaction of light carrying orbital angular momentum with a chiral dipolar scatterer

Paweł Woźniak, Israel De Leon, Katja Höflich, Gerd Leuchs, and Peter Banzer
Optica 6(8) 961-965 (2019)

References

  • View by:
  • |
  • |
  • |

  1. T.H.R. Skyrme, “A unified field theory of mesons and baryons,” Nucl. Phys. 31, 556–569 (1962).
    [Crossref]
  2. N. Nagaosa and Y. Tokura, “Topological properties and dynamics of magnetic skyrmions,” Nat. Nanotech. 8(12), 899–911 (2013).
    [Crossref]
  3. A. Fert, V. Cros, and J. Sampaio, “Skyrmions on the track,” Nat. Nanotech. 8(3), 152–156 (2013).
    [Crossref]
  4. J. Sampaio, V. Cros, S. Thiaville, and A. Fert, “Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures,” Nat. Nanotech. 8(11), 839–844 (2013).
    [Crossref]
  5. J. Iwasaki, M. Mochizuki, and N. Nagaosa, “Current-induced skyrmion dynamics in constrained geometries,” Nat. Nanotech. 8(10), 742–747 (2013).
    [Crossref]
  6. F. Buttner, C. Moutafis, M. Schneider, B. Kruger, C.M. Gunther, J. Geilhufe, C.v. Korff Schmising, J. Mohanty, B. Pfau, S. Schaffert, A. Bisig, M. Foerster, T. Schulz, C.A.F. Vaz, J.H. Franken, H.J.M. Swagten, M. Klaui, and S. Eisebitt, “Dynamics and inertia of skyrmionic spin structures,” Nat. Phys. 11(3), 225–228 (2015).
    [Crossref]
  7. N. Romming, A. Kubetzka, C. Hanneken, K. von Bergmann, and R. Wiesendanger, “Field-Dependent Size and Shape of Single Magnetic Skyrmion,” Phys. Rev. Lett. 114, 177203 (2015).
    [Crossref]
  8. W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M.B. Jungfleisch, F.Y. Fradin, J.E. Pearson, Y. Tserkovnyak, K.L. Wang, O. Heinonen, S.G.E. te Velthuis, and A. Hoffmann, “Blowing magnetic skyrmion bubbles,” Science 349(6245), 283–286 (2015).
    [Crossref] [PubMed]
  9. S. Mulbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Boni, “Skyrmion lattice in a chiral magnet,” Science 323(5916), 915–919 (2009).
    [Crossref]
  10. X.Z. Yu, Y. Onose, N. Kanazawa, J.H. Park, J.H. Han, Y. Matsui, N. Nagaosa, and Y. Tokura, “Real-space observation of a two-dimensional skyrmion crystal,” Nature 465(7300), 901–904 (2010).
    [Crossref] [PubMed]
  11. S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendanger, G. Bihlmayer, and S. Blugel, “Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions,” Nat. Phys. 7(9), 713–718 (2011).
    [Crossref]
  12. A.K. Nayak, V. Kumar, T. Ma, P. Werner, E. Pippel, R. Sahoo, F. Damay, U.K. Rößler, C. Felser, and S.S.P. Parkin, “Magnetic antiskyrmions above room temperature in tetragonal Heusler materials,” Nature 548(7669), 561–566 (2017).
    [Crossref] [PubMed]
  13. J. Zang, M. Mostovoy, J.H. Han, and N. Nagaosa, “Dynamics of Skyrmion Crystals in Metallic Thin Films,” Phys. Rev. Lett. 107, 136804 (2011).
    [Crossref] [PubMed]
  14. S.-Z. Lin, C. Reichhardt, C.D. Batista, and A. Saxena, “Driven Skyrmions and Dynamical Transitions in Chiral Magnets,” Phys. Rev. Lett. 110, 207202 (2013).
    [Crossref] [PubMed]
  15. J. Iwasaki, M. Mochizuki, and N. Nagaosa, “Universal current-velocity relation of skyrmion motion in chiral magnets,” Nat. Commun. 4, 1463 (2013).
    [Crossref] [PubMed]
  16. H.Y. Yuan and X.R. Wang, “Skyrmion Creation and Manipulation by Nano-Second Current Pulses,” Sci. Rep. 6, 22638 (2016).
    [Crossref] [PubMed]
  17. R. Wiesendanger, “Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics,” Nat. Rev. Mater. 1(7), 16044 (2016).
    [Crossref]
  18. K. Everschor, M. Garst, B. Binz, F. Jonietz, S. Muhlbauer, C. Pfleiderer, and A. Rosch, “Rotating skyrmion lattices by spin torques and field or temperature gradients,” Phys. Rev. B 86, 054432 (2012).
    [Crossref]
  19. Y.-H. Liu, Y.-Q. Li, and J.H. Han, “Skyrmion dynamics in multiferroic insulators,” Phys. Rev. B 87, 100402 (2013).
    [Crossref]
  20. W. Wang, M. Beg, B. Zhang, W. Kuch, and H. Fangohr, “Driving magnetic skyrmions with microwave fields,” Phys. Rev. B 92, 020403(R)(2015).
    [Crossref]
  21. L. Kong and J. Zang, “Dynamics of an Insulating Skyrmion under a Temperature Gradient,” Phys. Rev. Lett. 111, 067203 (2013).
    [Crossref] [PubMed]
  22. S.-Z. Lin, C.D. Batista, C. Reichhardt, and A. Saxena, “ac Current Generation in Chiral Magnetic Insulators and Skyrmion Motion induced by the Spin Seebeck Effect,” Phys. Rev. Lett. 112, 187203 (2014).
    [Crossref] [PubMed]
  23. M. Mochizuki, X.Z. Yu, S. Seki, N. Kanazawa, W. Koshibae, J. Zang, M. Mostovoy, Y. Tokura, and N. Nagaosa, “Thermally driven ratchet motion of a skyrmion microcrystal and topological magnon Hall effect,” Nat. Mater. 13(3), 241–246 (2014).
    [Crossref] [PubMed]
  24. P. Yan, X.S. Wang, and X.R. Wang, “All-Magnonic Spin-Transfer Torque and Domain Wall Propagation,” Phys. Rev. Lett. 107, 177207 (2011).
    [Crossref] [PubMed]
  25. J. Iwasaki, A.J. Beekman, and N. Nagaosa, “Theory of magnon-skyrmion scattering in chiral magnets,” Phys. Rev. B 89, 064412 (2014).
    [Crossref]
  26. C. Schutte and M. Garst, “Magnon-skyrmion scattering in chiral magnets,” Phys. Rev. B 90, 094423 (2014).
    [Crossref]
  27. Y.-T. Oh, H. Lee, J.-H. Park, and J.H. Han, “Dynamics of magnon fluid in Dzyaloshinskii-Moriya magnet and its manifestation in magnon-Skyrmion scattering,” Phys. Rev. B 91, 104435 (2015).
    [Crossref]
  28. W. Jiang, X. Zhang, G. Yu, W. Zhang, X. Wang, M.B. Jungfleisch, J.E. Pearson, X. Cheng, O. Heinonen, K.L. Wang, Y. Zhou, A. Homann, and S.G.E. te Velthuis, “Direct observation of the skyrmion Hall effect,” Nat. Phys. 13(2), 162–169 (2016).
    [Crossref]
  29. K. Litzius, I. Lemesh, B. Kruger, P. Bassirian, L. Caretta, K. Richter, F. Buttner, K. Sato, O.A. Tretiakov, J. Forster, R.M. Reeve, M. Weigand, I. Bykova, H. Stoll, G. Schutz, G.S.D. Beach, and M. Klaui, “Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy,” Nat. Phys. 13(2), 170–175 (2017).
    [Crossref]
  30. X. Zhang, Y. Zhou, and M. Ezawa, “Magnetic bilayer-skyrmions without skyrmion Hall effect,” Nat. Commun. 7, 10293 (2016).
    [Crossref] [PubMed]
  31. J. Muller and A. Rosch, “Capturing of a magnetic skyrmion with a hole,” Phys. Rev. B 91, 054410 (2015).
    [Crossref]
  32. C. Reichhardt, D. Ray, and C.J. Olson Reichhardt, “Collective Transport Properties of Driven Skyrmions with Random Disorder,” Phys. Rev. Lett. 114, 217202 (2015).
    [Crossref] [PubMed]
  33. J. Poynting, “The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light,” Proc. R. Soc. London A Contain. Pap. Math. Phys. Character 82, 560 (1909).
    [Crossref]
  34. R.A. Beth, “Direct detection of the angular momentum of light,” Phys. Rev. 48, 471 (1935).
    [Crossref]
  35. R.A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115 (1936).
    [Crossref]
  36. L. Allen, M.W. Beijersbergen, R.J. Spreeuw, and J.P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185 (1992).
    [Crossref] [PubMed]
  37. I.V. Basistiy, M.S. Soskin, and M.V. Vasnetsov, “Optical wavefront dislocations and their properties,” Opt. Commun. 119(5–6), 604–612 (1995).
    [Crossref]
  38. D.L. Andrews and M. Babiker, The Angular Momentum of Light (Cambridge Univ., 2012).
    [Crossref]
  39. A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
    [Crossref]
  40. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A.E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
    [Crossref] [PubMed]
  41. J. Wang, J.-Y. Yang, I.M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A.E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
    [Crossref]
  42. F. Tamburini, B. Thide, G. Molina-Terriza, and G. Anzolin, “Twisting of light around rotating black holes,” Nat. Phys. 7(3), 195–197 (2011).
    [Crossref]
  43. R. Fickler, G. Campbell, B. Buchler, P.K. Lam, and A. Zeilinger, “Quantum entanglement of angular momentum states with quantum numbers up to 10,010,” PNAS 113(48), 13642–13647 (2016).
    [Crossref] [PubMed]
  44. The cycle-averaged angular momentum density j associated with the transverse EM field is shown to be j = ε0r × 〈E× B〉, while the total angular momentum of the field is J = ε0 ∫ r × 〈E× B〉 dr. Here ε0 is the vacuum permittivity and E is the electric field. For linearly polarized LG modes (1), the OAM density in the direction of propagation is given by jz = ε0ωl |B(r)|2. The OAM integrated over the beam is shown to be equivalent to lħ per photon: Jz = lħ.
  45. H. Fujita and M. Sato, “Ultrafast generation of skyrmionic defects with vortex beams: Printing laser profiles on magnets,” Phys. Rev. B 95, 054421 (2017).
    [Crossref]
  46. H. Fujita and M. Sato, “Encoding Orbital Angular Momentum of Lights in Magnets,” arXiv:1612.00176.
  47. O. Tchernyshyov, “Conserved momenta of a ferromagnetic soliton,” Ann. Phys. 363, 98–113 (2015).
    [Crossref]
  48. T.L. Gilbert, “A phenomenological theory of damping in ferromagnetic materials,” IEEE Trans. Mag. 40(6), 3443–3449 (2004).
    [Crossref]
  49. W.F. Brown, “Thermal Fluctuations of a Single-Domain Particle,” Phys. Rev. 130, 1677 (1963).
    [Crossref]
  50. P. Yan, G.E.W. Bauer, and H.W. Zhang, “Energy repartition in the nonequilibrium steady state,” Phys. Rev. B 95, 024417 (2017).
    [Crossref]
  51. A.A. Thiele, “Steady-State Motion of Magnetic Domains,” Phys. Rev. Lett. 30, 230 (1973).
    [Crossref]
  52. O.A. Tretiakov, D. Clarke, Gia-Wei Chern, Ya.B. Bazaliy, and O. Tchernyshyov, “Dynamics of Domain Walls in Magnetic Nanostrips,” Phys. Rev. Lett. 100, 127204 (2008).
    [Crossref] [PubMed]
  53. I. Makhfudz, B. Kruger, and O. Tchernyshyov, “Inertia and Chiral Edge Modes of a Skyrmion Magnetic Bubble,” Phys. Rev. Lett. 109, 217201 (2012).
    [Crossref] [PubMed]
  54. R.E. Troncoso and A.S. Nez, “Brownian motion of massive skyrmions in magnetic thin films,” Ann. Phys. 351, 850–856 (2014).
    [Crossref]
  55. A.P. Malozemoff and J.C. Slonczewski, Magnetic Domain Walls in Bubble Materials (Academic, New York, 1979).
  56. Y.Y. Dai, H. Wang, P. Tao, T. Yang, W.J. Ren, and Z.D. Zhang, “Skyrmion ground state and gyration of skyrmions in magnetic nanodisks without the Dzyaloshinsky-Moriya interaction,” Phys. Rev. B 88, 054403 (2013).
    [Crossref]
  57. F. Garcia-Sanchez, J. Sampaio, N. Reyren, V. Cros, and J.-V. Kim, “A skyrmion-based spin-torque nano-oscillator,” New J. Phys. 18, 075011 (2016).
    [Crossref]
  58. K.-W. Moon, D.-H. Kim, S.-G. Je, B.S. Chun, W. Kim, Z.Q. Qiu, S.-B. Choe, and C. Hwang, “Skyrmion motion driven by oscillating magnetic field,” Sci. Rep. 6, 20360 (2015).
    [Crossref]
  59. A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, and B. Van Waeyenberge, “The design and verification of MuMax3,” AIP Adv. 4(10) 107133 (2014).
    [Crossref]
  60. S. Pizzini, J. Vogel, S. Rohart, L.D. Buda-Prejbeanu, E. Jué, O. Boulle, I.M. Miron, C.K. Safeer, S. Auffret, G. Gaudin, and A. Thiaville, “Chirality-Induced Asymmetric Magnetic Nucleation in Pt/Co/AlOx Ultrathin Microstructures,” Phys. Rev. Lett. 113, 047203 (2014).
    [Crossref]
  61. Y. Zhou, E. Iacocca, A.A. Awad, R.K. Dumas, F.C. Zhang, H.B. Braun, and J. Akerman, “Dynamically stabilized magnetic skyrmions,” Nat. Commun. 6, 8193 (2016).
    [Crossref]
  62. X. Zhang, M. Ezawa, and Y. Zhou, “Thermally stable magnetic skyrmions in multilayer synthetic antiferromagnetic racetracks,” Phys. Rev. B 94, 064406 (2016).
    [Crossref]
  63. Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the Spin-Based Plasmonic Effect in Nanoscale Structures,” Phys. Rev. Lett. 101, 043903 (2008).
    [Crossref] [PubMed]
  64. W.L. Barnes, A. Dereux, and T.W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  65. R.W. Heeres and V. Zwiller, “Subwavelength Focusing of Light with Orbital Angular Momentum,” Nano Lett. 14(8), 4598–4601 (2014).
    [Crossref] [PubMed]
  66. J.Y. Yin, J. Ren, L. Zhang, H. Li, and T.J. Cui, “Microwave Vortex-Beam Emitter Based on Spoof Surface Plasmon Polaritons,” arXiv:1703.07487.
  67. J. Barker and O.A. Tretiakov, “Static and Dynamical Properties of Antiferromagnetic Skyrmions in the Presence of Applied Current and Temperature,” Phys. Rev. Lett. 116, 147203 (2016).
    [Crossref] [PubMed]
  68. X. Zhang, Y. Zhou, and M. Ezawa, “Antiferromagnetic Skyrmion: Stability, Creation and Manipulation,” Sci. Rep. 6, 24795 (2016).
    [Crossref] [PubMed]
  69. The corresponding maximal magnetic field of the optical vortex is 0.56 T, 0.34 T, 0.35 T, 0.44 T, 0.63 T, 1.06 T, 1.87 T, 3.38 T, 7.61 T, and 16.76 T for l = 0, 1, 2, · · ·, and 9, respectively.
  70. A. Béché, R. Juchtmans, and J. Verbeeck, “Efficient creation of electron vortex beams for high resolution STEM imaging,” Ultramicroscopy 178, 12–19 (2017).
    [Crossref]
  71. E. Mafakheri, A.H. Tavabi, P.-H. Lu, R. Balboni, F. Venturi, C. Menozzi, G.C. Gazzadi, S. Frabboni, A. Sit, R.E. Dunin-Borkowski, E. Karimi, and V. Grillo, “Realization of electron vortices with large orbital angular momentum using miniature holograms fabricated by electron beam lithography,” Appl. Phys. Lett. 110, 093113 (2017).
    [Crossref]
  72. Z. Hong, J. Zhang, and B.W. Drinkwater, “Observation of Orbital Angular Momentum Transfer from Bessel-Shaped Acoustic Vortices to Diphasic Liquid-Microparticle Mixtures,” Phys. Rev. Lett. 114, 214301 (2015).
    [Crossref] [PubMed]
  73. D. Baresch, J.-L. Thomas, and R. Marchiano, “Observation of a Single-Beam Gradient Force Acoustical Trap for Elastic Particles: Acoustical Tweezers,” Phys. Rev. Lett. 116, 024301 (2016).
    [Crossref] [PubMed]

2017 (6)

A.K. Nayak, V. Kumar, T. Ma, P. Werner, E. Pippel, R. Sahoo, F. Damay, U.K. Rößler, C. Felser, and S.S.P. Parkin, “Magnetic antiskyrmions above room temperature in tetragonal Heusler materials,” Nature 548(7669), 561–566 (2017).
[Crossref] [PubMed]

K. Litzius, I. Lemesh, B. Kruger, P. Bassirian, L. Caretta, K. Richter, F. Buttner, K. Sato, O.A. Tretiakov, J. Forster, R.M. Reeve, M. Weigand, I. Bykova, H. Stoll, G. Schutz, G.S.D. Beach, and M. Klaui, “Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy,” Nat. Phys. 13(2), 170–175 (2017).
[Crossref]

H. Fujita and M. Sato, “Ultrafast generation of skyrmionic defects with vortex beams: Printing laser profiles on magnets,” Phys. Rev. B 95, 054421 (2017).
[Crossref]

