Abstract

The performance of the passively Q-switched (PQS) laser deteriorates under high pumping power for the intracavity thermally induced wavefront distortion (thermal distortion for short). A new intracavity deformable mirror (DM) is proposed to compensate the thermal distortion of a PQS laser in this paper. The thermal distortion of the PQS laser is measured using the active deflectometry method. A simulation model is built to investigate the influences of the DM structure parameters on the surface shape of the DM (DMSS). Simulation results indicate that the DMSS matches well with the measured thermal distortion in the PQS laser at the given pumping current. Based on the simulation results, a low-cost, compact intracavity DM consisting of a mirror unit, a heater unit, a cooler unit and a base unit is built and used in the PQS laser. The DMSS is measured by a Zygo interferometer and coincides with the simulation result. In the improved PQS laser experiment, the optimum heater temperatures for the maximum output power and minimum M2 at different pumping currents are measured and given. The output stability of the PQS laser with the DM is tested. By adjusting the heater temperature, the PQS laser could achieve optimum performance in different environmental temperatures with good temperature adaptability. Experiment results verify that the PQS laser with the designed DM could achieve high output power and good beam quality at high pumping currents, as the DM prominently compensates the thermal distortion in the laser.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Development of a unimorph deformable mirror with water cooling

Zhengxiong Zhu, Yan Li, Junjie Chen, Jianqiang Ma, and Jiaru Chu
Opt. Express 25(24) 29916-29926 (2017)

