Abstract

Optical communication has a great potential for the future deep space communication, while the amplitude fluctuations caused by the coronal solar wind irregularities has been a challenging topic during superior solar conjunction. In this paper, a closed-form amplitude fluctuations expression for optical waves propagation through non-Kolmogorov solar wind turbulence is derived by establishing a generalized coronal turbulence spectrum model. The profound impact of the coronal parameters on the bit error rate (BER) performance of the free space optical system is also investigated based on the derived amplitude fluctuations model. The derived expression allows easy analysis of the evolution of the amplitude fluctuations and, in particular, an understanding of the imposed effects caused by the parameters during the waves propagation. The combined effect of the optical wavelength, non-Kolmogorov spectral index, turbulence outer scale, relative solar wind density fluctuation factor, and link distance on amplitude fluctuations are evaluated. Numerical calculations show that these parameters produce obvious effects on the amplitude fluctuations and the BER. The large optical wavelength can mitigate the influence of the coronal turbulence. Our results have potential applications for evaluating the link performance of the future deep space communication.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles

References

  • View by:
  • |
  • |
  • |

  1. M. Bergmann, P. Romano, O. Koudelka, and M. Wittig, “Generic communication user and system requirements for future space science missions,” in Proceedings of IEEE International Workshop on Satellite and Space Communications (IEEE, 2009), pp. 295–299.
  2. H. Hemmati, A. Biswas, and I. B. Djordjevic, “Deep-space optical communications: future perspectives and applications,” Proc. IEEE 99(11), 2020–2039 (2015).
    [Crossref]
  3. G. Xu and Z. Song, “A new model of amplitude fluctuations for radio propagation in solar corona during superior solar conjunction,” Radio Sci. 51(2), 71–81 (2016).
    [Crossref]
  4. T. Schneider, A. Wiatrek, S. Preussler, M. Grigat, and R. P. Braun, “Link budget analysis for terahertz fixed wireless links,” IEEE Trans. Thz. Sci. Tech. 2(2), 250–256 (2012).
    [Crossref]
  5. L. Cui, X. Cao, B. Xue, and L. Cao, “Analysis of angle-of-arrival fluctuations for optical waves propagating through weak non-kolmogorov turbulence,” Opt. Express 23(5), 6313–6325 (2015).
    [Crossref] [PubMed]
  6. T. Qu, Z. S. Wu, Q. C. Shang, and Z. J. Li, “Light scattering of a laguerre-gaussian vortex beam by a chiral sphere,” J. Opt. Soc. Am. A 33(4), 475–482 (2016).
    [Crossref]
  7. M. Cheng, L. Guo, and Y. Zhang, “Scintillation and aperture averaging for gaussian beams through non-kolmogorov maritime atmospheric turbulence channels,” Opt. Express 23(25), 32606–32621 (2015).
    [Crossref] [PubMed]
  8. I. E. Lee, Z. Ghassemlooy, W. P. Ng, and M. A. Khalighi, “Joint optimization of a partially coherent gaussian beam for free-space optical communication over turbulent channels with pointing errors,” Opt. Lett. 38(3), 350–352 (2013).
    [Crossref] [PubMed]
  9. I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Free space optical system performance for a gaussian beam propagating through non-kolmogorov weak turbulence,” IEEE Trans. Antennas Propag. 57(6), 1783–1788 (2009).
    [Crossref]
  10. V. S. R. Gudimetla, R. B. Holmes, and J. F. Riker, “Analytical expressions for the log-amplitude correlation function for spherical wave propagation through anisotropic non-kolmogorov atmosphere,” J. Opt. Soc. Am. A 31(1), 148–154 (2014).
    [Crossref]