P. Yan, G.E.W. Bauer, and H.W. Zhang, “Energy repartition in the nonequilibrium steady state,” Phys. Rev. B 95, 024417 (2017).
[Crossref]

A. Béché, R. Juchtmans, and J. Verbeeck, “Efficient creation of electron vortex beams for high resolution STEM imaging,” Ultramicroscopy 178, 12–19 (2017).
[Crossref]

E. Mafakheri, A.H. Tavabi, P.-H. Lu, R. Balboni, F. Venturi, C. Menozzi, G.C. Gazzadi, S. Frabboni, A. Sit, R.E. Dunin-Borkowski, E. Karimi, and V. Grillo, “Realization of electron vortices with large orbital angular momentum using miniature holograms fabricated by electron beam lithography,” Appl. Phys. Lett. 110, 093113 (2017).
[Crossref]

2016 (11)

D. Baresch, J.-L. Thomas, and R. Marchiano, “Observation of a Single-Beam Gradient Force Acoustical Trap for Elastic Particles: Acoustical Tweezers,” Phys. Rev. Lett. 116, 024301 (2016).
[Crossref] [PubMed]

J. Barker and O.A. Tretiakov, “Static and Dynamical Properties of Antiferromagnetic Skyrmions in the Presence of Applied Current and Temperature,” Phys. Rev. Lett. 116, 147203 (2016).
[Crossref] [PubMed]

X. Zhang, Y. Zhou, and M. Ezawa, “Antiferromagnetic Skyrmion: Stability, Creation and Manipulation,” Sci. Rep. 6, 24795 (2016).
[Crossref] [PubMed]

F. Garcia-Sanchez, J. Sampaio, N. Reyren, V. Cros, and J.-V. Kim, “A skyrmion-based spin-torque nano-oscillator,” New J. Phys. 18, 075011 (2016).
[Crossref]

Y. Zhou, E. Iacocca, A.A. Awad, R.K. Dumas, F.C. Zhang, H.B. Braun, and J. Akerman, “Dynamically stabilized magnetic skyrmions,” Nat. Commun. 6, 8193 (2016).
[Crossref]

X. Zhang, M. Ezawa, and Y. Zhou, “Thermally stable magnetic skyrmions in multilayer synthetic antiferromagnetic racetracks,” Phys. Rev. B 94, 064406 (2016).
[Crossref]

R. Fickler, G. Campbell, B. Buchler, P.K. Lam, and A. Zeilinger, “Quantum entanglement of angular momentum states with quantum numbers up to 10,010,” PNAS 113(48), 13642–13647 (2016).
[Crossref] [PubMed]

X. Zhang, Y. Zhou, and M. Ezawa, “Magnetic bilayer-skyrmions without skyrmion Hall effect,” Nat. Commun. 7, 10293 (2016).
[Crossref] [PubMed]

W. Jiang, X. Zhang, G. Yu, W. Zhang, X. Wang, M.B. Jungfleisch, J.E. Pearson, X. Cheng, O. Heinonen, K.L. Wang, Y. Zhou, A. Homann, and S.G.E. te Velthuis, “Direct observation of the skyrmion Hall effect,” Nat. Phys. 13(2), 162–169 (2016).
[Crossref]

H.Y. Yuan and X.R. Wang, “Skyrmion Creation and Manipulation by Nano-Second Current Pulses,” Sci. Rep. 6, 22638 (2016).
[Crossref] [PubMed]

R. Wiesendanger, “Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics,” Nat. Rev. Mater. 1(7), 16044 (2016).
[Crossref]

2015 (10)

F. Buttner, C. Moutafis, M. Schneider, B. Kruger, C.M. Gunther, J. Geilhufe, C.v. Korff Schmising, J. Mohanty, B. Pfau, S. Schaffert, A. Bisig, M. Foerster, T. Schulz, C.A.F. Vaz, J.H. Franken, H.J.M. Swagten, M. Klaui, and S. Eisebitt, “Dynamics and inertia of skyrmionic spin structures,” Nat. Phys. 11(3), 225–228 (2015).
[Crossref]

N. Romming, A. Kubetzka, C. Hanneken, K. von Bergmann, and R. Wiesendanger, “Field-Dependent Size and Shape of Single Magnetic Skyrmion,” Phys. Rev. Lett. 114, 177203 (2015).
[Crossref]

W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M.B. Jungfleisch, F.Y. Fradin, J.E. Pearson, Y. Tserkovnyak, K.L. Wang, O. Heinonen, S.G.E. te Velthuis, and A. Hoffmann, “Blowing magnetic skyrmion bubbles,” Science 349(6245), 283–286 (2015).
[Crossref] [PubMed]

Y.-T. Oh, H. Lee, J.-H. Park, and J.H. Han, “Dynamics of magnon fluid in Dzyaloshinskii-Moriya magnet and its manifestation in magnon-Skyrmion scattering,” Phys. Rev. B 91, 104435 (2015).
[Crossref]

J. Muller and A. Rosch, “Capturing of a magnetic skyrmion with a hole,” Phys. Rev. B 91, 054410 (2015).
[Crossref]

C. Reichhardt, D. Ray, and C.J. Olson Reichhardt, “Collective Transport Properties of Driven Skyrmions with Random Disorder,” Phys. Rev. Lett. 114, 217202 (2015).
[Crossref] [PubMed]

W. Wang, M. Beg, B. Zhang, W. Kuch, and H. Fangohr, “Driving magnetic skyrmions with microwave fields,” Phys. Rev. B 92, 020403(R)(2015).
[Crossref]

O. Tchernyshyov, “Conserved momenta of a ferromagnetic soliton,” Ann. Phys. 363, 98–113 (2015).
[Crossref]

K.-W. Moon, D.-H. Kim, S.-G. Je, B.S. Chun, W. Kim, Z.Q. Qiu, S.-B. Choe, and C. Hwang, “Skyrmion motion driven by oscillating magnetic field,” Sci. Rep. 6, 20360 (2015).
[Crossref]

Z. Hong, J. Zhang, and B.W. Drinkwater, “Observation of Orbital Angular Momentum Transfer from Bessel-Shaped Acoustic Vortices to Diphasic Liquid-Microparticle Mixtures,” Phys. Rev. Lett. 114, 214301 (2015).
[Crossref] [PubMed]

2014 (9)

R.W. Heeres and V. Zwiller, “Subwavelength Focusing of Light with Orbital Angular Momentum,” Nano Lett. 14(8), 4598–4601 (2014).
[Crossref] [PubMed]

A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, and B. Van Waeyenberge, “The design and verification of MuMax3,” AIP Adv. 4(10) 107133 (2014).
[Crossref]

S. Pizzini, J. Vogel, S. Rohart, L.D. Buda-Prejbeanu, E. Jué, O. Boulle, I.M. Miron, C.K. Safeer, S. Auffret, G. Gaudin, and A. Thiaville, “Chirality-Induced Asymmetric Magnetic Nucleation in Pt/Co/AlOx Ultrathin Microstructures,” Phys. Rev. Lett. 113, 047203 (2014).
[Crossref]

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

R.E. Troncoso and A.S. Nez, “Brownian motion of massive skyrmions in magnetic thin films,” Ann. Phys. 351, 850–856 (2014).
[Crossref]

S.-Z. Lin, C.D. Batista, C. Reichhardt, and A. Saxena, “ac Current Generation in Chiral Magnetic Insulators and Skyrmion Motion induced by the Spin Seebeck Effect,” Phys. Rev. Lett. 112, 187203 (2014).
[Crossref] [PubMed]

M. Mochizuki, X.Z. Yu, S. Seki, N. Kanazawa, W. Koshibae, J. Zang, M. Mostovoy, Y. Tokura, and N. Nagaosa, “Thermally driven ratchet motion of a skyrmion microcrystal and topological magnon Hall effect,” Nat. Mater. 13(3), 241–246 (2014).
[Crossref] [PubMed]

J. Iwasaki, A.J. Beekman, and N. Nagaosa, “Theory of magnon-skyrmion scattering in chiral magnets,” Phys. Rev. B 89, 064412 (2014).
[Crossref]

C. Schutte and M. Garst, “Magnon-skyrmion scattering in chiral magnets,” Phys. Rev. B 90, 094423 (2014).
[Crossref]

2013 (10)

L. Kong and J. Zang, “Dynamics of an Insulating Skyrmion under a Temperature Gradient,” Phys. Rev. Lett. 111, 067203 (2013).
[Crossref] [PubMed]

Y.-H. Liu, Y.-Q. Li, and J.H. Han, “Skyrmion dynamics in multiferroic insulators,” Phys. Rev. B 87, 100402 (2013).
[Crossref]

N. Nagaosa and Y. Tokura, “Topological properties and dynamics of magnetic skyrmions,” Nat. Nanotech. 8(12), 899–911 (2013).
[Crossref]

A. Fert, V. Cros, and J. Sampaio, “Skyrmions on the track,” Nat. Nanotech. 8(3), 152–156 (2013).
[Crossref]

J. Sampaio, V. Cros, S. Thiaville, and A. Fert, “Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures,” Nat. Nanotech. 8(11), 839–844 (2013).
[Crossref]

J. Iwasaki, M. Mochizuki, and N. Nagaosa, “Current-induced skyrmion dynamics in constrained geometries,” Nat. Nanotech. 8(10), 742–747 (2013).
[Crossref]

S.-Z. Lin, C. Reichhardt, C.D. Batista, and A. Saxena, “Driven Skyrmions and Dynamical Transitions in Chiral Magnets,” Phys. Rev. Lett. 110, 207202 (2013).
[Crossref] [PubMed]

J. Iwasaki, M. Mochizuki, and N. Nagaosa, “Universal current-velocity relation of skyrmion motion in chiral magnets,” Nat. Commun. 4, 1463 (2013).
[Crossref] [PubMed]

Y.Y. Dai, H. Wang, P. Tao, T. Yang, W.J. Ren, and Z.D. Zhang, “Skyrmion ground state and gyration of skyrmions in magnetic nanodisks without the Dzyaloshinsky-Moriya interaction,” Phys. Rev. B 88, 054403 (2013).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A.E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

2012 (3)

J. Wang, J.-Y. Yang, I.M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A.E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

I. Makhfudz, B. Kruger, and O. Tchernyshyov, “Inertia and Chiral Edge Modes of a Skyrmion Magnetic Bubble,” Phys. Rev. Lett. 109, 217201 (2012).
[Crossref] [PubMed]

K. Everschor, M. Garst, B. Binz, F. Jonietz, S. Muhlbauer, C. Pfleiderer, and A. Rosch, “Rotating skyrmion lattices by spin torques and field or temperature gradients,” Phys. Rev. B 86, 054432 (2012).
[Crossref]

2011 (4)

J. Zang, M. Mostovoy, J.H. Han, and N. Nagaosa, “Dynamics of Skyrmion Crystals in Metallic Thin Films,” Phys. Rev. Lett. 107, 136804 (2011).
[Crossref] [PubMed]

S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendanger, G. Bihlmayer, and S. Blugel, “Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions,” Nat. Phys. 7(9), 713–718 (2011).
[Crossref]

P. Yan, X.S. Wang, and X.R. Wang, “All-Magnonic Spin-Transfer Torque and Domain Wall Propagation,” Phys. Rev. Lett. 107, 177207 (2011).
[Crossref] [PubMed]

F. Tamburini, B. Thide, G. Molina-Terriza, and G. Anzolin, “Twisting of light around rotating black holes,” Nat. Phys. 7(3), 195–197 (2011).
[Crossref]

2010 (1)

X.Z. Yu, Y. Onose, N. Kanazawa, J.H. Park, J.H. Han, Y. Matsui, N. Nagaosa, and Y. Tokura, “Real-space observation of a two-dimensional skyrmion crystal,” Nature 465(7300), 901–904 (2010).
[Crossref] [PubMed]

2009 (1)

S. Mulbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Boni, “Skyrmion lattice in a chiral magnet,” Science 323(5916), 915–919 (2009).
[Crossref]

2008 (2)

O.A. Tretiakov, D. Clarke, Gia-Wei Chern, Ya.B. Bazaliy, and O. Tchernyshyov, “Dynamics of Domain Walls in Magnetic Nanostrips,” Phys. Rev. Lett. 100, 127204 (2008).
[Crossref] [PubMed]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the Spin-Based Plasmonic Effect in Nanoscale Structures,” Phys. Rev. Lett. 101, 043903 (2008).
[Crossref] [PubMed]

2004 (1)

T.L. Gilbert, “A phenomenological theory of damping in ferromagnetic materials,” IEEE Trans. Mag. 40(6), 3443–3449 (2004).
[Crossref]

2003 (1)

W.L. Barnes, A. Dereux, and T.W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

1995 (1)

I.V. Basistiy, M.S. Soskin, and M.V. Vasnetsov, “Optical wavefront dislocations and their properties,” Opt. Commun. 119(5–6), 604–612 (1995).
[Crossref]

1992 (1)

L. Allen, M.W. Beijersbergen, R.J. Spreeuw, and J.P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185 (1992).
[Crossref] [PubMed]

1973 (1)

A.A. Thiele, “Steady-State Motion of Magnetic Domains,” Phys. Rev. Lett. 30, 230 (1973).
[Crossref]

1963 (1)

W.F. Brown, “Thermal Fluctuations of a Single-Domain Particle,” Phys. Rev. 130, 1677 (1963).
[Crossref]

1962 (1)

T.H.R. Skyrme, “A unified field theory of mesons and baryons,” Nucl. Phys. 31, 556–569 (1962).
[Crossref]

1936 (1)

R.A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115 (1936).
[Crossref]

1935 (1)

R.A. Beth, “Direct detection of the angular momentum of light,” Phys. Rev. 48, 471 (1935).
[Crossref]

1909 (1)

J. Poynting, “The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light,” Proc. R. Soc. London A Contain. Pap. Math. Phys. Character 82, 560 (1909).
[Crossref]

Ahmed, N.

J. Wang, J.-Y. Yang, I.M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A.E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Akerman, J.

Y. Zhou, E. Iacocca, A.A. Awad, R.K. Dumas, F.C. Zhang, H.B. Braun, and J. Akerman, “Dynamically stabilized magnetic skyrmions,” Nat. Commun. 6, 8193 (2016).
[Crossref]

Allen, L.

L. Allen, M.W. Beijersbergen, R.J. Spreeuw, and J.P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185 (1992).
[Crossref] [PubMed]

Andrews, D.L.

D.L. Andrews and M. Babiker, The Angular Momentum of Light (Cambridge Univ., 2012).
[Crossref]

Anzolin, G.

F. Tamburini, B. Thide, G. Molina-Terriza, and G. Anzolin, “Twisting of light around rotating black holes,” Nat. Phys. 7(3), 195–197 (2011).
[Crossref]

Auffret, S.

S. Pizzini, J. Vogel, S. Rohart, L.D. Buda-Prejbeanu, E. Jué, O. Boulle, I.M. Miron, C.K. Safeer, S. Auffret, G. Gaudin, and A. Thiaville, “Chirality-Induced Asymmetric Magnetic Nucleation in Pt/Co/AlOx Ultrathin Microstructures,” Phys. Rev. Lett. 113, 047203 (2014).
[Crossref]

Awad, A.A.

Y. Zhou, E. Iacocca, A.A. Awad, R.K. Dumas, F.C. Zhang, H.B. Braun, and J. Akerman, “Dynamically stabilized magnetic skyrmions,” Nat. Commun. 6, 8193 (2016).
[Crossref]

Babiker, M.

D.L. Andrews and M. Babiker, The Angular Momentum of Light (Cambridge Univ., 2012).
[Crossref]

Balboni, R.

E. Mafakheri, A.H. Tavabi, P.-H. Lu, R. Balboni, F. Venturi, C. Menozzi, G.C. Gazzadi, S. Frabboni, A. Sit, R.E. Dunin-Borkowski, E. Karimi, and V. Grillo, “Realization of electron vortices with large orbital angular momentum using miniature holograms fabricated by electron beam lithography,” Appl. Phys. Lett. 110, 093113 (2017).
[Crossref]

Baresch, D.

D. Baresch, J.-L. Thomas, and R. Marchiano, “Observation of a Single-Beam Gradient Force Acoustical Trap for Elastic Particles: Acoustical Tweezers,” Phys. Rev. Lett. 116, 024301 (2016).
[Crossref] [PubMed]

Barker, J.

J. Barker and O.A. Tretiakov, “Static and Dynamical Properties of Antiferromagnetic Skyrmions in the Presence of Applied Current and Temperature,” Phys. Rev. Lett. 116, 147203 (2016).
[Crossref] [PubMed]

Barnes, W.L.

W.L. Barnes, A. Dereux, and T.W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Basistiy, I.V.

I.V. Basistiy, M.S. Soskin, and M.V. Vasnetsov, “Optical wavefront dislocations and their properties,” Opt. Commun. 119(5–6), 604–612 (1995).
[Crossref]

Bassirian, P.

K. Litzius, I. Lemesh, B. Kruger, P. Bassirian, L. Caretta, K. Richter, F. Buttner, K. Sato, O.A. Tretiakov, J. Forster, R.M. Reeve, M. Weigand, I. Bykova, H. Stoll, G. Schutz, G.S.D. Beach, and M. Klaui, “Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy,” Nat. Phys. 13(2), 170–175 (2017).
[Crossref]

Batista, C.D.

S.-Z. Lin, C.D. Batista, C. Reichhardt, and A. Saxena, “ac Current Generation in Chiral Magnetic Insulators and Skyrmion Motion induced by the Spin Seebeck Effect,” Phys. Rev. Lett. 112, 187203 (2014).
[Crossref] [PubMed]

S.-Z. Lin, C. Reichhardt, C.D. Batista, and A. Saxena, “Driven Skyrmions and Dynamical Transitions in Chiral Magnets,” Phys. Rev. Lett. 110, 207202 (2013).
[Crossref] [PubMed]

Bauer, G.E.W.