Highly efficient 60-W TEM00 cw diode-end-pumped Nd:YAG laser

S. C. Tidwell, J. F. Seamans, and M. S. Bowers
Opt. Lett. 18(2) 116-118 (1993)

References

  • View by:
  • |
  • |
  • |

  1. R. Bhandari and T. Taira, “> 6 MW peak power at 532 nm from passively Q-switched Nd:YAG/Cr4+:YAG microchip laser,” Opt. Express 19(20), 19135–19141 (2011).
    [Crossref] [PubMed]
  2. H. Sakai, H. Kan, and T. Taira, “>1 MW peak power single-mode high-brightness passively Q-switched Nd 3+:YAG microchip laser,” Opt. Express 16(24), 19891–19899 (2008).
    [Crossref] [PubMed]
  3. J. J. Zayhowski and A. L. Wilson., “Miniature eye-safe laser system for high-resolution three-dimensional lidar,” Appl. Opt. 46(23), 5951–5956 (2007).
    [Crossref] [PubMed]
  4. M. Vallet, J. Barreaux, M. Romanelli, G. Pillet, J. Thévenin, L. Wang, and M. Brunel, “Lidar-radar velocimetry using a pulse-to-pulse coherent rf-modulated Q-switched laser,” Appl. Opt. 52(22), 5402–5410 (2013).
    [Crossref] [PubMed]
  5. M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
    [Crossref]
  6. N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
    [Crossref] [PubMed]
  7. D. Nodop, O. Schmidt, J. Limpert, and A. Tünnermann, “105 kHz, 85 ps, 3 MW microchip laser fiber amplifier system for micro-machining applications,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CThL1.
    [Crossref]
  8. Y. P. Huang, Y. J. Huang, C. Y. Cho, and Y. F. Chen, “Influence of output coupling on the performance of a passively Q-switched Nd:YAG laser with intracavity optical parametric oscillator,” Opt. Express 21(6), 7583 (2013).
    [PubMed]
  9. W. Koechner, “Thermal Lensing in a Nd:YAG Laser Rod,” Appl. Opt. 9(11), 2548–2553 (1970).
    [Crossref] [PubMed]
  10. J. D. Mansell, J. Hennawi, E. K. Gustafson, M. M. Fejer, R. L. Byer, D. Clubley, S. Yoshida, and D. H. Reitze, “Evaluating the effect of transmissive optic thermal lensing on laser beam quality with a Shack-Hartmann wave-front sensor,” Appl. Opt. 40(3), 366–374 (2001).
    [Crossref] [PubMed]
  11. S. Piehler, B. Weichelt, A. Voss, M. A. Ahmed, and T. Graf, “Power scaling of fundamental-mode thin-disk lasers using intracavity deformable mirrors,” Opt. Lett. 37(24), 5033–5035 (2012).
    [Crossref] [PubMed]
  12. G. Vdovin and V. Kiyko, “Intracavity control of a 200-W continuous-wave Nd:YAG laser by a micromachined deformable mirror,” Opt. Lett. 26(11), 798–800 (2001).
    [Crossref] [PubMed]
  13. T. Y. Cherezova, L. N. Kaptsov, and A. V. Kudryashov, “Cw industrial rod YAG:Nd3+ laser with an intracavity active bimorph mirror,” Appl. Opt. 35(15), 2554–2561 (1996).
    [Crossref] [PubMed]
  14. P. Yang, Y. Liu, W. Yang, M. W. Ao, S. J. Hu, B. Xu, and W. H. Jiang, “Adaptive mode optimization of a continuous-wave solid-state laser using an intracavity piezoelectric deformable mirror,” Opt. Commun. 278(2), 377–381 (2007).
    [Crossref]
  15. P. Yang, M. Ao, Y. Liu, B. Xu, and W. Jiang, “Intracavity transverse modes controlled by a genetic algorithm based on Zernike mode coefficients,” Opt. Express 15(25), 17051–17062 (2007).
    [Crossref] [PubMed]
  16. N. K. Metzger, W. Lubeigt, D. Burns, M. Griffith, L. Laycock, A. A. Lagatsky, C. T. A. Brown, and W. Sibbett, “Ultrashort-pulse laser with an intracavity phase shaping element,” Opt. Express 18(8), 8123–8134 (2010).
    [Crossref] [PubMed]
  17. W. Lubeigt, M. Griffith, L. Laycock, and D. Burns, “Reduction of the time-to-full-brightness in solid-state lasers using intra-cavity adaptive optics,” Opt. Express 17(14), 12057–12069 (2009).
    [Crossref] [PubMed]
  18. P. Yang, Y. Ning, X. Lei, B. Xu, X. Li, L. Dong, H. Yan, W. Liu, W. Jiang, L. Liu, C. Wang, X. Liang, and X. Tang, “Enhancement of the beam quality of non-uniform output slab laser amplifier with a 39-actuator rectangular piezoelectric deformable mirror,” Opt. Express 18(7), 7121–7130 (2010).
    [Crossref] [PubMed]
  19. R. Li, M. Griffith, L. Laycock, and W. Lubeigt, “Controllable continuous-wave Nd:YVO4 self-Raman lasers using intracavity adaptive optics,” Opt. Lett. 39(16), 4762–4765 (2014).
    [Crossref] [PubMed]
  20. W. Lubeigt, G. Valentine, J. Girkin, E. Bente, and D. Burns, “Active transverse mode control and optimization of an all-solid-state laser using an intracavity adaptive-optic mirror,” Opt. Express 10(13), 550–555 (2002).
    [Crossref] [PubMed]
  21. W. Lubeigt, G. Valentine, and D. Burns, “Enhancement of laser performance using an intracavity deformable membrane mirror,” Opt. Express 16(15), 10943–10955 (2008).
    [Crossref] [PubMed]
  22. S. Piehler, B. Weichelt, A. Voss, M. A. Ahmed, and T. Graf, “Active mirrors for intra-cavity compensation of the asphericalthermal lens in thin-disk lasers,” Proc. SPIE 8236, 82360J (2012).
    [Crossref]
  23. S. Piehler, T. Dietrich, P. Wittmüss, O. Sawodny, M. A. Ahmed, and T. Graf, “Deformable mirrors for intra-cavity use in high-power thin-disk lasers,” Opt. Express 25(4), 4254–4267 (2017).
    [Crossref] [PubMed]
  24. M. Okida, A. Tonouchi, M. Itoh, T. Yatagai, and T. Omatsu, “Thermal-lens measurement in a side-pumped 1.3 μm Nd:YVO 4 bounce laser,” Opt. Commun. 277(1), 125–129 (2007).
    [Crossref]
  25. H. Canabal and J. Alonso, “Automatic wavefront measurement technique using a computer display and a charge-coupled device camera,” Opt. Eng. 41(4), 822–826 (2002).
    [Crossref]
  26. Y. Liu, X. Su, and Q. Zhang, “Wavefront measurement based on active deflectometry,” Proc. SPIE 6723, 67232N (2007).
    [Crossref]
  27. L. Huang, C. Zhou, W. Zhao, H. Choi, L. Graves, and D. Kim, “Close-loop performance of a high precision deflectometry controlled deformable mirror (DCDM) unit for wavefront correction in adaptive optics system,” Opt. Commun. 393, 83–88 (2017).
    [Crossref]