  11. L. Cui, “Temporal power spectra of irradiance scintillation for infrared optical waves’ propagation through marine atmospheric turbulence,” J. Opt. Soc. Am. A 31(9), 2030–2037 (2014).
    [Crossref]
  12. G. Xu and Z. Song, “Theoretical analysis of the angle-of-arrival fluctuations for optical wavext propagation through solar corona turbulence,” Opt. Express 25(23), 28022–28034 (2017).
    [Crossref]
  13. A. N. Afanasiev and N. T. Afanasiev, “Diagnostics of near-solar plasma turbulence parameters using the radio sounding technique at small heliocentric distances,” Solar Phys. 245(2), 355–367 (2007).
    [Crossref]
  14. O. I. Yakovlev, “Determination of the solar-wind velocity, density, power, and acceleration by the method of radio sounding of the near-solar plasma by the spacecraft signals,” Radiophys. Quantum Electron. 57(5), 313–325 (2014).
    [Crossref]
  15. C. M. Ho, D. D. Morabito, and R. Woo, “Solar corona effects on angle of arrival fluctuations for microwave telecommunication links during superior solar conjunction,” Radio Sci. 43(2), 1–13 (2008).
    [Crossref]
  16. A. D. Wheelon, Electromagnetic scintillation. II: Weak scattering (Cambridge University, 2003).
    [Crossref]
  17. G. Thejappa and R. J. Macdowall, “Effects of scattering on radio emission from the quiet sun at low frequencies,” Astrophys. J. 676(2), 1338–1345 (2008).
    [Crossref]
  18. S. R. Spangler, “The amplitude of magnetohydrodynamic turbulence in the inner solar wind,” Astrophys. J. 576(2), 997–1004 (2002).
    [Crossref]
  19. C. M. Ho, D. D. Morabito, and R. Woo, “Using phase scintillation spectral measurements to determine angle-of-arrival fluctuations during solar superior conjunction,” Radio Sci. 45(3), 1–12 (2010).
    [Crossref]
  20. S. Sen, M. A. Varshney, and Varshney, “Role of density profiles for the nonlinear propagation of intense laser beam through plasma channel,” Adv. Opt. Photon. 2014, 1–7 (2014).
  21. T. S. Bastian, “Radio wave propagation in the corona and the interplanetary medium,” Astrophys. Space Sci. 277(1–2), 107–116 (2001).
    [Crossref]
  22. A. I. Efimov, N. A. Armand, L. A. Lukanina, L. N. Samoznaev, I. V. Chashei, and M. K. Bird, “Radial dependence of the level of amplitude fluctuations of spacecraft radio signals probing circumsolar plasma,” J. Commun. Tech. Electron. 53(10), 1186–1194 (2008).
    [Crossref]
  23. A. I. Efimov, I. V. Chashei, M. K. Bird, L. N. Samoznaev, and D. Plettemeier, “Turbulence in the inner solar wind determined from frequency fluctuations of the downlink signals from the ulysses and galileo spacecraft,” Astron. Rep. 49(6), 485–494 (2005).
    [Crossref]
  24. A. D. Wheelon, Electromagnetic scintillation. I. geometrical optics (Cambridge University, 2001).
    [Crossref]
  25. E. Aguilar-Rodriguez, J. C. Mejia-Ambriz, B. V. Jackson, A. Buffington, E. Romero-Hernandez, and J. A. Gonzalez-Esparza, “Comparison of solar wind speeds using wavelet transform and fourier analysis in IPS data,” Solar Phys. 290(9), 1–12 (2015).
    [Crossref]
  26. C. L. Rino and C. S. Carrano, “The application of numerical simulations in beacon scintillation analysis and modeling,” Radio Sci. 46(3), 1–10 (2011).
    [Crossref]
  27. M. Abramowitz and I. S. Stegun, Handbook of Mathematical Functions with Formulas Graphs and Mathematical Tables (Dover Publications, 2007).
  28. I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Free-space optical system performance for laser beam propagation through non-Kolmogorov turbulence,” Opt. Eng. 47(2), 026003 (2008).
    [Crossref]
  29. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser beam scintillation with applications (SPIE, 2001).
    [Crossref]