P. Yan, G.E.W. Bauer, and H.W. Zhang, “Energy repartition in the nonequilibrium steady state,” Phys. Rev. B 95, 024417 (2017).
[Crossref]

Bazaliy, Ya.B.

O.A. Tretiakov, D. Clarke, Gia-Wei Chern, Ya.B. Bazaliy, and O. Tchernyshyov, “Dynamics of Domain Walls in Magnetic Nanostrips,” Phys. Rev. Lett. 100, 127204 (2008).
[Crossref] [PubMed]

Beach, G.S.D.

K. Litzius, I. Lemesh, B. Kruger, P. Bassirian, L. Caretta, K. Richter, F. Buttner, K. Sato, O.A. Tretiakov, J. Forster, R.M. Reeve, M. Weigand, I. Bykova, H. Stoll, G. Schutz, G.S.D. Beach, and M. Klaui, “Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy,” Nat. Phys. 13(2), 170–175 (2017).
[Crossref]

Béché, A.

A. Béché, R. Juchtmans, and J. Verbeeck, “Efficient creation of electron vortex beams for high resolution STEM imaging,” Ultramicroscopy 178, 12–19 (2017).
[Crossref]

Beekman, A.J.

J. Iwasaki, A.J. Beekman, and N. Nagaosa, “Theory of magnon-skyrmion scattering in chiral magnets,” Phys. Rev. B 89, 064412 (2014).
[Crossref]

Beg, M.

W. Wang, M. Beg, B. Zhang, W. Kuch, and H. Fangohr, “Driving magnetic skyrmions with microwave fields,” Phys. Rev. B 92, 020403(R)(2015).
[Crossref]

Beijersbergen, M.W.

L. Allen, M.W. Beijersbergen, R.J. Spreeuw, and J.P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185 (1992).
[Crossref] [PubMed]

Beth, R.A.

R.A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115 (1936).
[Crossref]

R.A. Beth, “Direct detection of the angular momentum of light,” Phys. Rev. 48, 471 (1935).
[Crossref]

Bihlmayer, G.

S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendanger, G. Bihlmayer, and S. Blugel, “Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions,” Nat. Phys. 7(9), 713–718 (2011).
[Crossref]

Binz, B.

K. Everschor, M. Garst, B. Binz, F. Jonietz, S. Muhlbauer, C. Pfleiderer, and A. Rosch, “Rotating skyrmion lattices by spin torques and field or temperature gradients,” Phys. Rev. B 86, 054432 (2012).
[Crossref]

S. Mulbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Boni, “Skyrmion lattice in a chiral magnet,” Science 323(5916), 915–919 (2009).
[Crossref]

Bisig, A.

F. Buttner, C. Moutafis, M. Schneider, B. Kruger, C.M. Gunther, J. Geilhufe, C.v. Korff Schmising, J. Mohanty, B. Pfau, S. Schaffert, A. Bisig, M. Foerster, T. Schulz, C.A.F. Vaz, J.H. Franken, H.J.M. Swagten, M. Klaui, and S. Eisebitt, “Dynamics and inertia of skyrmionic spin structures,” Nat. Phys. 11(3), 225–228 (2015).
[Crossref]

Blugel, S.

S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendanger, G. Bihlmayer, and S. Blugel, “Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions,” Nat. Phys. 7(9), 713–718 (2011).
[Crossref]

Boni, P.

S. Mulbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Boni, “Skyrmion lattice in a chiral magnet,” Science 323(5916), 915–919 (2009).
[Crossref]

Boulle, O.

S. Pizzini, J. Vogel, S. Rohart, L.D. Buda-Prejbeanu, E. Jué, O. Boulle, I.M. Miron, C.K. Safeer, S. Auffret, G. Gaudin, and A. Thiaville, “Chirality-Induced Asymmetric Magnetic Nucleation in Pt/Co/AlOx Ultrathin Microstructures,” Phys. Rev. Lett. 113, 047203 (2014).
[Crossref]

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A.E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Braun, H.B.

Y. Zhou, E. Iacocca, A.A. Awad, R.K. Dumas, F.C. Zhang, H.B. Braun, and J. Akerman, “Dynamically stabilized magnetic skyrmions,” Nat. Commun. 6, 8193 (2016).
[Crossref]

Brede, J.

S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendanger, G. Bihlmayer, and S. Blugel, “Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions,” Nat. Phys. 7(9), 713–718 (2011).
[Crossref]

Brown, W.F.

W.F. Brown, “Thermal Fluctuations of a Single-Domain Particle,” Phys. Rev. 130, 1677 (1963).
[Crossref]

Buchler, B.

R. Fickler, G. Campbell, B. Buchler, P.K. Lam, and A. Zeilinger, “Quantum entanglement of angular momentum states with quantum numbers up to 10,010,” PNAS 113(48), 13642–13647 (2016).
[Crossref] [PubMed]

Buda-Prejbeanu, L.D.

S. Pizzini, J. Vogel, S. Rohart, L.D. Buda-Prejbeanu, E. Jué, O. Boulle, I.M. Miron, C.K. Safeer, S. Auffret, G. Gaudin, and A. Thiaville, “Chirality-Induced Asymmetric Magnetic Nucleation in Pt/Co/AlOx Ultrathin Microstructures,” Phys. Rev. Lett. 113, 047203 (2014).
[Crossref]

Buttner, F.

K. Litzius, I. Lemesh, B. Kruger, P. Bassirian, L. Caretta, K. Richter, F. Buttner, K. Sato, O.A. Tretiakov, J. Forster, R.M. Reeve, M. Weigand, I. Bykova, H. Stoll, G. Schutz, G.S.D. Beach, and M. Klaui, “Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy,” Nat. Phys. 13(2), 170–175 (2017).
[Crossref]

F. Buttner, C. Moutafis, M. Schneider, B. Kruger, C.M. Gunther, J. Geilhufe, C.v. Korff Schmising, J. Mohanty, B. Pfau, S. Schaffert, A. Bisig, M. Foerster, T. Schulz, C.A.F. Vaz, J.H. Franken, H.J.M. Swagten, M. Klaui, and S. Eisebitt, “Dynamics and inertia of skyrmionic spin structures,” Nat. Phys. 11(3), 225–228 (2015).
[Crossref]

Bykova, I.

K. Litzius, I. Lemesh, B. Kruger, P. Bassirian, L. Caretta, K. Richter, F. Buttner, K. Sato, O.A. Tretiakov, J. Forster, R.M. Reeve, M. Weigand, I. Bykova, H. Stoll, G. Schutz, G.S.D. Beach, and M. Klaui, “Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy,” Nat. Phys. 13(2), 170–175 (2017).
[Crossref]

Campbell, G.

R. Fickler, G. Campbell, B. Buchler, P.K. Lam, and A. Zeilinger, “Quantum entanglement of angular momentum states with quantum numbers up to 10,010,” PNAS 113(48), 13642–13647 (2016).
[Crossref] [PubMed]

Caretta, L.

K. Litzius, I. Lemesh, B. Kruger, P. Bassirian, L. Caretta, K. Richter, F. Buttner, K. Sato, O.A. Tretiakov, J. Forster, R.M. Reeve, M. Weigand, I. Bykova, H. Stoll, G. Schutz, G.S.D. Beach, and M. Klaui, “Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy,” Nat. Phys. 13(2), 170–175 (2017).
[Crossref]

Cheng, X.

W. Jiang, X. Zhang, G. Yu, W. Zhang, X. Wang, M.B. Jungfleisch, J.E. Pearson, X. Cheng, O. Heinonen, K.L. Wang, Y. Zhou, A. Homann, and S.G.E. te Velthuis, “Direct observation of the skyrmion Hall effect,” Nat. Phys. 13(2), 162–169 (2016).
[Crossref]

Chern, Gia-Wei

O.A. Tretiakov, D. Clarke, Gia-Wei Chern, Ya.B. Bazaliy, and O. Tchernyshyov, “Dynamics of Domain Walls in Magnetic Nanostrips,” Phys. Rev. Lett. 100, 127204 (2008).
[Crossref] [PubMed]

Choe, S.-B.

K.-W. Moon, D.-H. Kim, S.-G. Je, B.S. Chun, W. Kim, Z.Q. Qiu, S.-B. Choe, and C. Hwang, “Skyrmion motion driven by oscillating magnetic field,” Sci. Rep. 6, 20360 (2015).
[Crossref]

Chun, B.S.

K.-W. Moon, D.-H. Kim, S.-G. Je, B.S. Chun, W. Kim, Z.Q. Qiu, S.-B. Choe, and C. Hwang, “Skyrmion motion driven by oscillating magnetic field,” Sci. Rep. 6, 20360 (2015).
[Crossref]

Clarke, D.

O.A. Tretiakov, D. Clarke, Gia-Wei Chern, Ya.B. Bazaliy, and O. Tchernyshyov, “Dynamics of Domain Walls in Magnetic Nanostrips,” Phys. Rev. Lett. 100, 127204 (2008).
[Crossref] [PubMed]

Cros, V.

F. Garcia-Sanchez, J. Sampaio, N. Reyren, V. Cros, and J.-V. Kim, “A skyrmion-based spin-torque nano-oscillator,” New J. Phys. 18, 075011 (2016).
[Crossref]

A. Fert, V. Cros, and J. Sampaio, “Skyrmions on the track,” Nat. Nanotech. 8(3), 152–156 (2013).
[Crossref]

J. Sampaio, V. Cros, S. Thiaville, and A. Fert, “Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures,” Nat. Nanotech. 8(11), 839–844 (2013).
[Crossref]

Cui, T.J.

J.Y. Yin, J. Ren, L. Zhang, H. Li, and T.J. Cui, “Microwave Vortex-Beam Emitter Based on Spoof Surface Plasmon Polaritons,” arXiv:1703.07487.

Dai, Y.Y.

Y.Y. Dai, H. Wang, P. Tao, T. Yang, W.J. Ren, and Z.D. Zhang, “Skyrmion ground state and gyration of skyrmions in magnetic nanodisks without the Dzyaloshinsky-Moriya interaction,” Phys. Rev. B 88, 054403 (2013).
[Crossref]

Damay, F.

A.K. Nayak, V. Kumar, T. Ma, P. Werner, E. Pippel, R. Sahoo, F. Damay, U.K. Rößler, C. Felser, and S.S.P. Parkin, “Magnetic antiskyrmions above room temperature in tetragonal Heusler materials,” Nature 548(7669), 561–566 (2017).
[Crossref] [PubMed]

Dereux, A.

W.L. Barnes, A. Dereux, and T.W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Dolinar, S.

J. Wang, J.-Y. Yang, I.M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A.E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Drinkwater, B.W.

Z. Hong, J. Zhang, and B.W. Drinkwater, “Observation of Orbital Angular Momentum Transfer from Bessel-Shaped Acoustic Vortices to Diphasic Liquid-Microparticle Mixtures,” Phys. Rev. Lett. 114, 214301 (2015).
[Crossref] [PubMed]

Dumas, R.K.

Y. Zhou, E. Iacocca, A.A. Awad, R.K. Dumas, F.C. Zhang, H.B. Braun, and J. Akerman, “Dynamically stabilized magnetic skyrmions,” Nat. Commun. 6, 8193 (2016).
[Crossref]

Dunin-Borkowski, R.E.

E. Mafakheri, A.H. Tavabi, P.-H. Lu, R. Balboni, F. Venturi, C. Menozzi, G.C. Gazzadi, S. Frabboni, A. Sit, R.E. Dunin-Borkowski, E. Karimi, and V. Grillo, “Realization of electron vortices with large orbital angular momentum using miniature holograms fabricated by electron beam lithography,” Appl. Phys. Lett. 110, 093113 (2017).
[Crossref]

Dvornik, M.

A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, and B. Van Waeyenberge, “The design and verification of MuMax3,” AIP Adv. 4(10) 107133 (2014).
[Crossref]

Ebbesen, T.W.

W.L. Barnes, A. Dereux, and T.W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Eisebitt, S.

F. Buttner, C. Moutafis, M. Schneider, B. Kruger, C.M. Gunther, J. Geilhufe, C.v. Korff Schmising, J. Mohanty, B. Pfau, S. Schaffert, A. Bisig, M. Foerster, T. Schulz, C.A.F. Vaz, J.H. Franken, H.J.M. Swagten, M. Klaui, and S. Eisebitt, “Dynamics and inertia of skyrmionic spin structures,” Nat. Phys. 11(3), 225–228 (2015).
[Crossref]

Everschor, K.

K. Everschor, M. Garst, B. Binz, F. Jonietz, S. Muhlbauer, C. Pfleiderer, and A. Rosch, “Rotating skyrmion lattices by spin torques and field or temperature gradients,” Phys. Rev. B 86, 054432 (2012).
[Crossref]

Ezawa, M.

X. Zhang, Y. Zhou, and M. Ezawa, “Magnetic bilayer-skyrmions without skyrmion Hall effect,” Nat. Commun. 7, 10293 (2016).
[Crossref] [PubMed]

X. Zhang, M. Ezawa, and Y. Zhou, “Thermally stable magnetic skyrmions in multilayer synthetic antiferromagnetic racetracks,” Phys. Rev. B 94, 064406 (2016).
[Crossref]

X. Zhang, Y. Zhou, and M. Ezawa, “Antiferromagnetic Skyrmion: Stability, Creation and Manipulation,” Sci. Rep. 6, 24795 (2016).
[Crossref] [PubMed]

Fangohr, H.

W. Wang, M. Beg, B. Zhang, W. Kuch, and H. Fangohr, “Driving magnetic skyrmions with microwave fields,” Phys. Rev. B 92, 020403(R)(2015).
[Crossref]

Fazal, I.M.

J. Wang, J.-Y. Yang, I.M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A.E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Felser, C.

A.K. Nayak, V. Kumar, T. Ma, P. Werner, E. Pippel, R. Sahoo, F. Damay, U.K. Rößler, C. Felser, and S.S.P. Parkin, “Magnetic antiskyrmions above room temperature in tetragonal Heusler materials,” Nature 548(7669), 561–566 (2017).
[Crossref] [PubMed]

Fert, A.

A. Fert, V. Cros, and J. Sampaio, “Skyrmions on the track,” Nat. Nanotech. 8(3), 152–156 (2013).
[Crossref]

J. Sampaio, V. Cros, S. Thiaville, and A. Fert, “Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures,” Nat. Nanotech. 8(11), 839–844 (2013).
[Crossref]

Fickler, R.

R. Fickler, G. Campbell, B. Buchler, P.K. Lam, and A. Zeilinger, “Quantum entanglement of angular momentum states with quantum numbers up to 10,010,” PNAS 113(48), 13642–13647 (2016).
[Crossref] [PubMed]

Foerster, M.

F. Buttner, C. Moutafis, M. Schneider, B. Kruger, C.M. Gunther, J. Geilhufe, C.v. Korff Schmising, J. Mohanty, B. Pfau, S. Schaffert, A. Bisig, M. Foerster, T. Schulz, C.A.F. Vaz, J.H. Franken, H.J.M. Swagten, M. Klaui, and S. Eisebitt, “Dynamics and inertia of skyrmionic spin structures,” Nat. Phys. 11(3), 225–228 (2015).
[Crossref]

Forster, J.

K. Litzius, I. Lemesh, B. Kruger, P. Bassirian, L. Caretta, K. Richter, F. Buttner, K. Sato, O.A. Tretiakov, J. Forster, R.M. Reeve, M. Weigand, I. Bykova, H. Stoll, G. Schutz, G.S.D. Beach, and M. Klaui, “Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy,” Nat. Phys. 13(2), 170–175 (2017).
[Crossref]

Frabboni, S.

E. Mafakheri, A.H. Tavabi, P.-H. Lu, R. Balboni, F. Venturi, C. Menozzi, G.C. Gazzadi, S. Frabboni, A. Sit, R.E. Dunin-Borkowski, E. Karimi, and V. Grillo, “Realization of electron vortices with large orbital angular momentum using miniature holograms fabricated by electron beam lithography,” Appl. Phys. Lett. 110, 093113 (2017).
[Crossref]

Fradin, F.Y.

W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M.B. Jungfleisch, F.Y. Fradin, J.E. Pearson, Y. Tserkovnyak, K.L. Wang, O. Heinonen, S.G.E. te Velthuis, and A. Hoffmann, “Blowing magnetic skyrmion bubbles,” Science 349(6245), 283–286 (2015).
[Crossref] [PubMed]

Franken, J.H.

F. Buttner, C. Moutafis, M. Schneider, B. Kruger, C.M. Gunther, J. Geilhufe, C.v. Korff Schmising, J. Mohanty, B. Pfau, S. Schaffert, A. Bisig, M. Foerster, T. Schulz, C.A.F. Vaz, J.H. Franken, H.J.M. Swagten, M. Klaui, and S. Eisebitt, “Dynamics and inertia of skyrmionic spin structures,” Nat. Phys. 11(3), 225–228 (2015).
[Crossref]

Fujita, H.

H. Fujita and M. Sato, “Ultrafast generation of skyrmionic defects with vortex beams: Printing laser profiles on magnets,” Phys. Rev. B 95, 054421 (2017).
[Crossref]

H. Fujita and M. Sato, “Encoding Orbital Angular Momentum of Lights in Magnets,” arXiv:1612.00176.

Garcia-Sanchez, F.

F. Garcia-Sanchez, J. Sampaio, N. Reyren, V. Cros, and J.-V. Kim, “A skyrmion-based spin-torque nano-oscillator,” New J. Phys. 18, 075011 (2016).
[Crossref]

A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, and B. Van Waeyenberge, “The design and verification of MuMax3,” AIP Adv. 4(10) 107133 (2014).
[Crossref]

Garst, M.