2017 (2)

L. Huang, C. Zhou, W. Zhao, H. Choi, L. Graves, and D. Kim, “Close-loop performance of a high precision deflectometry controlled deformable mirror (DCDM) unit for wavefront correction in adaptive optics system,” Opt. Commun. 393, 83–88 (2017).
[Crossref]

S. Piehler, T. Dietrich, P. Wittmüss, O. Sawodny, M. A. Ahmed, and T. Graf, “Deformable mirrors for intra-cavity use in high-power thin-disk lasers,” Opt. Express 25(4), 4254–4267 (2017).
[Crossref] [PubMed]

2014 (1)

2013 (2)

2012 (2)

S. Piehler, B. Weichelt, A. Voss, M. A. Ahmed, and T. Graf, “Power scaling of fundamental-mode thin-disk lasers using intracavity deformable mirrors,” Opt. Lett. 37(24), 5033–5035 (2012).
[Crossref] [PubMed]

S. Piehler, B. Weichelt, A. Voss, M. A. Ahmed, and T. Graf, “Active mirrors for intra-cavity compensation of the asphericalthermal lens in thin-disk lasers,” Proc. SPIE 8236, 82360J (2012).
[Crossref]

2011 (2)

2010 (3)

2009 (1)

2008 (2)

2007 (5)

J. J. Zayhowski and A. L. Wilson., “Miniature eye-safe laser system for high-resolution three-dimensional lidar,” Appl. Opt. 46(23), 5951–5956 (2007).
[Crossref] [PubMed]

P. Yang, M. Ao, Y. Liu, B. Xu, and W. Jiang, “Intracavity transverse modes controlled by a genetic algorithm based on Zernike mode coefficients,” Opt. Express 15(25), 17051–17062 (2007).
[Crossref] [PubMed]

P. Yang, Y. Liu, W. Yang, M. W. Ao, S. J. Hu, B. Xu, and W. H. Jiang, “Adaptive mode optimization of a continuous-wave solid-state laser using an intracavity piezoelectric deformable mirror,” Opt. Commun. 278(2), 377–381 (2007).
[Crossref]

M. Okida, A. Tonouchi, M. Itoh, T. Yatagai, and T. Omatsu, “Thermal-lens measurement in a side-pumped 1.3 μm Nd:YVO 4 bounce laser,” Opt. Commun. 277(1), 125–129 (2007).
[Crossref]

Y. Liu, X. Su, and Q. Zhang, “Wavefront measurement based on active deflectometry,” Proc. SPIE 6723, 67232N (2007).
[Crossref]

2002 (2)

H. Canabal and J. Alonso, “Automatic wavefront measurement technique using a computer display and a charge-coupled device camera,” Opt. Eng. 41(4), 822–826 (2002).
[Crossref]

W. Lubeigt, G. Valentine, J. Girkin, E. Bente, and D. Burns, “Active transverse mode control and optimization of an all-solid-state laser using an intracavity adaptive-optic mirror,” Opt. Express 10(13), 550–555 (2002).
[Crossref] [PubMed]

2001 (2)

1996 (1)

1970 (1)

Ahmed, M. A.

Alonso, J.

H. Canabal and J. Alonso, “Automatic wavefront measurement technique using a computer display and a charge-coupled device camera,” Opt. Eng. 41(4), 822–826 (2002).
[Crossref]

Ando, A.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Ao, M.

Ao, M. W.

P. Yang, Y. Liu, W. Yang, M. W. Ao, S. J. Hu, B. Xu, and W. H. Jiang, “Adaptive mode optimization of a continuous-wave solid-state laser using an intracavity piezoelectric deformable mirror,” Opt. Commun. 278(2), 377–381 (2007).
[Crossref]

Barreaux, J.

Bente, E.

Bhandari, R.

Brown, C. T. A.

Brunel, M.

Burns, D.

Byer, R. L.

Canabal, H.