2017 (1)

2016 (2)

G. Xu and Z. Song, “A new model of amplitude fluctuations for radio propagation in solar corona during superior solar conjunction,” Radio Sci. 51(2), 71–81 (2016).
[Crossref]

T. Qu, Z. S. Wu, Q. C. Shang, and Z. J. Li, “Light scattering of a laguerre-gaussian vortex beam by a chiral sphere,” J. Opt. Soc. Am. A 33(4), 475–482 (2016).
[Crossref]

2015 (4)

M. Cheng, L. Guo, and Y. Zhang, “Scintillation and aperture averaging for gaussian beams through non-kolmogorov maritime atmospheric turbulence channels,” Opt. Express 23(25), 32606–32621 (2015).
[Crossref] [PubMed]

H. Hemmati, A. Biswas, and I. B. Djordjevic, “Deep-space optical communications: future perspectives and applications,” Proc. IEEE 99(11), 2020–2039 (2015).
[Crossref]

L. Cui, X. Cao, B. Xue, and L. Cao, “Analysis of angle-of-arrival fluctuations for optical waves propagating through weak non-kolmogorov turbulence,” Opt. Express 23(5), 6313–6325 (2015).
[Crossref] [PubMed]

E. Aguilar-Rodriguez, J. C. Mejia-Ambriz, B. V. Jackson, A. Buffington, E. Romero-Hernandez, and J. A. Gonzalez-Esparza, “Comparison of solar wind speeds using wavelet transform and fourier analysis in IPS data,” Solar Phys. 290(9), 1–12 (2015).
[Crossref]

2014 (4)

S. Sen, M. A. Varshney, and Varshney, “Role of density profiles for the nonlinear propagation of intense laser beam through plasma channel,” Adv. Opt. Photon. 2014, 1–7 (2014).

V. S. R. Gudimetla, R. B. Holmes, and J. F. Riker, “Analytical expressions for the log-amplitude correlation function for spherical wave propagation through anisotropic non-kolmogorov atmosphere,” J. Opt. Soc. Am. A 31(1), 148–154 (2014).
[Crossref]

L. Cui, “Temporal power spectra of irradiance scintillation for infrared optical waves’ propagation through marine atmospheric turbulence,” J. Opt. Soc. Am. A 31(9), 2030–2037 (2014).
[Crossref]

O. I. Yakovlev, “Determination of the solar-wind velocity, density, power, and acceleration by the method of radio sounding of the near-solar plasma by the spacecraft signals,” Radiophys. Quantum Electron. 57(5), 313–325 (2014).
[Crossref]

2013 (1)

2012 (1)

T. Schneider, A. Wiatrek, S. Preussler, M. Grigat, and R. P. Braun, “Link budget analysis for terahertz fixed wireless links,” IEEE Trans. Thz. Sci. Tech. 2(2), 250–256 (2012).
[Crossref]

2011 (1)

C. L. Rino and C. S. Carrano, “The application of numerical simulations in beacon scintillation analysis and modeling,” Radio Sci. 46(3), 1–10 (2011).
[Crossref]

2010 (1)

C. M. Ho, D. D. Morabito, and R. Woo, “Using phase scintillation spectral measurements to determine angle-of-arrival fluctuations during solar superior conjunction,” Radio Sci. 45(3), 1–12 (2010).
[Crossref]

2009 (1)

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Free space optical system performance for a gaussian beam propagating through non-kolmogorov weak turbulence,” IEEE Trans. Antennas Propag. 57(6), 1783–1788 (2009).
[Crossref]

2008 (4)

C. M. Ho, D. D. Morabito, and R. Woo, “Solar corona effects on angle of arrival fluctuations for microwave telecommunication links during superior solar conjunction,” Radio Sci. 43(2), 1–13 (2008).
[Crossref]