C. Schutte and M. Garst, “Magnon-skyrmion scattering in chiral magnets,” Phys. Rev. B 90, 094423 (2014).
[Crossref]

K. Everschor, M. Garst, B. Binz, F. Jonietz, S. Muhlbauer, C. Pfleiderer, and A. Rosch, “Rotating skyrmion lattices by spin torques and field or temperature gradients,” Phys. Rev. B 86, 054432 (2012).
[Crossref]

Gaudin, G.

S. Pizzini, J. Vogel, S. Rohart, L.D. Buda-Prejbeanu, E. Jué, O. Boulle, I.M. Miron, C.K. Safeer, S. Auffret, G. Gaudin, and A. Thiaville, “Chirality-Induced Asymmetric Magnetic Nucleation in Pt/Co/AlOx Ultrathin Microstructures,” Phys. Rev. Lett. 113, 047203 (2014).
[Crossref]

Gazzadi, G.C.

E. Mafakheri, A.H. Tavabi, P.-H. Lu, R. Balboni, F. Venturi, C. Menozzi, G.C. Gazzadi, S. Frabboni, A. Sit, R.E. Dunin-Borkowski, E. Karimi, and V. Grillo, “Realization of electron vortices with large orbital angular momentum using miniature holograms fabricated by electron beam lithography,” Appl. Phys. Lett. 110, 093113 (2017).
[Crossref]

Geilhufe, J.

F. Buttner, C. Moutafis, M. Schneider, B. Kruger, C.M. Gunther, J. Geilhufe, C.v. Korff Schmising, J. Mohanty, B. Pfau, S. Schaffert, A. Bisig, M. Foerster, T. Schulz, C.A.F. Vaz, J.H. Franken, H.J.M. Swagten, M. Klaui, and S. Eisebitt, “Dynamics and inertia of skyrmionic spin structures,” Nat. Phys. 11(3), 225–228 (2015).
[Crossref]

Georgii, R.

S. Mulbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Boni, “Skyrmion lattice in a chiral magnet,” Science 323(5916), 915–919 (2009).
[Crossref]

Giacobino, E.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

Gilbert, T.L.

T.L. Gilbert, “A phenomenological theory of damping in ferromagnetic materials,” IEEE Trans. Mag. 40(6), 3443–3449 (2004).
[Crossref]

Giner, L.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

Gorodetski, Y.

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the Spin-Based Plasmonic Effect in Nanoscale Structures,” Phys. Rev. Lett. 101, 043903 (2008).
[Crossref] [PubMed]

Grillo, V.

E. Mafakheri, A.H. Tavabi, P.-H. Lu, R. Balboni, F. Venturi, C. Menozzi, G.C. Gazzadi, S. Frabboni, A. Sit, R.E. Dunin-Borkowski, E. Karimi, and V. Grillo, “Realization of electron vortices with large orbital angular momentum using miniature holograms fabricated by electron beam lithography,” Appl. Phys. Lett. 110, 093113 (2017).
[Crossref]

Gunther, C.M.

F. Buttner, C. Moutafis, M. Schneider, B. Kruger, C.M. Gunther, J. Geilhufe, C.v. Korff Schmising, J. Mohanty, B. Pfau, S. Schaffert, A. Bisig, M. Foerster, T. Schulz, C.A.F. Vaz, J.H. Franken, H.J.M. Swagten, M. Klaui, and S. Eisebitt, “Dynamics and inertia of skyrmionic spin structures,” Nat. Phys. 11(3), 225–228 (2015).
[Crossref]

Han, J.H.

Y.-T. Oh, H. Lee, J.-H. Park, and J.H. Han, “Dynamics of magnon fluid in Dzyaloshinskii-Moriya magnet and its manifestation in magnon-Skyrmion scattering,” Phys. Rev. B 91, 104435 (2015).
[Crossref]

Y.-H. Liu, Y.-Q. Li, and J.H. Han, “Skyrmion dynamics in multiferroic insulators,” Phys. Rev. B 87, 100402 (2013).
[Crossref]

J. Zang, M. Mostovoy, J.H. Han, and N. Nagaosa, “Dynamics of Skyrmion Crystals in Metallic Thin Films,” Phys. Rev. Lett. 107, 136804 (2011).
[Crossref] [PubMed]

X.Z. Yu, Y. Onose, N. Kanazawa, J.H. Park, J.H. Han, Y. Matsui, N. Nagaosa, and Y. Tokura, “Real-space observation of a two-dimensional skyrmion crystal,” Nature 465(7300), 901–904 (2010).
[Crossref] [PubMed]

Hanneken, C.

N. Romming, A. Kubetzka, C. Hanneken, K. von Bergmann, and R. Wiesendanger, “Field-Dependent Size and Shape of Single Magnetic Skyrmion,” Phys. Rev. Lett. 114, 177203 (2015).
[Crossref]

Hasman, E.

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the Spin-Based Plasmonic Effect in Nanoscale Structures,” Phys. Rev. Lett. 101, 043903 (2008).
[Crossref] [PubMed]

Heeres, R.W.

R.W. Heeres and V. Zwiller, “Subwavelength Focusing of Light with Orbital Angular Momentum,” Nano Lett. 14(8), 4598–4601 (2014).
[Crossref] [PubMed]

Heinonen, O.

W. Jiang, X. Zhang, G. Yu, W. Zhang, X. Wang, M.B. Jungfleisch, J.E. Pearson, X. Cheng, O. Heinonen, K.L. Wang, Y. Zhou, A. Homann, and S.G.E. te Velthuis, “Direct observation of the skyrmion Hall effect,” Nat. Phys. 13(2), 162–169 (2016).
[Crossref]

W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M.B. Jungfleisch, F.Y. Fradin, J.E. Pearson, Y. Tserkovnyak, K.L. Wang, O. Heinonen, S.G.E. te Velthuis, and A. Hoffmann, “Blowing magnetic skyrmion bubbles,” Science 349(6245), 283–286 (2015).
[Crossref] [PubMed]

Heinze, S.

S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendanger, G. Bihlmayer, and S. Blugel, “Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions,” Nat. Phys. 7(9), 713–718 (2011).
[Crossref]

Helsen, M.

A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, and B. Van Waeyenberge, “The design and verification of MuMax3,” AIP Adv. 4(10) 107133 (2014).
[Crossref]

Hoffmann, A.

W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M.B. Jungfleisch, F.Y. Fradin, J.E. Pearson, Y. Tserkovnyak, K.L. Wang, O. Heinonen, S.G.E. te Velthuis, and A. Hoffmann, “Blowing magnetic skyrmion bubbles,” Science 349(6245), 283–286 (2015).
[Crossref] [PubMed]

Homann, A.

W. Jiang, X. Zhang, G. Yu, W. Zhang, X. Wang, M.B. Jungfleisch, J.E. Pearson, X. Cheng, O. Heinonen, K.L. Wang, Y. Zhou, A. Homann, and S.G.E. te Velthuis, “Direct observation of the skyrmion Hall effect,” Nat. Phys. 13(2), 162–169 (2016).
[Crossref]

Hong, Z.

Z. Hong, J. Zhang, and B.W. Drinkwater, “Observation of Orbital Angular Momentum Transfer from Bessel-Shaped Acoustic Vortices to Diphasic Liquid-Microparticle Mixtures,” Phys. Rev. Lett. 114, 214301 (2015).
[Crossref] [PubMed]

Huang, H.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A.E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J.-Y. Yang, I.M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A.E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Hwang, C.

K.-W. Moon, D.-H. Kim, S.-G. Je, B.S. Chun, W. Kim, Z.Q. Qiu, S.-B. Choe, and C. Hwang, “Skyrmion motion driven by oscillating magnetic field,” Sci. Rep. 6, 20360 (2015).
[Crossref]

Iacocca, E.

Y. Zhou, E. Iacocca, A.A. Awad, R.K. Dumas, F.C. Zhang, H.B. Braun, and J. Akerman, “Dynamically stabilized magnetic skyrmions,” Nat. Commun. 6, 8193 (2016).
[Crossref]

Iwasaki, J.

J. Iwasaki, A.J. Beekman, and N. Nagaosa, “Theory of magnon-skyrmion scattering in chiral magnets,” Phys. Rev. B 89, 064412 (2014).
[Crossref]

J. Iwasaki, M. Mochizuki, and N. Nagaosa, “Universal current-velocity relation of skyrmion motion in chiral magnets,” Nat. Commun. 4, 1463 (2013).
[Crossref] [PubMed]

J. Iwasaki, M. Mochizuki, and N. Nagaosa, “Current-induced skyrmion dynamics in constrained geometries,” Nat. Nanotech. 8(10), 742–747 (2013).
[Crossref]

Je, S.-G.

K.-W. Moon, D.-H. Kim, S.-G. Je, B.S. Chun, W. Kim, Z.Q. Qiu, S.-B. Choe, and C. Hwang, “Skyrmion motion driven by oscillating magnetic field,” Sci. Rep. 6, 20360 (2015).
[Crossref]

Jiang, W.

W. Jiang, X. Zhang, G. Yu, W. Zhang, X. Wang, M.B. Jungfleisch, J.E. Pearson, X. Cheng, O. Heinonen, K.L. Wang, Y. Zhou, A. Homann, and S.G.E. te Velthuis, “Direct observation of the skyrmion Hall effect,” Nat. Phys. 13(2), 162–169 (2016).
[Crossref]

W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M.B. Jungfleisch, F.Y. Fradin, J.E. Pearson, Y. Tserkovnyak, K.L. Wang, O. Heinonen, S.G.E. te Velthuis, and A. Hoffmann, “Blowing magnetic skyrmion bubbles,” Science 349(6245), 283–286 (2015).
[Crossref] [PubMed]

Jonietz, F.

K. Everschor, M. Garst, B. Binz, F. Jonietz, S. Muhlbauer, C. Pfleiderer, and A. Rosch, “Rotating skyrmion lattices by spin torques and field or temperature gradients,” Phys. Rev. B 86, 054432 (2012).
[Crossref]

S. Mulbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Boni, “Skyrmion lattice in a chiral magnet,” Science 323(5916), 915–919 (2009).
[Crossref]

Juchtmans, R.

A. Béché, R. Juchtmans, and J. Verbeeck, “Efficient creation of electron vortex beams for high resolution STEM imaging,” Ultramicroscopy 178, 12–19 (2017).
[Crossref]

Jué, E.

S. Pizzini, J. Vogel, S. Rohart, L.D. Buda-Prejbeanu, E. Jué, O. Boulle, I.M. Miron, C.K. Safeer, S. Auffret, G. Gaudin, and A. Thiaville, “Chirality-Induced Asymmetric Magnetic Nucleation in Pt/Co/AlOx Ultrathin Microstructures,” Phys. Rev. Lett. 113, 047203 (2014).
[Crossref]

Jungfleisch, M.B.

W. Jiang, X. Zhang, G. Yu, W. Zhang, X. Wang, M.B. Jungfleisch, J.E. Pearson, X. Cheng, O. Heinonen, K.L. Wang, Y. Zhou, A. Homann, and S.G.E. te Velthuis, “Direct observation of the skyrmion Hall effect,” Nat. Phys. 13(2), 162–169 (2016).
[Crossref]

W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M.B. Jungfleisch, F.Y. Fradin, J.E. Pearson, Y. Tserkovnyak, K.L. Wang, O. Heinonen, S.G.E. te Velthuis, and A. Hoffmann, “Blowing magnetic skyrmion bubbles,” Science 349(6245), 283–286 (2015).
[Crossref] [PubMed]

Kanazawa, N.

M. Mochizuki, X.Z. Yu, S. Seki, N. Kanazawa, W. Koshibae, J. Zang, M. Mostovoy, Y. Tokura, and N. Nagaosa, “Thermally driven ratchet motion of a skyrmion microcrystal and topological magnon Hall effect,” Nat. Mater. 13(3), 241–246 (2014).
[Crossref] [PubMed]

X.Z. Yu, Y. Onose, N. Kanazawa, J.H. Park, J.H. Han, Y. Matsui, N. Nagaosa, and Y. Tokura, “Real-space observation of a two-dimensional skyrmion crystal,” Nature 465(7300), 901–904 (2010).
[Crossref] [PubMed]

Karimi, E.

E. Mafakheri, A.H. Tavabi, P.-H. Lu, R. Balboni, F. Venturi, C. Menozzi, G.C. Gazzadi, S. Frabboni, A. Sit, R.E. Dunin-Borkowski, E. Karimi, and V. Grillo, “Realization of electron vortices with large orbital angular momentum using miniature holograms fabricated by electron beam lithography,” Appl. Phys. Lett. 110, 093113 (2017).
[Crossref]

Kim, D.-H.

K.-W. Moon, D.-H. Kim, S.-G. Je, B.S. Chun, W. Kim, Z.Q. Qiu, S.-B. Choe, and C. Hwang, “Skyrmion motion driven by oscillating magnetic field,” Sci. Rep. 6, 20360 (2015).
[Crossref]

Kim, J.-V.

F. Garcia-Sanchez, J. Sampaio, N. Reyren, V. Cros, and J.-V. Kim, “A skyrmion-based spin-torque nano-oscillator,” New J. Phys. 18, 075011 (2016).
[Crossref]

Kim, W.

K.-W. Moon, D.-H. Kim, S.-G. Je, B.S. Chun, W. Kim, Z.Q. Qiu, S.-B. Choe, and C. Hwang, “Skyrmion motion driven by oscillating magnetic field,” Sci. Rep. 6, 20360 (2015).
[Crossref]

Klaui, M.

K. Litzius, I. Lemesh, B. Kruger, P. Bassirian, L. Caretta, K. Richter, F. Buttner, K. Sato, O.A. Tretiakov, J. Forster, R.M. Reeve, M. Weigand, I. Bykova, H. Stoll, G. Schutz, G.S.D. Beach, and M. Klaui, “Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy,” Nat. Phys. 13(2), 170–175 (2017).
[Crossref]

F. Buttner, C. Moutafis, M. Schneider, B. Kruger, C.M. Gunther, J. Geilhufe, C.v. Korff Schmising, J. Mohanty, B. Pfau, S. Schaffert, A. Bisig, M. Foerster, T. Schulz, C.A.F. Vaz, J.H. Franken, H.J.M. Swagten, M. Klaui, and S. Eisebitt, “Dynamics and inertia of skyrmionic spin structures,” Nat. Phys. 11(3), 225–228 (2015).
[Crossref]

Kleiner, V.

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the Spin-Based Plasmonic Effect in Nanoscale Structures,” Phys. Rev. Lett. 101, 043903 (2008).
[Crossref] [PubMed]

Kong, L.

L. Kong and J. Zang, “Dynamics of an Insulating Skyrmion under a Temperature Gradient,” Phys. Rev. Lett. 111, 067203 (2013).
[Crossref] [PubMed]

Korff Schmising, C.v.

F. Buttner, C. Moutafis, M. Schneider, B. Kruger, C.M. Gunther, J. Geilhufe, C.v. Korff Schmising, J. Mohanty, B. Pfau, S. Schaffert, A. Bisig, M. Foerster, T. Schulz, C.A.F. Vaz, J.H. Franken, H.J.M. Swagten, M. Klaui, and S. Eisebitt, “Dynamics and inertia of skyrmionic spin structures,” Nat. Phys. 11(3), 225–228 (2015).
[Crossref]

Koshibae, W.

M. Mochizuki, X.Z. Yu, S. Seki, N. Kanazawa, W. Koshibae, J. Zang, M. Mostovoy, Y. Tokura, and N. Nagaosa, “Thermally driven ratchet motion of a skyrmion microcrystal and topological magnon Hall effect,” Nat. Mater. 13(3), 241–246 (2014).
[Crossref] [PubMed]

Kristensen, P.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A.E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Kruger, B.

K. Litzius, I. Lemesh, B. Kruger, P. Bassirian, L. Caretta, K. Richter, F. Buttner, K. Sato, O.A. Tretiakov, J. Forster, R.M. Reeve, M. Weigand, I. Bykova, H. Stoll, G. Schutz, G.S.D. Beach, and M. Klaui, “Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy,” Nat. Phys. 13(2), 170–175 (2017).
[Crossref]

F. Buttner, C. Moutafis, M. Schneider, B. Kruger, C.M. Gunther, J. Geilhufe, C.v. Korff Schmising, J. Mohanty, B. Pfau, S. Schaffert, A. Bisig, M. Foerster, T. Schulz, C.A.F. Vaz, J.H. Franken, H.J.M. Swagten, M. Klaui, and S. Eisebitt, “Dynamics and inertia of skyrmionic spin structures,” Nat. Phys. 11(3), 225–228 (2015).
[Crossref]

I. Makhfudz, B. Kruger, and O. Tchernyshyov, “Inertia and Chiral Edge Modes of a Skyrmion Magnetic Bubble,” Phys. Rev. Lett. 109, 217201 (2012).
[Crossref] [PubMed]

Kubetzka, A.

N. Romming, A. Kubetzka, C. Hanneken, K. von Bergmann, and R. Wiesendanger, “Field-Dependent Size and Shape of Single Magnetic Skyrmion,” Phys. Rev. Lett. 114, 177203 (2015).
[Crossref]

S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendanger, G. Bihlmayer, and S. Blugel, “Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions,” Nat. Phys. 7(9), 713–718 (2011).
[Crossref]

Kuch, W.

W. Wang, M. Beg, B. Zhang, W. Kuch, and H. Fangohr, “Driving magnetic skyrmions with microwave fields,” Phys. Rev. B 92, 020403(R)(2015).
[Crossref]

Kumar, V.

