Abstract

High brightness compact microchip-seeded MOPA system was realized. Implementing a microchip preamplifier stage acting as gain aperture element lead to excellent output beam quality with M2 = 1.4. At maximum amplification level, 235 mJ (0.4 GW) of output energy (power) was measured. Analysis of the effect of the preamplifier showed that this element increases the available beam intensity by two orders of magnitude without significant increase in system footprint. Final beam brightness was 18 PW/sr.cm2.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Compact fiber amplifier pumped OPCPA system delivering Gigawatt peak power 35 fs pulses

J. Rothhardt, S. Hädrich, T. Gottschall, T. Clausnitzer, J. Limpert, and A. Tünnermann
Opt. Express 17(26) 24130-24136 (2009)

High-spatiotemporal-quality petawatt-class laser system

Hiromitsu Kiriyama, Mori Michiaki, Yoshiki Nakai, Takuya Shimomura, Hajime Sasao, Momoko Tanaka, Yoshihiro Ochi, Manabu Tanoue, Hajime Okada, Shuji Kondo, Shuhei Kanazawa, Akito Sagisaka, Izuru Daito, Daisuke Wakai, Fumitaka Sasao, Masayuki Suzuki, Hideyuki Kotakai, Kiminori Kondo, Akira Sugiyama, Sergei Bulanov, Paul R. Bolton, Hiroyuki Daido, Shunichi Kawanishi, John L. Collier, Cristina Hernandez-Gomez, Chris J. Hooker, Klaus Ertel, Toyoaki Kimura, and Toshiki Tajima
Appl. Opt. 49(11) 2105-2115 (2010)

References

  • View by:
  • |
  • |
  • |

  1. F. J. McClung and R. W. Hellwarth, “Giant Optical Pulsations from Ruby,” Appl. Opt. 1(S1), 103–105 (1962).
    [Crossref]
  2. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of Optical Harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
    [Crossref]
  3. L. E. Hargrove, R. L. Fork, and M. A. Pollack, “Locking of He-Ne laser modes by synchronous intracavity modulation,” Appl. Phys. Lett. 5(1), 4–5 (1964).
    [Crossref]
  4. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
    [Crossref]
  5. T. Taira, Y. Matsuoka, H. Sakai, A. Sone, and H. Kan, “Passively Q-switched Nd:YAG microchip laser over 1-MW peak output power for micro drilling,” Conference on Lasers and Electro-Optics CLEO 2006, Long Beach, CA, USA, May 21–26, CWF6 (2006).
  6. H. Sakai, H. Kan, and T. Taira, “>1 MW peak power single-mode high-brightness passively Q-switched Nd 3+:YAG microchip laser,” Opt. Express 16(24), 19891–19899 (2008).
    [Crossref] [PubMed]
  7. R. Bhandari, N. Tsuji, T. Suzuki, M. Nishifuji, and T. Taira, “Efficient second to ninth harmonic generation using megawatt peak power microchip laser,” Opt. Express 21(23), 28849–28855 (2013).
    [Crossref] [PubMed]
  8. S. Hayashi, T. Shibuya, H. Sakai, T. Taira, C. Otani, Y. Ogawa, and K. Kawase, “Tunability enhancement of a terahertz-wave parametric generator pumped by a microchip Nd:YAG laser,” Appl. Opt. 48(15), 2899–2902 (2009).
    [Crossref] [PubMed]
  9. K. Nawata, S. Hayashi, H. Ishizuki, K. Murate, K. Imayama, Y. Takida, V. Yahia, T. Taira, K. Kawase, and H. Minamide, “Effective Terahertz Wave Parametric Generation Depending on the Pump Pulse Width Using a LiNbO3 Crystal,” IEEE Trans. Terahertz Sci. Technol. 7(5), 617–620 (2017).
    [Crossref]
  10. M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q-switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
    [Crossref]
  11. H. H. Lim and T. Taira, “Sub-nanosecond laser induced air-breakdown with giant-pulse duration tuned Nd:YAG ceramic micro-laser by cavity-length control,” Opt. Express 25(6), 6302–6310 (2017).
    [Crossref] [PubMed]
  12. R. Bhandari and T. Taira, “> 6 MW peak power at 532 nm from passively Q-switched Nd:YAG/Cr4+:YAG microchip laser,” Opt. Express 19(20), 19135–19141 (2011).
    [Crossref] [PubMed]
  13. R. Bhandari, T. Taira, A. Miyamoto, Y. Furukawa, and T. Tago, “> 3 MW peak power at 266 nm using Nd:YAG/ Cr4+:YAG microchip laser and fluxless-BBO,” Opt. Mater. Express 2(7), 907–913 (2012).
    [Crossref]
  14. X. Yan, Q. Liu, X. Fu, D. Wang, and M. Gong, “Gain guiding effect in end-pumped Nd:YVO4 MOPA lasers,” J. Opt. Soc. Am. B 27(6), 1286–1290 (2010).
    [Crossref]
  15. A. E. Siegman, Y. Chen, V. Sudesh, M. C. Richardson, M. Bass, P. Foy, W. Hawkins, and J. Ballato, “Confined propagation and near single-mode laser oscillation in a gain-guided, index antiguided optical fiber,” Appl. Phys. Lett. 89(25), 251101 (2006).
    [Crossref]
  16. L. M. Frantz and J. S. Nodvik, “Theory of Pulse Propagation in a Laser Amplifier,” J. Appl. Phys. 34(8), 2346–2349 (1963).
    [Crossref]
  17. P. Shukla, J. Lawrence, and Y. Zhang, “Understanding laser beam brightness: A review and new prospective in material processing,” Opt. Laser Technol. 75, 40–51 (2015).
    [Crossref]
  18. A. Kausas, L. Zheng, and T. Taira, “Structured laser gain-medium by new bonding for power micro-laser,” Proc. SPIE 10082, 100820Z (2017).
    [Crossref]
  19. L. Zheng, A. Kausas, and T. Taira, “Drastic thermal effects reduction through distributed face cooling in a high power giant-pulse tiny laser,” Opt. Mater. Express 7(9), 3214–3221 (2017).
    [Crossref]