H. Canabal and J. Alonso, “Automatic wavefront measurement technique using a computer display and a charge-coupled device camera,” Opt. Eng. 41(4), 822–826 (2002).
[Crossref]

Chen, Y. F.

Cherezova, T. Y.

Cho, C. Y.

Choi, H.

L. Huang, C. Zhou, W. Zhao, H. Choi, L. Graves, and D. Kim, “Close-loop performance of a high precision deflectometry controlled deformable mirror (DCDM) unit for wavefront correction in adaptive optics system,” Opt. Commun. 393, 83–88 (2017).
[Crossref]

Clubley, D.

Dietrich, T.

Dong, L.

Fejer, M. M.

Girkin, J.

Graf, T.

Graves, L.

L. Huang, C. Zhou, W. Zhao, H. Choi, L. Graves, and D. Kim, “Close-loop performance of a high precision deflectometry controlled deformable mirror (DCDM) unit for wavefront correction in adaptive optics system,” Opt. Commun. 393, 83–88 (2017).
[Crossref]

Griffith, M.

Gustafson, E. K.

Hennawi, J.

Hu, S. J.

P. Yang, Y. Liu, W. Yang, M. W. Ao, S. J. Hu, B. Xu, and W. H. Jiang, “Adaptive mode optimization of a continuous-wave solid-state laser using an intracavity piezoelectric deformable mirror,” Opt. Commun. 278(2), 377–381 (2007).
[Crossref]

Huang, L.

L. Huang, C. Zhou, W. Zhao, H. Choi, L. Graves, and D. Kim, “Close-loop performance of a high precision deflectometry controlled deformable mirror (DCDM) unit for wavefront correction in adaptive optics system,” Opt. Commun. 393, 83–88 (2017).
[Crossref]

Huang, Y. J.

Huang, Y. P.

Inohara, T.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Itoh, M.

M. Okida, A. Tonouchi, M. Itoh, T. Yatagai, and T. Omatsu, “Thermal-lens measurement in a side-pumped 1.3 μm Nd:YVO 4 bounce laser,” Opt. Commun. 277(1), 125–129 (2007).
[Crossref]

Jiang, W.

Jiang, W. H.

P. Yang, Y. Liu, W. Yang, M. W. Ao, S. J. Hu, B. Xu, and W. H. Jiang, “Adaptive mode optimization of a continuous-wave solid-state laser using an intracavity piezoelectric deformable mirror,” Opt. Commun. 278(2), 377–381 (2007).
[Crossref]

Kan, H.

Kanehara, K.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Kaptsov, L. N.

Kido, N.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Kim, D.

L. Huang, C. Zhou, W. Zhao, H. Choi, L. Graves, and D. Kim, “Close-loop performance of a high precision deflectometry controlled deformable mirror (DCDM) unit for wavefront correction in adaptive optics system,” Opt. Commun. 393, 83–88 (2017).
[Crossref]

Kiyko, V.

Koechner, W.

Kudryashov, A. V.

Lagatsky, A. A.

Laycock, L.

Lei, X.

Li, R.

Li, X.

Liang, X.

Liu, L.

Liu, W.

Liu, Y.

P. Yang, M. Ao, Y. Liu, B. Xu, and W. Jiang, “Intracavity transverse modes controlled by a genetic algorithm based on Zernike mode coefficients,” Opt. Express 15(25), 17051–17062 (2007).
[Crossref] [PubMed]

Y. Liu, X. Su, and Q. Zhang, “Wavefront measurement based on active deflectometry,” Proc. SPIE 6723, 67232N (2007).
[Crossref]

P. Yang, Y. Liu, W. Yang, M. W. Ao, S. J. Hu, B. Xu, and W. H. Jiang, “Adaptive mode optimization of a continuous-wave solid-state laser using an intracavity piezoelectric deformable mirror,” Opt. Commun. 278(2), 377–381 (2007).
[Crossref]

Lubeigt, W.

Mansell, J. D.

Metzger, N. K.

Ning, Y.

Okida, M.

M. Okida, A. Tonouchi, M. Itoh, T. Yatagai, and T. Omatsu, “Thermal-lens measurement in a side-pumped 1.3 μm Nd:YVO 4 bounce laser,” Opt. Commun. 277(1), 125–129 (2007).
[Crossref]

Omatsu, T.