A.K. Nayak, V. Kumar, T. Ma, P. Werner, E. Pippel, R. Sahoo, F. Damay, U.K. Rößler, C. Felser, and S.S.P. Parkin, “Magnetic antiskyrmions above room temperature in tetragonal Heusler materials,” Nature 548(7669), 561–566 (2017).
[Crossref] [PubMed]

Lam, P.K.

R. Fickler, G. Campbell, B. Buchler, P.K. Lam, and A. Zeilinger, “Quantum entanglement of angular momentum states with quantum numbers up to 10,010,” PNAS 113(48), 13642–13647 (2016).
[Crossref] [PubMed]

Laurat, J.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

Lee, H.

Y.-T. Oh, H. Lee, J.-H. Park, and J.H. Han, “Dynamics of magnon fluid in Dzyaloshinskii-Moriya magnet and its manifestation in magnon-Skyrmion scattering,” Phys. Rev. B 91, 104435 (2015).
[Crossref]

Leliaert, J.

A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, and B. Van Waeyenberge, “The design and verification of MuMax3,” AIP Adv. 4(10) 107133 (2014).
[Crossref]

Lemesh, I.

K. Litzius, I. Lemesh, B. Kruger, P. Bassirian, L. Caretta, K. Richter, F. Buttner, K. Sato, O.A. Tretiakov, J. Forster, R.M. Reeve, M. Weigand, I. Bykova, H. Stoll, G. Schutz, G.S.D. Beach, and M. Klaui, “Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy,” Nat. Phys. 13(2), 170–175 (2017).
[Crossref]

Li, H.

J.Y. Yin, J. Ren, L. Zhang, H. Li, and T.J. Cui, “Microwave Vortex-Beam Emitter Based on Spoof Surface Plasmon Polaritons,” arXiv:1703.07487.

Li, Y.-Q.

Y.-H. Liu, Y.-Q. Li, and J.H. Han, “Skyrmion dynamics in multiferroic insulators,” Phys. Rev. B 87, 100402 (2013).
[Crossref]

Lin, S.-Z.

S.-Z. Lin, C.D. Batista, C. Reichhardt, and A. Saxena, “ac Current Generation in Chiral Magnetic Insulators and Skyrmion Motion induced by the Spin Seebeck Effect,” Phys. Rev. Lett. 112, 187203 (2014).
[Crossref] [PubMed]

S.-Z. Lin, C. Reichhardt, C.D. Batista, and A. Saxena, “Driven Skyrmions and Dynamical Transitions in Chiral Magnets,” Phys. Rev. Lett. 110, 207202 (2013).
[Crossref] [PubMed]

Litzius, K.

K. Litzius, I. Lemesh, B. Kruger, P. Bassirian, L. Caretta, K. Richter, F. Buttner, K. Sato, O.A. Tretiakov, J. Forster, R.M. Reeve, M. Weigand, I. Bykova, H. Stoll, G. Schutz, G.S.D. Beach, and M. Klaui, “Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy,” Nat. Phys. 13(2), 170–175 (2017).
[Crossref]

Liu, Y.-H.

Y.-H. Liu, Y.-Q. Li, and J.H. Han, “Skyrmion dynamics in multiferroic insulators,” Phys. Rev. B 87, 100402 (2013).
[Crossref]

Lu, P.-H.

E. Mafakheri, A.H. Tavabi, P.-H. Lu, R. Balboni, F. Venturi, C. Menozzi, G.C. Gazzadi, S. Frabboni, A. Sit, R.E. Dunin-Borkowski, E. Karimi, and V. Grillo, “Realization of electron vortices with large orbital angular momentum using miniature holograms fabricated by electron beam lithography,” Appl. Phys. Lett. 110, 093113 (2017).
[Crossref]

Ma, T.

A.K. Nayak, V. Kumar, T. Ma, P. Werner, E. Pippel, R. Sahoo, F. Damay, U.K. Rößler, C. Felser, and S.S.P. Parkin, “Magnetic antiskyrmions above room temperature in tetragonal Heusler materials,” Nature 548(7669), 561–566 (2017).
[Crossref] [PubMed]

Mafakheri, E.

E. Mafakheri, A.H. Tavabi, P.-H. Lu, R. Balboni, F. Venturi, C. Menozzi, G.C. Gazzadi, S. Frabboni, A. Sit, R.E. Dunin-Borkowski, E. Karimi, and V. Grillo, “Realization of electron vortices with large orbital angular momentum using miniature holograms fabricated by electron beam lithography,” Appl. Phys. Lett. 110, 093113 (2017).
[Crossref]

Makhfudz, I.

I. Makhfudz, B. Kruger, and O. Tchernyshyov, “Inertia and Chiral Edge Modes of a Skyrmion Magnetic Bubble,” Phys. Rev. Lett. 109, 217201 (2012).
[Crossref] [PubMed]

Malozemoff, A.P.

A.P. Malozemoff and J.C. Slonczewski, Magnetic Domain Walls in Bubble Materials (Academic, New York, 1979).

Marchiano, R.

D. Baresch, J.-L. Thomas, and R. Marchiano, “Observation of a Single-Beam Gradient Force Acoustical Trap for Elastic Particles: Acoustical Tweezers,” Phys. Rev. Lett. 116, 024301 (2016).
[Crossref] [PubMed]

Matsui, Y.

X.Z. Yu, Y. Onose, N. Kanazawa, J.H. Park, J.H. Han, Y. Matsui, N. Nagaosa, and Y. Tokura, “Real-space observation of a two-dimensional skyrmion crystal,” Nature 465(7300), 901–904 (2010).
[Crossref] [PubMed]

Maxein, D.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

Menozzi, C.

E. Mafakheri, A.H. Tavabi, P.-H. Lu, R. Balboni, F. Venturi, C. Menozzi, G.C. Gazzadi, S. Frabboni, A. Sit, R.E. Dunin-Borkowski, E. Karimi, and V. Grillo, “Realization of electron vortices with large orbital angular momentum using miniature holograms fabricated by electron beam lithography,” Appl. Phys. Lett. 110, 093113 (2017).
[Crossref]

Menzel, M.

S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendanger, G. Bihlmayer, and S. Blugel, “Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions,” Nat. Phys. 7(9), 713–718 (2011).
[Crossref]

Miron, I.M.

S. Pizzini, J. Vogel, S. Rohart, L.D. Buda-Prejbeanu, E. Jué, O. Boulle, I.M. Miron, C.K. Safeer, S. Auffret, G. Gaudin, and A. Thiaville, “Chirality-Induced Asymmetric Magnetic Nucleation in Pt/Co/AlOx Ultrathin Microstructures,” Phys. Rev. Lett. 113, 047203 (2014).
[Crossref]

Mochizuki, M.

M. Mochizuki, X.Z. Yu, S. Seki, N. Kanazawa, W. Koshibae, J. Zang, M. Mostovoy, Y. Tokura, and N. Nagaosa, “Thermally driven ratchet motion of a skyrmion microcrystal and topological magnon Hall effect,” Nat. Mater. 13(3), 241–246 (2014).
[Crossref] [PubMed]

J. Iwasaki, M. Mochizuki, and N. Nagaosa, “Universal current-velocity relation of skyrmion motion in chiral magnets,” Nat. Commun. 4, 1463 (2013).
[Crossref] [PubMed]

J. Iwasaki, M. Mochizuki, and N. Nagaosa, “Current-induced skyrmion dynamics in constrained geometries,” Nat. Nanotech. 8(10), 742–747 (2013).
[Crossref]

Mohanty, J.

F. Buttner, C. Moutafis, M. Schneider, B. Kruger, C.M. Gunther, J. Geilhufe, C.v. Korff Schmising, J. Mohanty, B. Pfau, S. Schaffert, A. Bisig, M. Foerster, T. Schulz, C.A.F. Vaz, J.H. Franken, H.J.M. Swagten, M. Klaui, and S. Eisebitt, “Dynamics and inertia of skyrmionic spin structures,” Nat. Phys. 11(3), 225–228 (2015).
[Crossref]

Molina-Terriza, G.

F. Tamburini, B. Thide, G. Molina-Terriza, and G. Anzolin, “Twisting of light around rotating black holes,” Nat. Phys. 7(3), 195–197 (2011).
[Crossref]

Moon, K.-W.

K.-W. Moon, D.-H. Kim, S.-G. Je, B.S. Chun, W. Kim, Z.Q. Qiu, S.-B. Choe, and C. Hwang, “Skyrmion motion driven by oscillating magnetic field,” Sci. Rep. 6, 20360 (2015).
[Crossref]

Mostovoy, M.

M. Mochizuki, X.Z. Yu, S. Seki, N. Kanazawa, W. Koshibae, J. Zang, M. Mostovoy, Y. Tokura, and N. Nagaosa, “Thermally driven ratchet motion of a skyrmion microcrystal and topological magnon Hall effect,” Nat. Mater. 13(3), 241–246 (2014).
[Crossref] [PubMed]

J. Zang, M. Mostovoy, J.H. Han, and N. Nagaosa, “Dynamics of Skyrmion Crystals in Metallic Thin Films,” Phys. Rev. Lett. 107, 136804 (2011).
[Crossref] [PubMed]

Moutafis, C.

F. Buttner, C. Moutafis, M. Schneider, B. Kruger, C.M. Gunther, J. Geilhufe, C.v. Korff Schmising, J. Mohanty, B. Pfau, S. Schaffert, A. Bisig, M. Foerster, T. Schulz, C.A.F. Vaz, J.H. Franken, H.J.M. Swagten, M. Klaui, and S. Eisebitt, “Dynamics and inertia of skyrmionic spin structures,” Nat. Phys. 11(3), 225–228 (2015).
[Crossref]

Muhlbauer, S.

K. Everschor, M. Garst, B. Binz, F. Jonietz, S. Muhlbauer, C. Pfleiderer, and A. Rosch, “Rotating skyrmion lattices by spin torques and field or temperature gradients,” Phys. Rev. B 86, 054432 (2012).
[Crossref]

Mulbauer, S.

S. Mulbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Boni, “Skyrmion lattice in a chiral magnet,” Science 323(5916), 915–919 (2009).
[Crossref]

Muller, J.

J. Muller and A. Rosch, “Capturing of a magnetic skyrmion with a hole,” Phys. Rev. B 91, 054410 (2015).
[Crossref]

Nagaosa, N.

J. Iwasaki, A.J. Beekman, and N. Nagaosa, “Theory of magnon-skyrmion scattering in chiral magnets,” Phys. Rev. B 89, 064412 (2014).
[Crossref]

M. Mochizuki, X.Z. Yu, S. Seki, N. Kanazawa, W. Koshibae, J. Zang, M. Mostovoy, Y. Tokura, and N. Nagaosa, “Thermally driven ratchet motion of a skyrmion microcrystal and topological magnon Hall effect,” Nat. Mater. 13(3), 241–246 (2014).
[Crossref] [PubMed]

J. Iwasaki, M. Mochizuki, and N. Nagaosa, “Universal current-velocity relation of skyrmion motion in chiral magnets,” Nat. Commun. 4, 1463 (2013).
[Crossref] [PubMed]

J. Iwasaki, M. Mochizuki, and N. Nagaosa, “Current-induced skyrmion dynamics in constrained geometries,” Nat. Nanotech. 8(10), 742–747 (2013).
[Crossref]

N. Nagaosa and Y. Tokura, “Topological properties and dynamics of magnetic skyrmions,” Nat. Nanotech. 8(12), 899–911 (2013).
[Crossref]

J. Zang, M. Mostovoy, J.H. Han, and N. Nagaosa, “Dynamics of Skyrmion Crystals in Metallic Thin Films,” Phys. Rev. Lett. 107, 136804 (2011).
[Crossref] [PubMed]

X.Z. Yu, Y. Onose, N. Kanazawa, J.H. Park, J.H. Han, Y. Matsui, N. Nagaosa, and Y. Tokura, “Real-space observation of a two-dimensional skyrmion crystal,” Nature 465(7300), 901–904 (2010).
[Crossref] [PubMed]

Nayak, A.K.

A.K. Nayak, V. Kumar, T. Ma, P. Werner, E. Pippel, R. Sahoo, F. Damay, U.K. Rößler, C. Felser, and S.S.P. Parkin, “Magnetic antiskyrmions above room temperature in tetragonal Heusler materials,” Nature 548(7669), 561–566 (2017).
[Crossref] [PubMed]

Neubauer, A.

S. Mulbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Boni, “Skyrmion lattice in a chiral magnet,” Science 323(5916), 915–919 (2009).
[Crossref]

Nez, A.S.

R.E. Troncoso and A.S. Nez, “Brownian motion of massive skyrmions in magnetic thin films,” Ann. Phys. 351, 850–856 (2014).
[Crossref]

Nicolas, A.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

Niv, A.

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the Spin-Based Plasmonic Effect in Nanoscale Structures,” Phys. Rev. Lett. 101, 043903 (2008).
[Crossref] [PubMed]

Oh, Y.-T.

Y.-T. Oh, H. Lee, J.-H. Park, and J.H. Han, “Dynamics of magnon fluid in Dzyaloshinskii-Moriya magnet and its manifestation in magnon-Skyrmion scattering,” Phys. Rev. B 91, 104435 (2015).
[Crossref]

Olson Reichhardt, C.J.

C. Reichhardt, D. Ray, and C.J. Olson Reichhardt, “Collective Transport Properties of Driven Skyrmions with Random Disorder,” Phys. Rev. Lett. 114, 217202 (2015).
[Crossref] [PubMed]

Onose, Y.

X.Z. Yu, Y. Onose, N. Kanazawa, J.H. Park, J.H. Han, Y. Matsui, N. Nagaosa, and Y. Tokura, “Real-space observation of a two-dimensional skyrmion crystal,” Nature 465(7300), 901–904 (2010).
[Crossref] [PubMed]

Park, J.H.

X.Z. Yu, Y. Onose, N. Kanazawa, J.H. Park, J.H. Han, Y. Matsui, N. Nagaosa, and Y. Tokura, “Real-space observation of a two-dimensional skyrmion crystal,” Nature 465(7300), 901–904 (2010).
[Crossref] [PubMed]

Park, J.-H.

Y.-T. Oh, H. Lee, J.-H. Park, and J.H. Han, “Dynamics of magnon fluid in Dzyaloshinskii-Moriya magnet and its manifestation in magnon-Skyrmion scattering,” Phys. Rev. B 91, 104435 (2015).
[Crossref]

Parkin, S.S.P.

A.K. Nayak, V. Kumar, T. Ma, P. Werner, E. Pippel, R. Sahoo, F. Damay, U.K. Rößler, C. Felser, and S.S.P. Parkin, “Magnetic antiskyrmions above room temperature in tetragonal Heusler materials,” Nature 548(7669), 561–566 (2017).
[Crossref] [PubMed]

Pearson, J.E.

W. Jiang, X. Zhang, G. Yu, W. Zhang, X. Wang, M.B. Jungfleisch, J.E. Pearson, X. Cheng, O. Heinonen, K.L. Wang, Y. Zhou, A. Homann, and S.G.E. te Velthuis, “Direct observation of the skyrmion Hall effect,” Nat. Phys. 13(2), 162–169 (2016).
[Crossref]

W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M.B. Jungfleisch, F.Y. Fradin, J.E. Pearson, Y. Tserkovnyak, K.L. Wang, O. Heinonen, S.G.E. te Velthuis, and A. Hoffmann, “Blowing magnetic skyrmion bubbles,” Science 349(6245), 283–286 (2015).
[Crossref] [PubMed]

Pfau, B.

F. Buttner, C. Moutafis, M. Schneider, B. Kruger, C.M. Gunther, J. Geilhufe, C.v. Korff Schmising, J. Mohanty, B. Pfau, S. Schaffert, A. Bisig, M. Foerster, T. Schulz, C.A.F. Vaz, J.H. Franken, H.J.M. Swagten, M. Klaui, and S. Eisebitt, “Dynamics and inertia of skyrmionic spin structures,” Nat. Phys. 11(3), 225–228 (2015).
[Crossref]

Pfleiderer, C.

K. Everschor, M. Garst, B. Binz, F. Jonietz, S. Muhlbauer, C. Pfleiderer, and A. Rosch, “Rotating skyrmion lattices by spin torques and field or temperature gradients,” Phys. Rev. B 86, 054432 (2012).
[Crossref]

S. Mulbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Boni, “Skyrmion lattice in a chiral magnet,” Science 323(5916), 915–919 (2009).
[Crossref]

Pippel, E.

A.K. Nayak, V. Kumar, T. Ma, P. Werner, E. Pippel, R. Sahoo, F. Damay, U.K. Rößler, C. Felser, and S.S.P. Parkin, “Magnetic antiskyrmions above room temperature in tetragonal Heusler materials,” Nature 548(7669), 561–566 (2017).
[Crossref] [PubMed]

Pizzini, S.

S. Pizzini, J. Vogel, S. Rohart, L.D. Buda-Prejbeanu, E. Jué, O. Boulle, I.M. Miron, C.K. Safeer, S. Auffret, G. Gaudin, and A. Thiaville, “Chirality-Induced Asymmetric Magnetic Nucleation in Pt/Co/AlOx Ultrathin Microstructures,” Phys. Rev. Lett. 113, 047203 (2014).
[Crossref]

Poynting, J.

J. Poynting, “The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light,” Proc. R. Soc. London A Contain. Pap. Math. Phys. Character 82, 560 (1909).
[Crossref]

Qiu, Z.Q.

K.-W. Moon, D.-H. Kim, S.-G. Je, B.S. Chun, W. Kim, Z.Q. Qiu, S.-B. Choe, and C. Hwang, “Skyrmion motion driven by oscillating magnetic field,” Sci. Rep. 6, 20360 (2015).
[Crossref]

Ramachandran, S.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A.E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Ray, D.