2017 (4)

K. Nawata, S. Hayashi, H. Ishizuki, K. Murate, K. Imayama, Y. Takida, V. Yahia, T. Taira, K. Kawase, and H. Minamide, “Effective Terahertz Wave Parametric Generation Depending on the Pump Pulse Width Using a LiNbO3 Crystal,” IEEE Trans. Terahertz Sci. Technol. 7(5), 617–620 (2017).
[Crossref]

A. Kausas, L. Zheng, and T. Taira, “Structured laser gain-medium by new bonding for power micro-laser,” Proc. SPIE 10082, 100820Z (2017).
[Crossref]

H. H. Lim and T. Taira, “Sub-nanosecond laser induced air-breakdown with giant-pulse duration tuned Nd:YAG ceramic micro-laser by cavity-length control,” Opt. Express 25(6), 6302–6310 (2017).
[Crossref] [PubMed]

L. Zheng, A. Kausas, and T. Taira, “Drastic thermal effects reduction through distributed face cooling in a high power giant-pulse tiny laser,” Opt. Mater. Express 7(9), 3214–3221 (2017).
[Crossref]

2015 (1)

P. Shukla, J. Lawrence, and Y. Zhang, “Understanding laser beam brightness: A review and new prospective in material processing,” Opt. Laser Technol. 75, 40–51 (2015).
[Crossref]

2013 (1)

2012 (1)

2011 (1)

2010 (2)

X. Yan, Q. Liu, X. Fu, D. Wang, and M. Gong, “Gain guiding effect in end-pumped Nd:YVO4 MOPA lasers,” J. Opt. Soc. Am. B 27(6), 1286–1290 (2010).
[Crossref]

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q-switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

2009 (1)

2008 (1)

2006 (1)

A. E. Siegman, Y. Chen, V. Sudesh, M. C. Richardson, M. Bass, P. Foy, W. Hawkins, and J. Ballato, “Confined propagation and near single-mode laser oscillation in a gain-guided, index antiguided optical fiber,” Appl. Phys. Lett. 89(25), 251101 (2006).
[Crossref]

1985 (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[Crossref]

1964 (1)

L. E. Hargrove, R. L. Fork, and M. A. Pollack, “Locking of He-Ne laser modes by synchronous intracavity modulation,” Appl. Phys. Lett. 5(1), 4–5 (1964).
[Crossref]

1963 (1)

L. M. Frantz and J. S. Nodvik, “Theory of Pulse Propagation in a Laser Amplifier,” J. Appl. Phys. 34(8), 2346–2349 (1963).
[Crossref]

1962 (1)

1961 (1)

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of Optical Harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Ando, A.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q-switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Ballato, J.