M. Okida, A. Tonouchi, M. Itoh, T. Yatagai, and T. Omatsu, “Thermal-lens measurement in a side-pumped 1.3 μm Nd:YVO 4 bounce laser,” Opt. Commun. 277(1), 125–129 (2007).
[Crossref]

Pavel, N.

Piehler, S.

Pillet, G.

Reitze, D. H.

Romanelli, M.

Sakai, H.

Sawodny, O.

Sibbett, W.

Su, X.

Y. Liu, X. Su, and Q. Zhang, “Wavefront measurement based on active deflectometry,” Proc. SPIE 6723, 67232N (2007).
[Crossref]

Taira, T.

Tang, X.

Thévenin, J.

Tonouchi, A.

M. Okida, A. Tonouchi, M. Itoh, T. Yatagai, and T. Omatsu, “Thermal-lens measurement in a side-pumped 1.3 μm Nd:YVO 4 bounce laser,” Opt. Commun. 277(1), 125–129 (2007).
[Crossref]

Tsunekane, M.

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
[Crossref] [PubMed]

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Valentine, G.

Vallet, M.

Vdovin, G.

Voss, A.

S. Piehler, B. Weichelt, A. Voss, M. A. Ahmed, and T. Graf, “Active mirrors for intra-cavity compensation of the asphericalthermal lens in thin-disk lasers,” Proc. SPIE 8236, 82360J (2012).
[Crossref]

S. Piehler, B. Weichelt, A. Voss, M. A. Ahmed, and T. Graf, “Power scaling of fundamental-mode thin-disk lasers using intracavity deformable mirrors,” Opt. Lett. 37(24), 5033–5035 (2012).
[Crossref] [PubMed]

Wang, C.

Wang, L.

Weichelt, B.

S. Piehler, B. Weichelt, A. Voss, M. A. Ahmed, and T. Graf, “Power scaling of fundamental-mode thin-disk lasers using intracavity deformable mirrors,” Opt. Lett. 37(24), 5033–5035 (2012).
[Crossref] [PubMed]

S. Piehler, B. Weichelt, A. Voss, M. A. Ahmed, and T. Graf, “Active mirrors for intra-cavity compensation of the asphericalthermal lens in thin-disk lasers,” Proc. SPIE 8236, 82360J (2012).
[Crossref]

Wilson, A. L.

Wittmüss, P.

Xu, B.

Yan, H.

Yang, P.

Yang, W.

P. Yang, Y. Liu, W. Yang, M. W. Ao, S. J. Hu, B. Xu, and W. H. Jiang, “Adaptive mode optimization of a continuous-wave solid-state laser using an intracavity piezoelectric deformable mirror,” Opt. Commun. 278(2), 377–381 (2007).
[Crossref]

Yatagai, T.

M. Okida, A. Tonouchi, M. Itoh, T. Yatagai, and T. Omatsu, “Thermal-lens measurement in a side-pumped 1.3 μm Nd:YVO 4 bounce laser,” Opt. Commun. 277(1), 125–129 (2007).
[Crossref]

Yoshida, S.

Zayhowski, J. J.

Zhang, Q.

Y. Liu, X. Su, and Q. Zhang, “Wavefront measurement based on active deflectometry,” Proc. SPIE 6723, 67232N (2007).
[Crossref]

Zhao, W.

L. Huang, C. Zhou, W. Zhao, H. Choi, L. Graves, and D. Kim, “Close-loop performance of a high precision deflectometry controlled deformable mirror (DCDM) unit for wavefront correction in adaptive optics system,” Opt. Commun. 393, 83–88 (2017).
[Crossref]

Zhou, C.

L. Huang, C. Zhou, W. Zhao, H. Choi, L. Graves, and D. Kim, “Close-loop performance of a high precision deflectometry controlled deformable mirror (DCDM) unit for wavefront correction in adaptive optics system,” Opt. Commun. 393, 83–88 (2017).
[Crossref]

Appl. Opt. (5)

IEEE J. Quantum Electron. (1)

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Opt. Commun. (3)

P. Yang, Y. Liu, W. Yang, M. W. Ao, S. J. Hu, B. Xu, and W. H. Jiang, “Adaptive mode optimization of a continuous-wave solid-state laser using an intracavity piezoelectric deformable mirror,” Opt. Commun. 278(2), 377–381 (2007).
[Crossref]