C. Reichhardt, D. Ray, and C.J. Olson Reichhardt, “Collective Transport Properties of Driven Skyrmions with Random Disorder,” Phys. Rev. Lett. 114, 217202 (2015).
[Crossref] [PubMed]

Reeve, R.M.

K. Litzius, I. Lemesh, B. Kruger, P. Bassirian, L. Caretta, K. Richter, F. Buttner, K. Sato, O.A. Tretiakov, J. Forster, R.M. Reeve, M. Weigand, I. Bykova, H. Stoll, G. Schutz, G.S.D. Beach, and M. Klaui, “Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy,” Nat. Phys. 13(2), 170–175 (2017).
[Crossref]

Reichhardt, C.

C. Reichhardt, D. Ray, and C.J. Olson Reichhardt, “Collective Transport Properties of Driven Skyrmions with Random Disorder,” Phys. Rev. Lett. 114, 217202 (2015).
[Crossref] [PubMed]

S.-Z. Lin, C.D. Batista, C. Reichhardt, and A. Saxena, “ac Current Generation in Chiral Magnetic Insulators and Skyrmion Motion induced by the Spin Seebeck Effect,” Phys. Rev. Lett. 112, 187203 (2014).
[Crossref] [PubMed]

S.-Z. Lin, C. Reichhardt, C.D. Batista, and A. Saxena, “Driven Skyrmions and Dynamical Transitions in Chiral Magnets,” Phys. Rev. Lett. 110, 207202 (2013).
[Crossref] [PubMed]

Ren, J.

J.Y. Yin, J. Ren, L. Zhang, H. Li, and T.J. Cui, “Microwave Vortex-Beam Emitter Based on Spoof Surface Plasmon Polaritons,” arXiv:1703.07487.

Ren, W.J.

Y.Y. Dai, H. Wang, P. Tao, T. Yang, W.J. Ren, and Z.D. Zhang, “Skyrmion ground state and gyration of skyrmions in magnetic nanodisks without the Dzyaloshinsky-Moriya interaction,” Phys. Rev. B 88, 054403 (2013).
[Crossref]

Ren, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A.E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J.-Y. Yang, I.M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A.E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Reyren, N.

F. Garcia-Sanchez, J. Sampaio, N. Reyren, V. Cros, and J.-V. Kim, “A skyrmion-based spin-torque nano-oscillator,” New J. Phys. 18, 075011 (2016).
[Crossref]

Richter, K.

K. Litzius, I. Lemesh, B. Kruger, P. Bassirian, L. Caretta, K. Richter, F. Buttner, K. Sato, O.A. Tretiakov, J. Forster, R.M. Reeve, M. Weigand, I. Bykova, H. Stoll, G. Schutz, G.S.D. Beach, and M. Klaui, “Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy,” Nat. Phys. 13(2), 170–175 (2017).
[Crossref]

Rohart, S.

S. Pizzini, J. Vogel, S. Rohart, L.D. Buda-Prejbeanu, E. Jué, O. Boulle, I.M. Miron, C.K. Safeer, S. Auffret, G. Gaudin, and A. Thiaville, “Chirality-Induced Asymmetric Magnetic Nucleation in Pt/Co/AlOx Ultrathin Microstructures,” Phys. Rev. Lett. 113, 047203 (2014).
[Crossref]

Romming, N.

N. Romming, A. Kubetzka, C. Hanneken, K. von Bergmann, and R. Wiesendanger, “Field-Dependent Size and Shape of Single Magnetic Skyrmion,” Phys. Rev. Lett. 114, 177203 (2015).
[Crossref]

Rosch, A.

J. Muller and A. Rosch, “Capturing of a magnetic skyrmion with a hole,” Phys. Rev. B 91, 054410 (2015).
[Crossref]

K. Everschor, M. Garst, B. Binz, F. Jonietz, S. Muhlbauer, C. Pfleiderer, and A. Rosch, “Rotating skyrmion lattices by spin torques and field or temperature gradients,” Phys. Rev. B 86, 054432 (2012).
[Crossref]

S. Mulbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Boni, “Skyrmion lattice in a chiral magnet,” Science 323(5916), 915–919 (2009).
[Crossref]

Rößler, U.K.

A.K. Nayak, V. Kumar, T. Ma, P. Werner, E. Pippel, R. Sahoo, F. Damay, U.K. Rößler, C. Felser, and S.S.P. Parkin, “Magnetic antiskyrmions above room temperature in tetragonal Heusler materials,” Nature 548(7669), 561–566 (2017).
[Crossref] [PubMed]

Safeer, C.K.

S. Pizzini, J. Vogel, S. Rohart, L.D. Buda-Prejbeanu, E. Jué, O. Boulle, I.M. Miron, C.K. Safeer, S. Auffret, G. Gaudin, and A. Thiaville, “Chirality-Induced Asymmetric Magnetic Nucleation in Pt/Co/AlOx Ultrathin Microstructures,” Phys. Rev. Lett. 113, 047203 (2014).
[Crossref]

Sahoo, R.

A.K. Nayak, V. Kumar, T. Ma, P. Werner, E. Pippel, R. Sahoo, F. Damay, U.K. Rößler, C. Felser, and S.S.P. Parkin, “Magnetic antiskyrmions above room temperature in tetragonal Heusler materials,” Nature 548(7669), 561–566 (2017).
[Crossref] [PubMed]

Sampaio, J.

F. Garcia-Sanchez, J. Sampaio, N. Reyren, V. Cros, and J.-V. Kim, “A skyrmion-based spin-torque nano-oscillator,” New J. Phys. 18, 075011 (2016).
[Crossref]

A. Fert, V. Cros, and J. Sampaio, “Skyrmions on the track,” Nat. Nanotech. 8(3), 152–156 (2013).
[Crossref]

J. Sampaio, V. Cros, S. Thiaville, and A. Fert, “Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures,” Nat. Nanotech. 8(11), 839–844 (2013).
[Crossref]

Sato, K.

K. Litzius, I. Lemesh, B. Kruger, P. Bassirian, L. Caretta, K. Richter, F. Buttner, K. Sato, O.A. Tretiakov, J. Forster, R.M. Reeve, M. Weigand, I. Bykova, H. Stoll, G. Schutz, G.S.D. Beach, and M. Klaui, “Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy,” Nat. Phys. 13(2), 170–175 (2017).
[Crossref]

Sato, M.

H. Fujita and M. Sato, “Ultrafast generation of skyrmionic defects with vortex beams: Printing laser profiles on magnets,” Phys. Rev. B 95, 054421 (2017).
[Crossref]

H. Fujita and M. Sato, “Encoding Orbital Angular Momentum of Lights in Magnets,” arXiv:1612.00176.

Saxena, A.

S.-Z. Lin, C.D. Batista, C. Reichhardt, and A. Saxena, “ac Current Generation in Chiral Magnetic Insulators and Skyrmion Motion induced by the Spin Seebeck Effect,” Phys. Rev. Lett. 112, 187203 (2014).
[Crossref] [PubMed]

S.-Z. Lin, C. Reichhardt, C.D. Batista, and A. Saxena, “Driven Skyrmions and Dynamical Transitions in Chiral Magnets,” Phys. Rev. Lett. 110, 207202 (2013).
[Crossref] [PubMed]

Schaffert, S.

F. Buttner, C. Moutafis, M. Schneider, B. Kruger, C.M. Gunther, J. Geilhufe, C.v. Korff Schmising, J. Mohanty, B. Pfau, S. Schaffert, A. Bisig, M. Foerster, T. Schulz, C.A.F. Vaz, J.H. Franken, H.J.M. Swagten, M. Klaui, and S. Eisebitt, “Dynamics and inertia of skyrmionic spin structures,” Nat. Phys. 11(3), 225–228 (2015).
[Crossref]

Schneider, M.

F. Buttner, C. Moutafis, M. Schneider, B. Kruger, C.M. Gunther, J. Geilhufe, C.v. Korff Schmising, J. Mohanty, B. Pfau, S. Schaffert, A. Bisig, M. Foerster, T. Schulz, C.A.F. Vaz, J.H. Franken, H.J.M. Swagten, M. Klaui, and S. Eisebitt, “Dynamics and inertia of skyrmionic spin structures,” Nat. Phys. 11(3), 225–228 (2015).
[Crossref]

Schulz, T.

F. Buttner, C. Moutafis, M. Schneider, B. Kruger, C.M. Gunther, J. Geilhufe, C.v. Korff Schmising, J. Mohanty, B. Pfau, S. Schaffert, A. Bisig, M. Foerster, T. Schulz, C.A.F. Vaz, J.H. Franken, H.J.M. Swagten, M. Klaui, and S. Eisebitt, “Dynamics and inertia of skyrmionic spin structures,” Nat. Phys. 11(3), 225–228 (2015).
[Crossref]

Schutte, C.

C. Schutte and M. Garst, “Magnon-skyrmion scattering in chiral magnets,” Phys. Rev. B 90, 094423 (2014).
[Crossref]

Schutz, G.

K. Litzius, I. Lemesh, B. Kruger, P. Bassirian, L. Caretta, K. Richter, F. Buttner, K. Sato, O.A. Tretiakov, J. Forster, R.M. Reeve, M. Weigand, I. Bykova, H. Stoll, G. Schutz, G.S.D. Beach, and M. Klaui, “Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy,” Nat. Phys. 13(2), 170–175 (2017).
[Crossref]

Seki, S.

M. Mochizuki, X.Z. Yu, S. Seki, N. Kanazawa, W. Koshibae, J. Zang, M. Mostovoy, Y. Tokura, and N. Nagaosa, “Thermally driven ratchet motion of a skyrmion microcrystal and topological magnon Hall effect,” Nat. Mater. 13(3), 241–246 (2014).
[Crossref] [PubMed]

Sit, A.

E. Mafakheri, A.H. Tavabi, P.-H. Lu, R. Balboni, F. Venturi, C. Menozzi, G.C. Gazzadi, S. Frabboni, A. Sit, R.E. Dunin-Borkowski, E. Karimi, and V. Grillo, “Realization of electron vortices with large orbital angular momentum using miniature holograms fabricated by electron beam lithography,” Appl. Phys. Lett. 110, 093113 (2017).
[Crossref]

Skyrme, T.H.R.

T.H.R. Skyrme, “A unified field theory of mesons and baryons,” Nucl. Phys. 31, 556–569 (1962).
[Crossref]

Slonczewski, J.C.

A.P. Malozemoff and J.C. Slonczewski, Magnetic Domain Walls in Bubble Materials (Academic, New York, 1979).

Soskin, M.S.

I.V. Basistiy, M.S. Soskin, and M.V. Vasnetsov, “Optical wavefront dislocations and their properties,” Opt. Commun. 119(5–6), 604–612 (1995).
[Crossref]

Spreeuw, R.J.

L. Allen, M.W. Beijersbergen, R.J. Spreeuw, and J.P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185 (1992).
[Crossref] [PubMed]

Stoll, H.

K. Litzius, I. Lemesh, B. Kruger, P. Bassirian, L. Caretta, K. Richter, F. Buttner, K. Sato, O.A. Tretiakov, J. Forster, R.M. Reeve, M. Weigand, I. Bykova, H. Stoll, G. Schutz, G.S.D. Beach, and M. Klaui, “Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy,” Nat. Phys. 13(2), 170–175 (2017).
[Crossref]

Swagten, H.J.M.

F. Buttner, C. Moutafis, M. Schneider, B. Kruger, C.M. Gunther, J. Geilhufe, C.v. Korff Schmising, J. Mohanty, B. Pfau, S. Schaffert, A. Bisig, M. Foerster, T. Schulz, C.A.F. Vaz, J.H. Franken, H.J.M. Swagten, M. Klaui, and S. Eisebitt, “Dynamics and inertia of skyrmionic spin structures,” Nat. Phys. 11(3), 225–228 (2015).
[Crossref]

Tamburini, F.

F. Tamburini, B. Thide, G. Molina-Terriza, and G. Anzolin, “Twisting of light around rotating black holes,” Nat. Phys. 7(3), 195–197 (2011).
[Crossref]

Tao, P.

Y.Y. Dai, H. Wang, P. Tao, T. Yang, W.J. Ren, and Z.D. Zhang, “Skyrmion ground state and gyration of skyrmions in magnetic nanodisks without the Dzyaloshinsky-Moriya interaction,” Phys. Rev. B 88, 054403 (2013).
[Crossref]

Tavabi, A.H.

E. Mafakheri, A.H. Tavabi, P.-H. Lu, R. Balboni, F. Venturi, C. Menozzi, G.C. Gazzadi, S. Frabboni, A. Sit, R.E. Dunin-Borkowski, E. Karimi, and V. Grillo, “Realization of electron vortices with large orbital angular momentum using miniature holograms fabricated by electron beam lithography,” Appl. Phys. Lett. 110, 093113 (2017).
[Crossref]

Tchernyshyov, O.

O. Tchernyshyov, “Conserved momenta of a ferromagnetic soliton,” Ann. Phys. 363, 98–113 (2015).
[Crossref]

I. Makhfudz, B. Kruger, and O. Tchernyshyov, “Inertia and Chiral Edge Modes of a Skyrmion Magnetic Bubble,” Phys. Rev. Lett. 109, 217201 (2012).
[Crossref] [PubMed]

O.A. Tretiakov, D. Clarke, Gia-Wei Chern, Ya.B. Bazaliy, and O. Tchernyshyov, “Dynamics of Domain Walls in Magnetic Nanostrips,” Phys. Rev. Lett. 100, 127204 (2008).
[Crossref] [PubMed]

te Velthuis, S.G.E.

W. Jiang, X. Zhang, G. Yu, W. Zhang, X. Wang, M.B. Jungfleisch, J.E. Pearson, X. Cheng, O. Heinonen, K.L. Wang, Y. Zhou, A. Homann, and S.G.E. te Velthuis, “Direct observation of the skyrmion Hall effect,” Nat. Phys. 13(2), 162–169 (2016).
[Crossref]

W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M.B. Jungfleisch, F.Y. Fradin, J.E. Pearson, Y. Tserkovnyak, K.L. Wang, O. Heinonen, S.G.E. te Velthuis, and A. Hoffmann, “Blowing magnetic skyrmion bubbles,” Science 349(6245), 283–286 (2015).
[Crossref] [PubMed]

Thiaville, A.

S. Pizzini, J. Vogel, S. Rohart, L.D. Buda-Prejbeanu, E. Jué, O. Boulle, I.M. Miron, C.K. Safeer, S. Auffret, G. Gaudin, and A. Thiaville, “Chirality-Induced Asymmetric Magnetic Nucleation in Pt/Co/AlOx Ultrathin Microstructures,” Phys. Rev. Lett. 113, 047203 (2014).
[Crossref]

Thiaville, S.

J. Sampaio, V. Cros, S. Thiaville, and A. Fert, “Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures,” Nat. Nanotech. 8(11), 839–844 (2013).
[Crossref]

Thide, B.

F. Tamburini, B. Thide, G. Molina-Terriza, and G. Anzolin, “Twisting of light around rotating black holes,” Nat. Phys. 7(3), 195–197 (2011).
[Crossref]

Thiele, A.A.

A.A. Thiele, “Steady-State Motion of Magnetic Domains,” Phys. Rev. Lett. 30, 230 (1973).
[Crossref]

Thomas, J.-L.

D. Baresch, J.-L. Thomas, and R. Marchiano, “Observation of a Single-Beam Gradient Force Acoustical Trap for Elastic Particles: Acoustical Tweezers,” Phys. Rev. Lett. 116, 024301 (2016).
[Crossref] [PubMed]

Tokura, Y.

M. Mochizuki, X.Z. Yu, S. Seki, N. Kanazawa, W. Koshibae, J. Zang, M. Mostovoy, Y. Tokura, and N. Nagaosa, “Thermally driven ratchet motion of a skyrmion microcrystal and topological magnon Hall effect,” Nat. Mater. 13(3), 241–246 (2014).
[Crossref] [PubMed]

N. Nagaosa and Y. Tokura, “Topological properties and dynamics of magnetic skyrmions,” Nat. Nanotech. 8(12), 899–911 (2013).
[Crossref]

X.Z. Yu, Y. Onose, N. Kanazawa, J.H. Park, J.H. Han, Y. Matsui, N. Nagaosa, and Y. Tokura, “Real-space observation of a two-dimensional skyrmion crystal,” Nature 465(7300), 901–904 (2010).
[Crossref] [PubMed]

Tretiakov, O.A.

K. Litzius, I. Lemesh, B. Kruger, P. Bassirian, L. Caretta, K. Richter, F. Buttner, K. Sato, O.A. Tretiakov, J. Forster, R.M. Reeve, M. Weigand, I. Bykova, H. Stoll, G. Schutz, G.S.D. Beach, and M. Klaui, “Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy,” Nat. Phys. 13(2), 170–175 (2017).
[Crossref]

J. Barker and O.A. Tretiakov, “Static and Dynamical Properties of Antiferromagnetic Skyrmions in the Presence of Applied Current and Temperature,” Phys. Rev. Lett. 116, 147203 (2016).
[Crossref] [PubMed]

O.A. Tretiakov, D. Clarke, Gia-Wei Chern, Ya.B. Bazaliy, and O. Tchernyshyov, “Dynamics of Domain Walls in Magnetic Nanostrips,” Phys. Rev. Lett. 100, 127204 (2008).
[Crossref] [PubMed]

Troncoso, R.E.

R.E. Troncoso and A.S. Nez, “Brownian motion of massive skyrmions in magnetic thin films,” Ann. Phys. 351, 850–856 (2014).
[Crossref]

Tserkovnyak, Y.