A. E. Siegman, Y. Chen, V. Sudesh, M. C. Richardson, M. Bass, P. Foy, W. Hawkins, and J. Ballato, “Confined propagation and near single-mode laser oscillation in a gain-guided, index antiguided optical fiber,” Appl. Phys. Lett. 89(25), 251101 (2006).
[Crossref]

Bass, M.

A. E. Siegman, Y. Chen, V. Sudesh, M. C. Richardson, M. Bass, P. Foy, W. Hawkins, and J. Ballato, “Confined propagation and near single-mode laser oscillation in a gain-guided, index antiguided optical fiber,” Appl. Phys. Lett. 89(25), 251101 (2006).
[Crossref]

Bhandari, R.

Chen, Y.

A. E. Siegman, Y. Chen, V. Sudesh, M. C. Richardson, M. Bass, P. Foy, W. Hawkins, and J. Ballato, “Confined propagation and near single-mode laser oscillation in a gain-guided, index antiguided optical fiber,” Appl. Phys. Lett. 89(25), 251101 (2006).
[Crossref]

Fork, R. L.

L. E. Hargrove, R. L. Fork, and M. A. Pollack, “Locking of He-Ne laser modes by synchronous intracavity modulation,” Appl. Phys. Lett. 5(1), 4–5 (1964).
[Crossref]

Foy, P.

A. E. Siegman, Y. Chen, V. Sudesh, M. C. Richardson, M. Bass, P. Foy, W. Hawkins, and J. Ballato, “Confined propagation and near single-mode laser oscillation in a gain-guided, index antiguided optical fiber,” Appl. Phys. Lett. 89(25), 251101 (2006).
[Crossref]

Franken, P. A.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of Optical Harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Frantz, L. M.

L. M. Frantz and J. S. Nodvik, “Theory of Pulse Propagation in a Laser Amplifier,” J. Appl. Phys. 34(8), 2346–2349 (1963).
[Crossref]

Fu, X.

Furukawa, Y.

Gong, M.

Hargrove, L. E.

L. E. Hargrove, R. L. Fork, and M. A. Pollack, “Locking of He-Ne laser modes by synchronous intracavity modulation,” Appl. Phys. Lett. 5(1), 4–5 (1964).
[Crossref]

Hawkins, W.

A. E. Siegman, Y. Chen, V. Sudesh, M. C. Richardson, M. Bass, P. Foy, W. Hawkins, and J. Ballato, “Confined propagation and near single-mode laser oscillation in a gain-guided, index antiguided optical fiber,” Appl. Phys. Lett. 89(25), 251101 (2006).
[Crossref]

Hayashi, S.

K. Nawata, S. Hayashi, H. Ishizuki, K. Murate, K. Imayama, Y. Takida, V. Yahia, T. Taira, K. Kawase, and H. Minamide, “Effective Terahertz Wave Parametric Generation Depending on the Pump Pulse Width Using a LiNbO3 Crystal,” IEEE Trans. Terahertz Sci. Technol. 7(5), 617–620 (2017).
[Crossref]

S. Hayashi, T. Shibuya, H. Sakai, T. Taira, C. Otani, Y. Ogawa, and K. Kawase, “Tunability enhancement of a terahertz-wave parametric generator pumped by a microchip Nd:YAG laser,” Appl. Opt. 48(15), 2899–2902 (2009).
[Crossref] [PubMed]

Hellwarth, R. W.

Hill, A. E.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of Optical Harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Imayama, K.

K. Nawata, S. Hayashi, H. Ishizuki, K. Murate, K. Imayama, Y. Takida, V. Yahia, T. Taira, K. Kawase, and H. Minamide, “Effective Terahertz Wave Parametric Generation Depending on the Pump Pulse Width Using a LiNbO3 Crystal,” IEEE Trans. Terahertz Sci. Technol. 7(5), 617–620 (2017).
[Crossref]

Inohara, T.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q-switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Ishizuki, H.

K. Nawata, S. Hayashi, H. Ishizuki, K. Murate, K. Imayama, Y. Takida, V. Yahia, T. Taira, K. Kawase, and H. Minamide, “Effective Terahertz Wave Parametric Generation Depending on the Pump Pulse Width Using a LiNbO3 Crystal,” IEEE Trans. Terahertz Sci. Technol. 7(5), 617–620 (2017).
[Crossref]

Kan, H.