M. Okida, A. Tonouchi, M. Itoh, T. Yatagai, and T. Omatsu, “Thermal-lens measurement in a side-pumped 1.3 μm Nd:YVO 4 bounce laser,” Opt. Commun. 277(1), 125–129 (2007).
[Crossref]

L. Huang, C. Zhou, W. Zhao, H. Choi, L. Graves, and D. Kim, “Close-loop performance of a high precision deflectometry controlled deformable mirror (DCDM) unit for wavefront correction in adaptive optics system,” Opt. Commun. 393, 83–88 (2017).
[Crossref]

Opt. Eng. (1)

H. Canabal and J. Alonso, “Automatic wavefront measurement technique using a computer display and a charge-coupled device camera,” Opt. Eng. 41(4), 822–826 (2002).
[Crossref]

Opt. Express (11)

Y. P. Huang, Y. J. Huang, C. Y. Cho, and Y. F. Chen, “Influence of output coupling on the performance of a passively Q-switched Nd:YAG laser with intracavity optical parametric oscillator,” Opt. Express 21(6), 7583 (2013).
[PubMed]

S. Piehler, T. Dietrich, P. Wittmüss, O. Sawodny, M. A. Ahmed, and T. Graf, “Deformable mirrors for intra-cavity use in high-power thin-disk lasers,” Opt. Express 25(4), 4254–4267 (2017).
[Crossref] [PubMed]

P. Yang, M. Ao, Y. Liu, B. Xu, and W. Jiang, “Intracavity transverse modes controlled by a genetic algorithm based on Zernike mode coefficients,” Opt. Express 15(25), 17051–17062 (2007).
[Crossref] [PubMed]

N. K. Metzger, W. Lubeigt, D. Burns, M. Griffith, L. Laycock, A. A. Lagatsky, C. T. A. Brown, and W. Sibbett, “Ultrashort-pulse laser with an intracavity phase shaping element,” Opt. Express 18(8), 8123–8134 (2010).
[Crossref] [PubMed]

W. Lubeigt, M. Griffith, L. Laycock, and D. Burns, “Reduction of the time-to-full-brightness in solid-state lasers using intra-cavity adaptive optics,” Opt. Express 17(14), 12057–12069 (2009).
[Crossref] [PubMed]

P. Yang, Y. Ning, X. Lei, B. Xu, X. Li, L. Dong, H. Yan, W. Liu, W. Jiang, L. Liu, C. Wang, X. Liang, and X. Tang, “Enhancement of the beam quality of non-uniform output slab laser amplifier with a 39-actuator rectangular piezoelectric deformable mirror,” Opt. Express 18(7), 7121–7130 (2010).
[Crossref] [PubMed]

R. Bhandari and T. Taira, “> 6 MW peak power at 532 nm from passively Q-switched Nd:YAG/Cr4+:YAG microchip laser,” Opt. Express 19(20), 19135–19141 (2011).
[Crossref] [PubMed]

H. Sakai, H. Kan, and T. Taira, “>1 MW peak power single-mode high-brightness passively Q-switched Nd 3+:YAG microchip laser,” Opt. Express 16(24), 19891–19899 (2008).
[Crossref] [PubMed]

W. Lubeigt, G. Valentine, J. Girkin, E. Bente, and D. Burns, “Active transverse mode control and optimization of an all-solid-state laser using an intracavity adaptive-optic mirror,” Opt. Express 10(13), 550–555 (2002).
[Crossref] [PubMed]

W. Lubeigt, G. Valentine, and D. Burns, “Enhancement of laser performance using an intracavity deformable membrane mirror,” Opt. Express 16(15), 10943–10955 (2008).
[Crossref] [PubMed]

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
[Crossref] [PubMed]

Opt. Lett. (3)

Proc. SPIE (2)

S. Piehler, B. Weichelt, A. Voss, M. A. Ahmed, and T. Graf, “Active mirrors for intra-cavity compensation of the asphericalthermal lens in thin-disk lasers,” Proc. SPIE 8236, 82360J (2012).
[Crossref]

Y. Liu, X. Su, and Q. Zhang, “Wavefront measurement based on active deflectometry,” Proc. SPIE 6723, 67232N (2007).
[Crossref]