W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M.B. Jungfleisch, F.Y. Fradin, J.E. Pearson, Y. Tserkovnyak, K.L. Wang, O. Heinonen, S.G.E. te Velthuis, and A. Hoffmann, “Blowing magnetic skyrmion bubbles,” Science 349(6245), 283–286 (2015).
[Crossref] [PubMed]

Tur, M.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A.E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J.-Y. Yang, I.M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A.E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Upadhyaya, P.

W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M.B. Jungfleisch, F.Y. Fradin, J.E. Pearson, Y. Tserkovnyak, K.L. Wang, O. Heinonen, S.G.E. te Velthuis, and A. Hoffmann, “Blowing magnetic skyrmion bubbles,” Science 349(6245), 283–286 (2015).
[Crossref] [PubMed]

Van Waeyenberge, B.

A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, and B. Van Waeyenberge, “The design and verification of MuMax3,” AIP Adv. 4(10) 107133 (2014).
[Crossref]

Vansteenkiste, A.

A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, and B. Van Waeyenberge, “The design and verification of MuMax3,” AIP Adv. 4(10) 107133 (2014).
[Crossref]

Vasnetsov, M.V.

I.V. Basistiy, M.S. Soskin, and M.V. Vasnetsov, “Optical wavefront dislocations and their properties,” Opt. Commun. 119(5–6), 604–612 (1995).
[Crossref]

Vaz, C.A.F.

F. Buttner, C. Moutafis, M. Schneider, B. Kruger, C.M. Gunther, J. Geilhufe, C.v. Korff Schmising, J. Mohanty, B. Pfau, S. Schaffert, A. Bisig, M. Foerster, T. Schulz, C.A.F. Vaz, J.H. Franken, H.J.M. Swagten, M. Klaui, and S. Eisebitt, “Dynamics and inertia of skyrmionic spin structures,” Nat. Phys. 11(3), 225–228 (2015).
[Crossref]

Veissier, L.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

Venturi, F.

E. Mafakheri, A.H. Tavabi, P.-H. Lu, R. Balboni, F. Venturi, C. Menozzi, G.C. Gazzadi, S. Frabboni, A. Sit, R.E. Dunin-Borkowski, E. Karimi, and V. Grillo, “Realization of electron vortices with large orbital angular momentum using miniature holograms fabricated by electron beam lithography,” Appl. Phys. Lett. 110, 093113 (2017).
[Crossref]

Verbeeck, J.

A. Béché, R. Juchtmans, and J. Verbeeck, “Efficient creation of electron vortex beams for high resolution STEM imaging,” Ultramicroscopy 178, 12–19 (2017).
[Crossref]

Vogel, J.

S. Pizzini, J. Vogel, S. Rohart, L.D. Buda-Prejbeanu, E. Jué, O. Boulle, I.M. Miron, C.K. Safeer, S. Auffret, G. Gaudin, and A. Thiaville, “Chirality-Induced Asymmetric Magnetic Nucleation in Pt/Co/AlOx Ultrathin Microstructures,” Phys. Rev. Lett. 113, 047203 (2014).
[Crossref]

von Bergmann, K.

N. Romming, A. Kubetzka, C. Hanneken, K. von Bergmann, and R. Wiesendanger, “Field-Dependent Size and Shape of Single Magnetic Skyrmion,” Phys. Rev. Lett. 114, 177203 (2015).
[Crossref]

S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendanger, G. Bihlmayer, and S. Blugel, “Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions,” Nat. Phys. 7(9), 713–718 (2011).
[Crossref]

Wang, H.

Y.Y. Dai, H. Wang, P. Tao, T. Yang, W.J. Ren, and Z.D. Zhang, “Skyrmion ground state and gyration of skyrmions in magnetic nanodisks without the Dzyaloshinsky-Moriya interaction,” Phys. Rev. B 88, 054403 (2013).
[Crossref]

Wang, J.

J. Wang, J.-Y. Yang, I.M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A.E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Wang, K.L.

W. Jiang, X. Zhang, G. Yu, W. Zhang, X. Wang, M.B. Jungfleisch, J.E. Pearson, X. Cheng, O. Heinonen, K.L. Wang, Y. Zhou, A. Homann, and S.G.E. te Velthuis, “Direct observation of the skyrmion Hall effect,” Nat. Phys. 13(2), 162–169 (2016).
[Crossref]

W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M.B. Jungfleisch, F.Y. Fradin, J.E. Pearson, Y. Tserkovnyak, K.L. Wang, O. Heinonen, S.G.E. te Velthuis, and A. Hoffmann, “Blowing magnetic skyrmion bubbles,” Science 349(6245), 283–286 (2015).
[Crossref] [PubMed]

Wang, W.

W. Wang, M. Beg, B. Zhang, W. Kuch, and H. Fangohr, “Driving magnetic skyrmions with microwave fields,” Phys. Rev. B 92, 020403(R)(2015).
[Crossref]

Wang, X.

W. Jiang, X. Zhang, G. Yu, W. Zhang, X. Wang, M.B. Jungfleisch, J.E. Pearson, X. Cheng, O. Heinonen, K.L. Wang, Y. Zhou, A. Homann, and S.G.E. te Velthuis, “Direct observation of the skyrmion Hall effect,” Nat. Phys. 13(2), 162–169 (2016).
[Crossref]

Wang, X.R.

H.Y. Yuan and X.R. Wang, “Skyrmion Creation and Manipulation by Nano-Second Current Pulses,” Sci. Rep. 6, 22638 (2016).
[Crossref] [PubMed]

P. Yan, X.S. Wang, and X.R. Wang, “All-Magnonic Spin-Transfer Torque and Domain Wall Propagation,” Phys. Rev. Lett. 107, 177207 (2011).
[Crossref] [PubMed]

Wang, X.S.

P. Yan, X.S. Wang, and X.R. Wang, “All-Magnonic Spin-Transfer Torque and Domain Wall Propagation,” Phys. Rev. Lett. 107, 177207 (2011).
[Crossref] [PubMed]

Weigand, M.

K. Litzius, I. Lemesh, B. Kruger, P. Bassirian, L. Caretta, K. Richter, F. Buttner, K. Sato, O.A. Tretiakov, J. Forster, R.M. Reeve, M. Weigand, I. Bykova, H. Stoll, G. Schutz, G.S.D. Beach, and M. Klaui, “Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy,” Nat. Phys. 13(2), 170–175 (2017).
[Crossref]

Werner, P.

A.K. Nayak, V. Kumar, T. Ma, P. Werner, E. Pippel, R. Sahoo, F. Damay, U.K. Rößler, C. Felser, and S.S.P. Parkin, “Magnetic antiskyrmions above room temperature in tetragonal Heusler materials,” Nature 548(7669), 561–566 (2017).
[Crossref] [PubMed]

Wiesendanger, R.

R. Wiesendanger, “Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics,” Nat. Rev. Mater. 1(7), 16044 (2016).
[Crossref]

N. Romming, A. Kubetzka, C. Hanneken, K. von Bergmann, and R. Wiesendanger, “Field-Dependent Size and Shape of Single Magnetic Skyrmion,” Phys. Rev. Lett. 114, 177203 (2015).
[Crossref]

S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendanger, G. Bihlmayer, and S. Blugel, “Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions,” Nat. Phys. 7(9), 713–718 (2011).
[Crossref]

Willner, A.E.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A.E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J.-Y. Yang, I.M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A.E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Woerdman, J.P.

L. Allen, M.W. Beijersbergen, R.J. Spreeuw, and J.P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185 (1992).
[Crossref] [PubMed]

Yan, P.

P. Yan, G.E.W. Bauer, and H.W. Zhang, “Energy repartition in the nonequilibrium steady state,” Phys. Rev. B 95, 024417 (2017).
[Crossref]

P. Yan, X.S. Wang, and X.R. Wang, “All-Magnonic Spin-Transfer Torque and Domain Wall Propagation,” Phys. Rev. Lett. 107, 177207 (2011).
[Crossref] [PubMed]

Yan, Y.

J. Wang, J.-Y. Yang, I.M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A.E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yang, J.-Y.

J. Wang, J.-Y. Yang, I.M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A.E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yang, T.

Y.Y. Dai, H. Wang, P. Tao, T. Yang, W.J. Ren, and Z.D. Zhang, “Skyrmion ground state and gyration of skyrmions in magnetic nanodisks without the Dzyaloshinsky-Moriya interaction,” Phys. Rev. B 88, 054403 (2013).
[Crossref]

Yin, J.Y.

J.Y. Yin, J. Ren, L. Zhang, H. Li, and T.J. Cui, “Microwave Vortex-Beam Emitter Based on Spoof Surface Plasmon Polaritons,” arXiv:1703.07487.

Yu, G.

W. Jiang, X. Zhang, G. Yu, W. Zhang, X. Wang, M.B. Jungfleisch, J.E. Pearson, X. Cheng, O. Heinonen, K.L. Wang, Y. Zhou, A. Homann, and S.G.E. te Velthuis, “Direct observation of the skyrmion Hall effect,” Nat. Phys. 13(2), 162–169 (2016).
[Crossref]

W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M.B. Jungfleisch, F.Y. Fradin, J.E. Pearson, Y. Tserkovnyak, K.L. Wang, O. Heinonen, S.G.E. te Velthuis, and A. Hoffmann, “Blowing magnetic skyrmion bubbles,” Science 349(6245), 283–286 (2015).
[Crossref] [PubMed]

Yu, X.Z.

M. Mochizuki, X.Z. Yu, S. Seki, N. Kanazawa, W. Koshibae, J. Zang, M. Mostovoy, Y. Tokura, and N. Nagaosa, “Thermally driven ratchet motion of a skyrmion microcrystal and topological magnon Hall effect,” Nat. Mater. 13(3), 241–246 (2014).
[Crossref] [PubMed]

X.Z. Yu, Y. Onose, N. Kanazawa, J.H. Park, J.H. Han, Y. Matsui, N. Nagaosa, and Y. Tokura, “Real-space observation of a two-dimensional skyrmion crystal,” Nature 465(7300), 901–904 (2010).
[Crossref] [PubMed]

Yuan, H.Y.

H.Y. Yuan and X.R. Wang, “Skyrmion Creation and Manipulation by Nano-Second Current Pulses,” Sci. Rep. 6, 22638 (2016).
[Crossref] [PubMed]

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A.E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J.-Y. Yang, I.M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A.E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Zang, J.

M. Mochizuki, X.Z. Yu, S. Seki, N. Kanazawa, W. Koshibae, J. Zang, M. Mostovoy, Y. Tokura, and N. Nagaosa, “Thermally driven ratchet motion of a skyrmion microcrystal and topological magnon Hall effect,” Nat. Mater. 13(3), 241–246 (2014).
[Crossref] [PubMed]

L. Kong and J. Zang, “Dynamics of an Insulating Skyrmion under a Temperature Gradient,” Phys. Rev. Lett. 111, 067203 (2013).
[Crossref] [PubMed]

J. Zang, M. Mostovoy, J.H. Han, and N. Nagaosa, “Dynamics of Skyrmion Crystals in Metallic Thin Films,” Phys. Rev. Lett. 107, 136804 (2011).
[Crossref] [PubMed]

Zeilinger, A.

R. Fickler, G. Campbell, B. Buchler, P.K. Lam, and A. Zeilinger, “Quantum entanglement of angular momentum states with quantum numbers up to 10,010,” PNAS 113(48), 13642–13647 (2016).
[Crossref] [PubMed]

Zhang, B.

W. Wang, M. Beg, B. Zhang, W. Kuch, and H. Fangohr, “Driving magnetic skyrmions with microwave fields,” Phys. Rev. B 92, 020403(R)(2015).
[Crossref]

Zhang, F.C.

Y. Zhou, E. Iacocca, A.A. Awad, R.K. Dumas, F.C. Zhang, H.B. Braun, and J. Akerman, “Dynamically stabilized magnetic skyrmions,” Nat. Commun. 6, 8193 (2016).
[Crossref]

Zhang, H.W.

P. Yan, G.E.W. Bauer, and H.W. Zhang, “Energy repartition in the nonequilibrium steady state,” Phys. Rev. B 95, 024417 (2017).
[Crossref]

Zhang, J.

Z. Hong, J. Zhang, and B.W. Drinkwater, “Observation of Orbital Angular Momentum Transfer from Bessel-Shaped Acoustic Vortices to Diphasic Liquid-Microparticle Mixtures,” Phys. Rev. Lett. 114, 214301 (2015).
[Crossref] [PubMed]

Zhang, L.

J.Y. Yin, J. Ren, L. Zhang, H. Li, and T.J. Cui, “Microwave Vortex-Beam Emitter Based on Spoof Surface Plasmon Polaritons,” arXiv:1703.07487.

Zhang, W.

W. Jiang, X. Zhang, G. Yu, W. Zhang, X. Wang, M.B. Jungfleisch, J.E. Pearson, X. Cheng, O. Heinonen, K.L. Wang, Y. Zhou, A. Homann, and S.G.E. te Velthuis, “Direct observation of the skyrmion Hall effect,” Nat. Phys. 13(2), 162–169 (2016).
[Crossref]

W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M.B. Jungfleisch, F.Y. Fradin, J.E. Pearson, Y. Tserkovnyak, K.L. Wang, O. Heinonen, S.G.E. te Velthuis, and A. Hoffmann, “Blowing magnetic skyrmion bubbles,” Science 349(6245), 283–286 (2015).
[Crossref] [PubMed]

Zhang, X.

W. Jiang, X. Zhang, G. Yu, W. Zhang, X. Wang, M.B. Jungfleisch, J.E. Pearson, X. Cheng, O. Heinonen, K.L. Wang, Y. Zhou, A. Homann, and S.G.E. te Velthuis, “Direct observation of the skyrmion Hall effect,” Nat. Phys. 13(2), 162–169 (2016).
[Crossref]

X. Zhang, Y. Zhou, and M. Ezawa, “Magnetic bilayer-skyrmions without skyrmion Hall effect,” Nat. Commun. 7, 10293 (2016).
[Crossref] [PubMed]

X. Zhang, M. Ezawa, and Y. Zhou, “Thermally stable magnetic skyrmions in multilayer synthetic antiferromagnetic racetracks,” Phys. Rev. B 94, 064406 (2016).
[Crossref]

X. Zhang, Y. Zhou, and M. Ezawa, “Antiferromagnetic Skyrmion: Stability, Creation and Manipulation,” Sci. Rep. 6, 24795 (2016).
[Crossref] [PubMed]

Zhang, Z.D.

Y.Y. Dai, H. Wang, P. Tao, T. Yang, W.J. Ren, and Z.D. Zhang, “Skyrmion ground state and gyration of skyrmions in magnetic nanodisks without the Dzyaloshinsky-Moriya interaction,” Phys. Rev. B 88, 054403 (2013).
[Crossref]

Zhou, Y.

Y. Zhou, E. Iacocca, A.A. Awad, R.K. Dumas, F.C. Zhang, H.B. Braun, and J. Akerman, “Dynamically stabilized magnetic skyrmions,” Nat. Commun. 6, 8193 (2016).
[Crossref]

X. Zhang, Y. Zhou, and M. Ezawa, “Magnetic bilayer-skyrmions without skyrmion Hall effect,” Nat. Commun. 7, 10293 (2016).
[Crossref] [PubMed]

W. Jiang, X. Zhang, G. Yu, W. Zhang, X. Wang, M.B. Jungfleisch, J.E. Pearson, X. Cheng, O. Heinonen, K.L. Wang, Y. Zhou, A. Homann, and S.G.E. te Velthuis, “Direct observation of the skyrmion Hall effect,” Nat. Phys. 13(2), 162–169 (2016).
[Crossref]

X. Zhang, Y. Zhou, and M. Ezawa, “Antiferromagnetic Skyrmion: Stability, Creation and Manipulation,” Sci. Rep. 6, 24795 (2016).
[Crossref] [PubMed]

X. Zhang, M. Ezawa, and Y. Zhou, “Thermally stable magnetic skyrmions in multilayer synthetic antiferromagnetic racetracks,” Phys. Rev. B 94, 064406 (2016).
[Crossref]

Zwiller, V.