Kanehara, K.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q-switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Kausas, A.

L. Zheng, A. Kausas, and T. Taira, “Drastic thermal effects reduction through distributed face cooling in a high power giant-pulse tiny laser,” Opt. Mater. Express 7(9), 3214–3221 (2017).
[Crossref]

A. Kausas, L. Zheng, and T. Taira, “Structured laser gain-medium by new bonding for power micro-laser,” Proc. SPIE 10082, 100820Z (2017).
[Crossref]

Kawase, K.

K. Nawata, S. Hayashi, H. Ishizuki, K. Murate, K. Imayama, Y. Takida, V. Yahia, T. Taira, K. Kawase, and H. Minamide, “Effective Terahertz Wave Parametric Generation Depending on the Pump Pulse Width Using a LiNbO3 Crystal,” IEEE Trans. Terahertz Sci. Technol. 7(5), 617–620 (2017).
[Crossref]

S. Hayashi, T. Shibuya, H. Sakai, T. Taira, C. Otani, Y. Ogawa, and K. Kawase, “Tunability enhancement of a terahertz-wave parametric generator pumped by a microchip Nd:YAG laser,” Appl. Opt. 48(15), 2899–2902 (2009).
[Crossref] [PubMed]

Kido, N.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q-switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Lawrence, J.

P. Shukla, J. Lawrence, and Y. Zhang, “Understanding laser beam brightness: A review and new prospective in material processing,” Opt. Laser Technol. 75, 40–51 (2015).
[Crossref]

Lim, H. H.

Liu, Q.

McClung, F. J.

Minamide, H.

K. Nawata, S. Hayashi, H. Ishizuki, K. Murate, K. Imayama, Y. Takida, V. Yahia, T. Taira, K. Kawase, and H. Minamide, “Effective Terahertz Wave Parametric Generation Depending on the Pump Pulse Width Using a LiNbO3 Crystal,” IEEE Trans. Terahertz Sci. Technol. 7(5), 617–620 (2017).
[Crossref]

Miyamoto, A.

Mourou, G.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[Crossref]

Murate, K.

K. Nawata, S. Hayashi, H. Ishizuki, K. Murate, K. Imayama, Y. Takida, V. Yahia, T. Taira, K. Kawase, and H. Minamide, “Effective Terahertz Wave Parametric Generation Depending on the Pump Pulse Width Using a LiNbO3 Crystal,” IEEE Trans. Terahertz Sci. Technol. 7(5), 617–620 (2017).
[Crossref]

Nawata, K.

K. Nawata, S. Hayashi, H. Ishizuki, K. Murate, K. Imayama, Y. Takida, V. Yahia, T. Taira, K. Kawase, and H. Minamide, “Effective Terahertz Wave Parametric Generation Depending on the Pump Pulse Width Using a LiNbO3 Crystal,” IEEE Trans. Terahertz Sci. Technol. 7(5), 617–620 (2017).
[Crossref]

Nishifuji, M.

Nodvik, J. S.

L. M. Frantz and J. S. Nodvik, “Theory of Pulse Propagation in a Laser Amplifier,” J. Appl. Phys. 34(8), 2346–2349 (1963).
[Crossref]

Ogawa, Y.

Otani, C.

Peters, C. W.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of Optical Harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Pollack, M. A.

L. E. Hargrove, R. L. Fork, and M. A. Pollack, “Locking of He-Ne laser modes by synchronous intracavity modulation,” Appl. Phys. Lett. 5(1), 4–5 (1964).
[Crossref]

Richardson, M. C.

A. E. Siegman, Y. Chen, V. Sudesh, M. C. Richardson, M. Bass, P. Foy, W. Hawkins, and J. Ballato, “Confined propagation and near single-mode laser oscillation in a gain-guided, index antiguided optical fiber,” Appl. Phys. Lett. 89(25), 251101 (2006).
[Crossref]

Sakai, H.

Shibuya, T.

Shukla, P.

P. Shukla, J. Lawrence, and Y. Zhang, “Understanding laser beam brightness: A review and new prospective in material processing,” Opt. Laser Technol. 75, 40–51 (2015).
[Crossref]

Siegman, A. E.