G. Thejappa and R. J. Macdowall, “Effects of scattering on radio emission from the quiet sun at low frequencies,” Astrophys. J. 676(2), 1338–1345 (2008).
[Crossref]

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Free-space optical system performance for laser beam propagation through non-Kolmogorov turbulence,” Opt. Eng. 47(2), 026003 (2008).
[Crossref]

A. I. Efimov, N. A. Armand, L. A. Lukanina, L. N. Samoznaev, I. V. Chashei, and M. K. Bird, “Radial dependence of the level of amplitude fluctuations of spacecraft radio signals probing circumsolar plasma,” J. Commun. Tech. Electron. 53(10), 1186–1194 (2008).
[Crossref]

2007 (1)

A. N. Afanasiev and N. T. Afanasiev, “Diagnostics of near-solar plasma turbulence parameters using the radio sounding technique at small heliocentric distances,” Solar Phys. 245(2), 355–367 (2007).
[Crossref]

2005 (1)

A. I. Efimov, I. V. Chashei, M. K. Bird, L. N. Samoznaev, and D. Plettemeier, “Turbulence in the inner solar wind determined from frequency fluctuations of the downlink signals from the ulysses and galileo spacecraft,” Astron. Rep. 49(6), 485–494 (2005).
[Crossref]

2002 (1)

S. R. Spangler, “The amplitude of magnetohydrodynamic turbulence in the inner solar wind,” Astrophys. J. 576(2), 997–1004 (2002).
[Crossref]

2001 (1)

T. S. Bastian, “Radio wave propagation in the corona and the interplanetary medium,” Astrophys. Space Sci. 277(1–2), 107–116 (2001).
[Crossref]

Abramowitz, M.

M. Abramowitz and I. S. Stegun, Handbook of Mathematical Functions with Formulas Graphs and Mathematical Tables (Dover Publications, 2007).

Afanasiev, A. N.

A. N. Afanasiev and N. T. Afanasiev, “Diagnostics of near-solar plasma turbulence parameters using the radio sounding technique at small heliocentric distances,” Solar Phys. 245(2), 355–367 (2007).
[Crossref]

Afanasiev, N. T.

A. N. Afanasiev and N. T. Afanasiev, “Diagnostics of near-solar plasma turbulence parameters using the radio sounding technique at small heliocentric distances,” Solar Phys. 245(2), 355–367 (2007).
[Crossref]

Aguilar-Rodriguez, E.

E. Aguilar-Rodriguez, J. C. Mejia-Ambriz, B. V. Jackson, A. Buffington, E. Romero-Hernandez, and J. A. Gonzalez-Esparza, “Comparison of solar wind speeds using wavelet transform and fourier analysis in IPS data,” Solar Phys. 290(9), 1–12 (2015).
[Crossref]

Andrews, L. C.

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Free space optical system performance for a gaussian beam propagating through non-kolmogorov weak turbulence,” IEEE Trans. Antennas Propag. 57(6), 1783–1788 (2009).
[Crossref]

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Free-space optical system performance for laser beam propagation through non-Kolmogorov turbulence,” Opt. Eng. 47(2), 026003 (2008).
[Crossref]

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser beam scintillation with applications (SPIE, 2001).
[Crossref]

Armand, N. A.

A. I. Efimov, N. A. Armand, L. A. Lukanina, L. N. Samoznaev, I. V. Chashei, and M. K. Bird, “Radial dependence of the level of amplitude fluctuations of spacecraft radio signals probing circumsolar plasma,” J. Commun. Tech. Electron. 53(10), 1186–1194 (2008).
[Crossref]

Bastian, T. S.

T. S. Bastian, “Radio wave propagation in the corona and the interplanetary medium,” Astrophys. Space Sci. 277(1–2), 107–116 (2001).
[Crossref]

Bergmann, M.

M. Bergmann, P. Romano, O. Koudelka, and M. Wittig, “Generic communication user and system requirements for future space science missions,” in Proceedings of IEEE International Workshop on Satellite and Space Communications (IEEE, 2009), pp. 295–299.