R.W. Heeres and V. Zwiller, “Subwavelength Focusing of Light with Orbital Angular Momentum,” Nano Lett. 14(8), 4598–4601 (2014).
[Crossref] [PubMed]

AIP Adv. (1)

A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, and B. Van Waeyenberge, “The design and verification of MuMax3,” AIP Adv. 4(10) 107133 (2014).
[Crossref]

Ann. Phys. (2)

O. Tchernyshyov, “Conserved momenta of a ferromagnetic soliton,” Ann. Phys. 363, 98–113 (2015).
[Crossref]

R.E. Troncoso and A.S. Nez, “Brownian motion of massive skyrmions in magnetic thin films,” Ann. Phys. 351, 850–856 (2014).
[Crossref]

Appl. Phys. Lett. (1)

E. Mafakheri, A.H. Tavabi, P.-H. Lu, R. Balboni, F. Venturi, C. Menozzi, G.C. Gazzadi, S. Frabboni, A. Sit, R.E. Dunin-Borkowski, E. Karimi, and V. Grillo, “Realization of electron vortices with large orbital angular momentum using miniature holograms fabricated by electron beam lithography,” Appl. Phys. Lett. 110, 093113 (2017).
[Crossref]

IEEE Trans. Mag. (1)

T.L. Gilbert, “A phenomenological theory of damping in ferromagnetic materials,” IEEE Trans. Mag. 40(6), 3443–3449 (2004).
[Crossref]

Nano Lett. (1)

R.W. Heeres and V. Zwiller, “Subwavelength Focusing of Light with Orbital Angular Momentum,” Nano Lett. 14(8), 4598–4601 (2014).
[Crossref] [PubMed]

Nat. Commun. (3)

Y. Zhou, E. Iacocca, A.A. Awad, R.K. Dumas, F.C. Zhang, H.B. Braun, and J. Akerman, “Dynamically stabilized magnetic skyrmions,” Nat. Commun. 6, 8193 (2016).
[Crossref]

J. Iwasaki, M. Mochizuki, and N. Nagaosa, “Universal current-velocity relation of skyrmion motion in chiral magnets,” Nat. Commun. 4, 1463 (2013).
[Crossref] [PubMed]

X. Zhang, Y. Zhou, and M. Ezawa, “Magnetic bilayer-skyrmions without skyrmion Hall effect,” Nat. Commun. 7, 10293 (2016).
[Crossref] [PubMed]

Nat. Mater. (1)

M. Mochizuki, X.Z. Yu, S. Seki, N. Kanazawa, W. Koshibae, J. Zang, M. Mostovoy, Y. Tokura, and N. Nagaosa, “Thermally driven ratchet motion of a skyrmion microcrystal and topological magnon Hall effect,” Nat. Mater. 13(3), 241–246 (2014).
[Crossref] [PubMed]

Nat. Nanotech. (4)

N. Nagaosa and Y. Tokura, “Topological properties and dynamics of magnetic skyrmions,” Nat. Nanotech. 8(12), 899–911 (2013).
[Crossref]

A. Fert, V. Cros, and J. Sampaio, “Skyrmions on the track,” Nat. Nanotech. 8(3), 152–156 (2013).
[Crossref]

J. Sampaio, V. Cros, S. Thiaville, and A. Fert, “Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures,” Nat. Nanotech. 8(11), 839–844 (2013).
[Crossref]

J. Iwasaki, M. Mochizuki, and N. Nagaosa, “Current-induced skyrmion dynamics in constrained geometries,” Nat. Nanotech. 8(10), 742–747 (2013).
[Crossref]

Nat. Photonics (2)

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

J. Wang, J.-Y. Yang, I.M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A.E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Nat. Phys. (5)

F. Tamburini, B. Thide, G. Molina-Terriza, and G. Anzolin, “Twisting of light around rotating black holes,” Nat. Phys. 7(3), 195–197 (2011).
[Crossref]

F. Buttner, C. Moutafis, M. Schneider, B. Kruger, C.M. Gunther, J. Geilhufe, C.v. Korff Schmising, J. Mohanty, B. Pfau, S. Schaffert, A. Bisig, M. Foerster, T. Schulz, C.A.F. Vaz, J.H. Franken, H.J.M. Swagten, M. Klaui, and S. Eisebitt, “Dynamics and inertia of skyrmionic spin structures,” Nat. Phys. 11(3), 225–228 (2015).
[Crossref]

S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendanger, G. Bihlmayer, and S. Blugel, “Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions,” Nat. Phys. 7(9), 713–718 (2011).
[Crossref]

W. Jiang, X. Zhang, G. Yu, W. Zhang, X. Wang, M.B. Jungfleisch, J.E. Pearson, X. Cheng, O. Heinonen, K.L. Wang, Y. Zhou, A. Homann, and S.G.E. te Velthuis, “Direct observation of the skyrmion Hall effect,” Nat. Phys. 13(2), 162–169 (2016).
[Crossref]

K. Litzius, I. Lemesh, B. Kruger, P. Bassirian, L. Caretta, K. Richter, F. Buttner, K. Sato, O.A. Tretiakov, J. Forster, R.M. Reeve, M. Weigand, I. Bykova, H. Stoll, G. Schutz, G.S.D. Beach, and M. Klaui, “Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy,” Nat. Phys. 13(2), 170–175 (2017).
[Crossref]

Nat. Rev. Mater. (1)

R. Wiesendanger, “Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics,” Nat. Rev. Mater. 1(7), 16044 (2016).
[Crossref]

Nature (3)

A.K. Nayak, V. Kumar, T. Ma, P. Werner, E. Pippel, R. Sahoo, F. Damay, U.K. Rößler, C. Felser, and S.S.P. Parkin, “Magnetic antiskyrmions above room temperature in tetragonal Heusler materials,” Nature 548(7669), 561–566 (2017).
[Crossref] [PubMed]

X.Z. Yu, Y. Onose, N. Kanazawa, J.H. Park, J.H. Han, Y. Matsui, N. Nagaosa, and Y. Tokura, “Real-space observation of a two-dimensional skyrmion crystal,” Nature 465(7300), 901–904 (2010).
[Crossref] [PubMed]

W.L. Barnes, A. Dereux, and T.W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

New J. Phys. (1)

F. Garcia-Sanchez, J. Sampaio, N. Reyren, V. Cros, and J.-V. Kim, “A skyrmion-based spin-torque nano-oscillator,” New J. Phys. 18, 075011 (2016).
[Crossref]

Nucl. Phys. (1)

T.H.R. Skyrme, “A unified field theory of mesons and baryons,” Nucl. Phys. 31, 556–569 (1962).
[Crossref]

Opt. Commun. (1)

I.V. Basistiy, M.S. Soskin, and M.V. Vasnetsov, “Optical wavefront dislocations and their properties,” Opt. Commun. 119(5–6), 604–612 (1995).
[Crossref]

Phys. Rev. (3)

W.F. Brown, “Thermal Fluctuations of a Single-Domain Particle,” Phys. Rev. 130, 1677 (1963).
[Crossref]

R.A. Beth, “Direct detection of the angular momentum of light,” Phys. Rev. 48, 471 (1935).
[Crossref]

R.A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115 (1936).
[Crossref]

Phys. Rev. A (1)

L. Allen, M.W. Beijersbergen, R.J. Spreeuw, and J.P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185 (1992).
[Crossref] [PubMed]

Phys. Rev. B (11)

J. Muller and A. Rosch, “Capturing of a magnetic skyrmion with a hole,” Phys. Rev. B 91, 054410 (2015).
[Crossref]

K. Everschor, M. Garst, B. Binz, F. Jonietz, S. Muhlbauer, C. Pfleiderer, and A. Rosch, “Rotating skyrmion lattices by spin torques and field or temperature gradients,” Phys. Rev. B 86, 054432 (2012).
[Crossref]

Y.-H. Liu, Y.-Q. Li, and J.H. Han, “Skyrmion dynamics in multiferroic insulators,” Phys. Rev. B 87, 100402 (2013).
[Crossref]

W. Wang, M. Beg, B. Zhang, W. Kuch, and H. Fangohr, “Driving magnetic skyrmions with microwave fields,” Phys. Rev. B 92, 020403(R)(2015).
[Crossref]

J. Iwasaki, A.J. Beekman, and N. Nagaosa, “Theory of magnon-skyrmion scattering in chiral magnets,” Phys. Rev. B 89, 064412 (2014).
[Crossref]

C. Schutte and M. Garst, “Magnon-skyrmion scattering in chiral magnets,” Phys. Rev. B 90, 094423 (2014).
[Crossref]

Y.-T. Oh, H. Lee, J.-H. Park, and J.H. Han, “Dynamics of magnon fluid in Dzyaloshinskii-Moriya magnet and its manifestation in magnon-Skyrmion scattering,” Phys. Rev. B 91, 104435 (2015).
[Crossref]

P. Yan, G.E.W. Bauer, and H.W. Zhang, “Energy repartition in the nonequilibrium steady state,” Phys. Rev. B 95, 024417 (2017).
[Crossref]

H. Fujita and M. Sato, “Ultrafast generation of skyrmionic defects with vortex beams: Printing laser profiles on magnets,” Phys. Rev. B 95, 054421 (2017).
[Crossref]

Y.Y. Dai, H. Wang, P. Tao, T. Yang, W.J. Ren, and Z.D. Zhang, “Skyrmion ground state and gyration of skyrmions in magnetic nanodisks without the Dzyaloshinsky-Moriya interaction,” Phys. Rev. B 88, 054403 (2013).
[Crossref]

X. Zhang, M. Ezawa, and Y. Zhou, “Thermally stable magnetic skyrmions in multilayer synthetic antiferromagnetic racetracks,” Phys. Rev. B 94, 064406 (2016).
[Crossref]

Phys. Rev. Lett. (15)

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the Spin-Based Plasmonic Effect in Nanoscale Structures,” Phys. Rev. Lett. 101, 043903 (2008).
[Crossref] [PubMed]

S. Pizzini, J. Vogel, S. Rohart, L.D. Buda-Prejbeanu, E. Jué, O. Boulle, I.M. Miron, C.K. Safeer, S. Auffret, G. Gaudin, and A. Thiaville, “Chirality-Induced Asymmetric Magnetic Nucleation in Pt/Co/AlOx Ultrathin Microstructures,” Phys. Rev. Lett. 113, 047203 (2014).
[Crossref]

J. Barker and O.A. Tretiakov, “Static and Dynamical Properties of Antiferromagnetic Skyrmions in the Presence of Applied Current and Temperature,” Phys. Rev. Lett. 116, 147203 (2016).
[Crossref] [PubMed]

Z. Hong, J. Zhang, and B.W. Drinkwater, “Observation of Orbital Angular Momentum Transfer from Bessel-Shaped Acoustic Vortices to Diphasic Liquid-Microparticle Mixtures,” Phys. Rev. Lett. 114, 214301 (2015).
[Crossref] [PubMed]

D. Baresch, J.-L. Thomas, and R. Marchiano, “Observation of a Single-Beam Gradient Force Acoustical Trap for Elastic Particles: Acoustical Tweezers,” Phys. Rev. Lett. 116, 024301 (2016).
[Crossref] [PubMed]

A.A. Thiele, “Steady-State Motion of Magnetic Domains,” Phys. Rev. Lett. 30, 230 (1973).
[Crossref]

O.A. Tretiakov, D. Clarke, Gia-Wei Chern, Ya.B. Bazaliy, and O. Tchernyshyov, “Dynamics of Domain Walls in Magnetic Nanostrips,” Phys. Rev. Lett. 100, 127204 (2008).
[Crossref] [PubMed]

I. Makhfudz, B. Kruger, and O. Tchernyshyov, “Inertia and Chiral Edge Modes of a Skyrmion Magnetic Bubble,” Phys. Rev. Lett. 109, 217201 (2012).
[Crossref] [PubMed]

P. Yan, X.S. Wang, and X.R. Wang, “All-Magnonic Spin-Transfer Torque and Domain Wall Propagation,” Phys. Rev. Lett. 107, 177207 (2011).
[Crossref] [PubMed]

L. Kong and J. Zang, “Dynamics of an Insulating Skyrmion under a Temperature Gradient,” Phys. Rev. Lett. 111, 067203 (2013).
[Crossref] [PubMed]

S.-Z. Lin, C.D. Batista, C. Reichhardt, and A. Saxena, “ac Current Generation in Chiral Magnetic Insulators and Skyrmion Motion induced by the Spin Seebeck Effect,” Phys. Rev. Lett. 112, 187203 (2014).
[Crossref] [PubMed]

C. Reichhardt, D. Ray, and C.J. Olson Reichhardt, “Collective Transport Properties of Driven Skyrmions with Random Disorder,” Phys. Rev. Lett. 114, 217202 (2015).
[Crossref] [PubMed]

J. Zang, M. Mostovoy, J.H. Han, and N. Nagaosa, “Dynamics of Skyrmion Crystals in Metallic Thin Films,” Phys. Rev. Lett. 107, 136804 (2011).
[Crossref] [PubMed]

S.-Z. Lin, C. Reichhardt, C.D. Batista, and A. Saxena, “Driven Skyrmions and Dynamical Transitions in Chiral Magnets,” Phys. Rev. Lett. 110, 207202 (2013).
[Crossref] [PubMed]

N. Romming, A. Kubetzka, C. Hanneken, K. von Bergmann, and R. Wiesendanger, “Field-Dependent Size and Shape of Single Magnetic Skyrmion,” Phys. Rev. Lett. 114, 177203 (2015).
[Crossref]

PNAS (1)

R. Fickler, G. Campbell, B. Buchler, P.K. Lam, and A. Zeilinger, “Quantum entanglement of angular momentum states with quantum numbers up to 10,010,” PNAS 113(48), 13642–13647 (2016).
[Crossref] [PubMed]

Proc. R. Soc. London A Contain. Pap. Math. Phys. Character (1)

J. Poynting, “The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light,” Proc. R. Soc. London A Contain. Pap. Math. Phys. Character 82, 560 (1909).
[Crossref]

Sci. Rep. (3)

H.Y. Yuan and X.R. Wang, “Skyrmion Creation and Manipulation by Nano-Second Current Pulses,” Sci. Rep. 6, 22638 (2016).
[Crossref] [PubMed]

X. Zhang, Y. Zhou, and M. Ezawa, “Antiferromagnetic Skyrmion: Stability, Creation and Manipulation,” Sci. Rep. 6, 24795 (2016).
[Crossref] [PubMed]

K.-W. Moon, D.-H. Kim, S.-G. Je, B.S. Chun, W. Kim, Z.Q. Qiu, S.-B. Choe, and C. Hwang, “Skyrmion motion driven by oscillating magnetic field,” Sci. Rep. 6, 20360 (2015).
[Crossref]

Science (3)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A.E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M.B. Jungfleisch, F.Y. Fradin, J.E. Pearson, Y. Tserkovnyak, K.L. Wang, O. Heinonen, S.G.E. te Velthuis, and A. Hoffmann, “Blowing magnetic skyrmion bubbles,” Science 349(6245), 283–286 (2015).
[Crossref] [PubMed]

S. Mulbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Boni, “Skyrmion lattice in a chiral magnet,” Science 323(5916), 915–919 (2009).
[Crossref]

Ultramicroscopy (1)

A. Béché, R. Juchtmans, and J. Verbeeck, “Efficient creation of electron vortex beams for high resolution STEM imaging,” Ultramicroscopy 178, 12–19 (2017).
[Crossref]

Other (6)

The corresponding maximal magnetic field of the optical vortex is 0.56 T, 0.34 T, 0.35 T, 0.44 T, 0.63 T, 1.06 T, 1.87 T, 3.38 T, 7.61 T, and 16.76 T for l = 0, 1, 2, · · ·, and 9, respectively.

J.Y. Yin, J. Ren, L. Zhang, H. Li, and T.J. Cui, “Microwave Vortex-Beam Emitter Based on Spoof Surface Plasmon Polaritons,” arXiv:1703.07487.

D.L. Andrews and M. Babiker, The Angular Momentum of Light (Cambridge Univ., 2012).
[Crossref]

The cycle-averaged angular momentum density j associated with the transverse EM field is shown to be j = ε0r × 〈E× B〉, while the total angular momentum of the field is J = ε0 ∫ r × 〈E× B〉 dr. Here ε0 is the vacuum permittivity and E is the electric field. For linearly polarized LG modes (1), the OAM density in the direction of propagation is given by jz = ε0ωl |B(r)|2. The OAM integrated over the beam is shown to be equivalent to lħ per photon: Jz = lħ.

H. Fujita and M. Sato, “Encoding Orbital Angular Momentum of Lights in Magnets,” arXiv:1612.00176.

A.P. Malozemoff and J.C. Slonczewski, Magnetic Domain Walls in Bubble Materials (Academic, New York, 1979).

Supplementary Material (5)

NameDescription
» Visualization 1       Ferromagnetic skyrmion rotation driven by the optical vortex with OAM l = +5.
» Visualization 2       Optical vortex driven skyrmion motion in a narrow annular plate
» Visualization 3       Optical vortex driven antiferromagnetic skyrmion motion.
» Visualization 4       Ferromagnetic skyrmion annihilation process by an optical vortex with OAM l = +4.
» Visualization 5       Optical vortices displace ferromagnetic skyrmions to overfly patterned antidots.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of the rotational motion of a Néel skyrmion in a thin ferromagnetic film driven by an optical vortex with radial index n = 1 and OAM quantum number l = 3. The solid circle with a red core represents the skyrmion. The flower-like pattern (pink and blue spots) sketches the induced magnetization profile by the optical vortex field shinning on the magnetic film. In the main text, the origin of Cartesian coordinates coincides with the beam center, while it does not in the figure for clarity.
Fig. 2
Fig. 2 Time evolution of an isolated Néel skyrmion under optical vortices with OAM quantum number l = +5 (a1)–(a9) and l = −5 (b1)–(b9). The time intervals between successive snapshots in two cases are 0.8 ns and 0.5 ns, respectively. A positive (negative) topological charge induces an anticlockwise (clockwise) rotation of a skyrmion around the beam axis.
Fig. 3
Fig. 3 Skyrmion velocity as a function of the driving frequency (a) and the topological charge (b) of optical vortices. The red cross stamps a skyrmion annihilation. The minus sign of the velocity is dropped.
Fig. 4
Fig. 4 Skyrmion overflies patterned antidots. The red curve represents the trajectory of the skyrmion with arrows indicating its moving direction. Small white dashed circles are snapshots of the skyrmion. It takes 11.5 ns to deliver the skyrmion from left to the right.
Fig. 5
Fig. 5 Spatial profile of the optical vortex field Bn,l(ρ) with n = 1 for different index l.
Fig. 6
Fig. 6 Time evolution of a Néel skyrmion driven by an optical vortex with l=+5 at different temperatures. The time interval between successive snapshots for each temperature is 0.8 ns.
Fig. 7
Fig. 7 Geometry of an annular plate confining the skyrmion driven by an optical vortex with l = +28.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

B n , l ( ρ , φ , t ) = B 0 ( ρ w ) | l | e ρ 2 w 2 L n | l | ( 2 ρ 2 w 2 ) w e i ( ω t l φ ) e p ,
m t = γ m × B eff + α m × m t ,
t t R + G × t R α 𝒟 t R + F = 0 ,
V 2 R + 4 π Q V + F r = 0 ,
h i ( r , t ) h j ( r , t ) = 2 α k B T γ M s Δ V δ ( r r ) δ i j δ ( t t )

Metrics