A. E. Siegman, Y. Chen, V. Sudesh, M. C. Richardson, M. Bass, P. Foy, W. Hawkins, and J. Ballato, “Confined propagation and near single-mode laser oscillation in a gain-guided, index antiguided optical fiber,” Appl. Phys. Lett. 89(25), 251101 (2006).
[Crossref]

Strickland, D.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[Crossref]

Sudesh, V.

A. E. Siegman, Y. Chen, V. Sudesh, M. C. Richardson, M. Bass, P. Foy, W. Hawkins, and J. Ballato, “Confined propagation and near single-mode laser oscillation in a gain-guided, index antiguided optical fiber,” Appl. Phys. Lett. 89(25), 251101 (2006).
[Crossref]

Suzuki, T.

Tago, T.

Taira, T.

L. Zheng, A. Kausas, and T. Taira, “Drastic thermal effects reduction through distributed face cooling in a high power giant-pulse tiny laser,” Opt. Mater. Express 7(9), 3214–3221 (2017).
[Crossref]

H. H. Lim and T. Taira, “Sub-nanosecond laser induced air-breakdown with giant-pulse duration tuned Nd:YAG ceramic micro-laser by cavity-length control,” Opt. Express 25(6), 6302–6310 (2017).
[Crossref] [PubMed]

K. Nawata, S. Hayashi, H. Ishizuki, K. Murate, K. Imayama, Y. Takida, V. Yahia, T. Taira, K. Kawase, and H. Minamide, “Effective Terahertz Wave Parametric Generation Depending on the Pump Pulse Width Using a LiNbO3 Crystal,” IEEE Trans. Terahertz Sci. Technol. 7(5), 617–620 (2017).
[Crossref]

A. Kausas, L. Zheng, and T. Taira, “Structured laser gain-medium by new bonding for power micro-laser,” Proc. SPIE 10082, 100820Z (2017).
[Crossref]

R. Bhandari, N. Tsuji, T. Suzuki, M. Nishifuji, and T. Taira, “Efficient second to ninth harmonic generation using megawatt peak power microchip laser,” Opt. Express 21(23), 28849–28855 (2013).
[Crossref] [PubMed]

R. Bhandari, T. Taira, A. Miyamoto, Y. Furukawa, and T. Tago, “> 3 MW peak power at 266 nm using Nd:YAG/ Cr4+:YAG microchip laser and fluxless-BBO,” Opt. Mater. Express 2(7), 907–913 (2012).
[Crossref]

R. Bhandari and T. Taira, “> 6 MW peak power at 532 nm from passively Q-switched Nd:YAG/Cr4+:YAG microchip laser,” Opt. Express 19(20), 19135–19141 (2011).
[Crossref] [PubMed]

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q-switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

S. Hayashi, T. Shibuya, H. Sakai, T. Taira, C. Otani, Y. Ogawa, and K. Kawase, “Tunability enhancement of a terahertz-wave parametric generator pumped by a microchip Nd:YAG laser,” Appl. Opt. 48(15), 2899–2902 (2009).
[Crossref] [PubMed]

H. Sakai, H. Kan, and T. Taira, “>1 MW peak power single-mode high-brightness passively Q-switched Nd 3+:YAG microchip laser,” Opt. Express 16(24), 19891–19899 (2008).
[Crossref] [PubMed]

Takida, Y.

K. Nawata, S. Hayashi, H. Ishizuki, K. Murate, K. Imayama, Y. Takida, V. Yahia, T. Taira, K. Kawase, and H. Minamide, “Effective Terahertz Wave Parametric Generation Depending on the Pump Pulse Width Using a LiNbO3 Crystal,” IEEE Trans. Terahertz Sci. Technol. 7(5), 617–620 (2017).
[Crossref]

Tsuji, N.

Tsunekane, M.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q-switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Wang, D.

Weinreich, G.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of Optical Harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Yahia, V.

K. Nawata, S. Hayashi, H. Ishizuki, K. Murate, K. Imayama, Y. Takida, V. Yahia, T. Taira, K. Kawase, and H. Minamide, “Effective Terahertz Wave Parametric Generation Depending on the Pump Pulse Width Using a LiNbO3 Crystal,” IEEE Trans. Terahertz Sci. Technol. 7(5), 617–620 (2017).
[Crossref]

Yan, X.

Zhang, Y.

P. Shukla, J. Lawrence, and Y. Zhang, “Understanding laser beam brightness: A review and new prospective in material processing,” Opt. Laser Technol. 75, 40–51 (2015).
[Crossref]

Zheng, L.