Bird, M. K.

A. I. Efimov, N. A. Armand, L. A. Lukanina, L. N. Samoznaev, I. V. Chashei, and M. K. Bird, “Radial dependence of the level of amplitude fluctuations of spacecraft radio signals probing circumsolar plasma,” J. Commun. Tech. Electron. 53(10), 1186–1194 (2008).
[Crossref]

A. I. Efimov, I. V. Chashei, M. K. Bird, L. N. Samoznaev, and D. Plettemeier, “Turbulence in the inner solar wind determined from frequency fluctuations of the downlink signals from the ulysses and galileo spacecraft,” Astron. Rep. 49(6), 485–494 (2005).
[Crossref]

Biswas, A.

H. Hemmati, A. Biswas, and I. B. Djordjevic, “Deep-space optical communications: future perspectives and applications,” Proc. IEEE 99(11), 2020–2039 (2015).
[Crossref]

Braun, R. P.

T. Schneider, A. Wiatrek, S. Preussler, M. Grigat, and R. P. Braun, “Link budget analysis for terahertz fixed wireless links,” IEEE Trans. Thz. Sci. Tech. 2(2), 250–256 (2012).
[Crossref]

Buffington, A.

E. Aguilar-Rodriguez, J. C. Mejia-Ambriz, B. V. Jackson, A. Buffington, E. Romero-Hernandez, and J. A. Gonzalez-Esparza, “Comparison of solar wind speeds using wavelet transform and fourier analysis in IPS data,” Solar Phys. 290(9), 1–12 (2015).
[Crossref]

Cao, L.

Cao, X.

Carrano, C. S.

C. L. Rino and C. S. Carrano, “The application of numerical simulations in beacon scintillation analysis and modeling,” Radio Sci. 46(3), 1–10 (2011).
[Crossref]

Chashei, I. V.

A. I. Efimov, N. A. Armand, L. A. Lukanina, L. N. Samoznaev, I. V. Chashei, and M. K. Bird, “Radial dependence of the level of amplitude fluctuations of spacecraft radio signals probing circumsolar plasma,” J. Commun. Tech. Electron. 53(10), 1186–1194 (2008).
[Crossref]

A. I. Efimov, I. V. Chashei, M. K. Bird, L. N. Samoznaev, and D. Plettemeier, “Turbulence in the inner solar wind determined from frequency fluctuations of the downlink signals from the ulysses and galileo spacecraft,” Astron. Rep. 49(6), 485–494 (2005).
[Crossref]

Cheng, M.

Cui, L.

Djordjevic, I. B.

H. Hemmati, A. Biswas, and I. B. Djordjevic, “Deep-space optical communications: future perspectives and applications,” Proc. IEEE 99(11), 2020–2039 (2015).
[Crossref]

Efimov, A. I.

A. I. Efimov, N. A. Armand, L. A. Lukanina, L. N. Samoznaev, I. V. Chashei, and M. K. Bird, “Radial dependence of the level of amplitude fluctuations of spacecraft radio signals probing circumsolar plasma,” J. Commun. Tech. Electron. 53(10), 1186–1194 (2008).
[Crossref]

A. I. Efimov, I. V. Chashei, M. K. Bird, L. N. Samoznaev, and D. Plettemeier, “Turbulence in the inner solar wind determined from frequency fluctuations of the downlink signals from the ulysses and galileo spacecraft,” Astron. Rep. 49(6), 485–494 (2005).
[Crossref]

Ferrero, V.

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Free space optical system performance for a gaussian beam propagating through non-kolmogorov weak turbulence,” IEEE Trans. Antennas Propag. 57(6), 1783–1788 (2009).
[Crossref]

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Free-space optical system performance for laser beam propagation through non-Kolmogorov turbulence,” Opt. Eng. 47(2), 026003 (2008).
[Crossref]

Ghassemlooy, Z.