Other (1)

D. Nodop, O. Schmidt, J. Limpert, and A. Tünnermann, “105 kHz, 85 ps, 3 MW microchip laser fiber amplifier system for micro-machining applications,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CThL1.
[Crossref]

Supplementary Material (1)

NameDescription
» Visualization 1       M2 optimization procedure

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 The schematic layout of the PQS laser built in the lab. 1, Nd:YAG; 2, Cr:YAG; 3, calibration board; 4, filter.
Fig. 2
Fig. 2 Performance of the PQS laser. (a) The pumping power and the CW output power. (b) The average output power and the beam quality (M2) in the pulse operation. The insets are the images of the beam profile at the pumping current of 3A, 3.3A, 3.6A and 3.9A, respectively.
Fig. 3
Fig. 3 Thermal distortion measured by the deflectometry system. (a) The reference fringe pattern along the X direction. (b) The distorted fringe pattern along the X direction at 3.9A. (c) The reference fringe pattern along the Y direction. (d) The distorted fringe pattern along the Y direction at 3.9A. (e) The thermal distortion at 3.9A in the central 1.5mm × 1.5mm area of mirror M4. (f) The one-dimensional distributions of the thermal distortions in the pumping current range of 3.3A to 3.9A. (g) The PV values of the thermal distortions in the central 1.5mm × 1.5mm area of mirror M4. (a)–(d) share the same size.
Fig. 4
Fig. 4 Zernike polynomials of the measured thermal distortion at the pumping current of 3.3A and 3.9A (the target pumping current).
Fig. 5
Fig. 5 Structure of the intracavity DM. (a) Sectional side elevation. (b) Enlarged View of the red part in (a). (c) Sectional front elevation.
Fig. 6
Fig. 6 Influences of the structure parameters on the DMSS within the central 1.5mm × 1.5mm area. (a) Heater temperature. (b) Heater fore-end diameter. (c) Heater back-end length. (d) Cooler temperature. (e) Inner diameter of cooler fore-end. (f) Outer diameter of cooler fore-end. (g) Mirror diameter. (h) Mirror thickness. (i) Air temperature.
Fig. 7
Fig. 7 Simulation results of the DMSS within the central 1.5mm × 1.5mm area. (a) One dimensional DMSS, compared with the thermal distortion (TD) at the 3.9A pumping current. (b) The Zernike polynomial coefficients of the DMSS with a cooler. (c) The Zernike polynomial coefficients of the DMSS without a cooler. (d) The coefficient differences of the Zernike polynomials between the thermal distortion and the DMSS (with and without a cooler, respectively).
Fig. 8
Fig. 8 Interferometer measurement results of the DMSS within the central 1.5mm × 1.5mm area. (a) The DMSS at different heater temperatures, with the target thermal distortion at the 3.9A pumping current included for comparison. (b) The Zernike polynomial coefficients when the heater temperature is 48°C. The inset is the normalized interference fringe pattern obtained by the interferometer.
Fig. 9
Fig. 9 The PV values of the DMSS in the heating and the cooling procedures.
Fig. 10
Fig. 10 Experiment setup of the improved PQS laser with the intracavity DM.
Fig. 11
Fig. 11 Performance of the PQS laser with the intracavity DM. (a) The average output power of the laser. (b) The M2 of the laser.
Fig. 12
Fig. 12 (a) The performance of the PQS laser at the 3.6A pumping current, with the heater temperature varying from 40°C to 47°C (the optimum heater temperature for this pumping current is 43.5°C). (b) The performance of the PQS laser at different pumping currents when the heater temperature is set 43.5°C (the optimum heater temperature for the 3.6A pumping current).
Fig. 13
Fig. 13 M2 optimization procedure of the PQS laser operating at 3.9A pumping current, when the DM is controlled working from a cold start (see Visualization 1).
Fig. 14
Fig. 14 Performance of the PQS laser in one-hour continuous operation since the DM and the laser have reached the stable state.

Tables (4)

Tables Icon

Table 1 Material parameters in the finite element simulation

Tables Icon

Table 2 Structure parameters of the designed DM

Tables Icon

Table 3 The optimum heater temperatures for different pumping currents in the PQS laser

Tables Icon

Table 4 The optimum heater temperatures in different environmental temperatures

Metrics