L. Zheng, A. Kausas, and T. Taira, “Drastic thermal effects reduction through distributed face cooling in a high power giant-pulse tiny laser,” Opt. Mater. Express 7(9), 3214–3221 (2017).
[Crossref]

A. Kausas, L. Zheng, and T. Taira, “Structured laser gain-medium by new bonding for power micro-laser,” Proc. SPIE 10082, 100820Z (2017).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

L. E. Hargrove, R. L. Fork, and M. A. Pollack, “Locking of He-Ne laser modes by synchronous intracavity modulation,” Appl. Phys. Lett. 5(1), 4–5 (1964).
[Crossref]

A. E. Siegman, Y. Chen, V. Sudesh, M. C. Richardson, M. Bass, P. Foy, W. Hawkins, and J. Ballato, “Confined propagation and near single-mode laser oscillation in a gain-guided, index antiguided optical fiber,” Appl. Phys. Lett. 89(25), 251101 (2006).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q-switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

K. Nawata, S. Hayashi, H. Ishizuki, K. Murate, K. Imayama, Y. Takida, V. Yahia, T. Taira, K. Kawase, and H. Minamide, “Effective Terahertz Wave Parametric Generation Depending on the Pump Pulse Width Using a LiNbO3 Crystal,” IEEE Trans. Terahertz Sci. Technol. 7(5), 617–620 (2017).
[Crossref]

J. Appl. Phys. (1)

L. M. Frantz and J. S. Nodvik, “Theory of Pulse Propagation in a Laser Amplifier,” J. Appl. Phys. 34(8), 2346–2349 (1963).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[Crossref]

Opt. Express (4)

Opt. Laser Technol. (1)

P. Shukla, J. Lawrence, and Y. Zhang, “Understanding laser beam brightness: A review and new prospective in material processing,” Opt. Laser Technol. 75, 40–51 (2015).
[Crossref]

Opt. Mater. Express (2)

Phys. Rev. Lett. (1)

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of Optical Harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Proc. SPIE (1)

A. Kausas, L. Zheng, and T. Taira, “Structured laser gain-medium by new bonding for power micro-laser,” Proc. SPIE 10082, 100820Z (2017).
[Crossref]

Other (1)

T. Taira, Y. Matsuoka, H. Sakai, A. Sone, and H. Kan, “Passively Q-switched Nd:YAG microchip laser over 1-MW peak output power for micro drilling,” Conference on Lasers and Electro-Optics CLEO 2006, Long Beach, CA, USA, May 21–26, CWF6 (2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental setup of MOPA system.
Fig. 2
Fig. 2 Concept of gain aperture preamplifier. Caption (a) is a schematic view of system arrangement. Caption (b) shows experimentally measured oscillator output beam profile and preamplifier pump beam overlapping.
Fig. 3
Fig. 3 Effect of preamplifier gain on beam profile. Caption (a) shows normalized beam profile for increasing gain value. Captions (b)-(d) show the recorded 2D profiles.
Fig. 4
Fig. 4 Effect of preamplifier gain on beam quality. Caption (a) shows the decrease of side lobe contribution for increasing gain value. Caption (b) shows the M2 measurements after preamplifier without gain (blue curve) and for G = 3 (red curve). Open and plain symbols represent respectively short and long axis of elliptical beam (superimposed in the red curve).
Fig. 5
Fig. 5 MOPA system performance with and without preamplifier. Output energy as a function of pump energy is plotted in caption (a) Similar data for preamplifier only is also plotted for reference. Captions (b) and (c) are the beam profiles for maximum pump energy, with and without preamplifier respectively.
Fig. 6
Fig. 6 Calculated output beam energy as a function of input oscillator energy for maximum pump energy.
Fig. 7
Fig. 7 Output beam brightness as a function of amplifier pump energy with and without preamplifier.

Tables (1)

Tables Icon

Table 1 Comparative best performance of MOPA without and with preamplifier in comparison to initial microchip output beam.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I( w p )= g w p ( r ) I w 0 ( r )2πrdr I w 0 2 ( r )2πrdr
G 1 = F S F in ln{ 1+[ exp( F in F S )1 ]exp( g 0 l ) }
η= ( G 1 1 ) F in g 0 l F S
G 2 = F S G 1 F in ln{ 1+[ exp( G 1 F in F S )1 ]exp[ ( 1η ) g 0 l ] }
B= P ( λ M 2 ) 2

Metrics