Gonzalez-Esparza, J. A.

E. Aguilar-Rodriguez, J. C. Mejia-Ambriz, B. V. Jackson, A. Buffington, E. Romero-Hernandez, and J. A. Gonzalez-Esparza, “Comparison of solar wind speeds using wavelet transform and fourier analysis in IPS data,” Solar Phys. 290(9), 1–12 (2015).
[Crossref]

Grigat, M.

T. Schneider, A. Wiatrek, S. Preussler, M. Grigat, and R. P. Braun, “Link budget analysis for terahertz fixed wireless links,” IEEE Trans. Thz. Sci. Tech. 2(2), 250–256 (2012).
[Crossref]

Gudimetla, V. S. R.

Guo, L.

Hemmati, H.

H. Hemmati, A. Biswas, and I. B. Djordjevic, “Deep-space optical communications: future perspectives and applications,” Proc. IEEE 99(11), 2020–2039 (2015).
[Crossref]

Ho, C. M.

C. M. Ho, D. D. Morabito, and R. Woo, “Using phase scintillation spectral measurements to determine angle-of-arrival fluctuations during solar superior conjunction,” Radio Sci. 45(3), 1–12 (2010).
[Crossref]

C. M. Ho, D. D. Morabito, and R. Woo, “Solar corona effects on angle of arrival fluctuations for microwave telecommunication links during superior solar conjunction,” Radio Sci. 43(2), 1–13 (2008).
[Crossref]

Holmes, R. B.

Hopen, C. Y.

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser beam scintillation with applications (SPIE, 2001).
[Crossref]

Jackson, B. V.

E. Aguilar-Rodriguez, J. C. Mejia-Ambriz, B. V. Jackson, A. Buffington, E. Romero-Hernandez, and J. A. Gonzalez-Esparza, “Comparison of solar wind speeds using wavelet transform and fourier analysis in IPS data,” Solar Phys. 290(9), 1–12 (2015).
[Crossref]

Khalighi, M. A.

Koudelka, O.

M. Bergmann, P. Romano, O. Koudelka, and M. Wittig, “Generic communication user and system requirements for future space science missions,” in Proceedings of IEEE International Workshop on Satellite and Space Communications (IEEE, 2009), pp. 295–299.

Lee, I. E.

Li, Z. J.

Lukanina, L. A.

A. I. Efimov, N. A. Armand, L. A. Lukanina, L. N. Samoznaev, I. V. Chashei, and M. K. Bird, “Radial dependence of the level of amplitude fluctuations of spacecraft radio signals probing circumsolar plasma,” J. Commun. Tech. Electron. 53(10), 1186–1194 (2008).
[Crossref]

Macdowall, R. J.

G. Thejappa and R. J. Macdowall, “Effects of scattering on radio emission from the quiet sun at low frequencies,” Astrophys. J. 676(2), 1338–1345 (2008).
[Crossref]

Mejia-Ambriz, J. C.

E. Aguilar-Rodriguez, J. C. Mejia-Ambriz, B. V. Jackson, A. Buffington, E. Romero-Hernandez, and J. A. Gonzalez-Esparza, “Comparison of solar wind speeds using wavelet transform and fourier analysis in IPS data,” Solar Phys. 290(9), 1–12 (2015).
[Crossref]

Morabito, D. D.

C. M. Ho, D. D. Morabito, and R. Woo, “Using phase scintillation spectral measurements to determine angle-of-arrival fluctuations during solar superior conjunction,” Radio Sci. 45(3), 1–12 (2010).
[Crossref]

C. M. Ho, D. D. Morabito, and R. Woo, “Solar corona effects on angle of arrival fluctuations for microwave telecommunication links during superior solar conjunction,” Radio Sci. 43(2), 1–13 (2008).
[Crossref]

Ng, W. P.

Phillips, R. L.

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Free space optical system performance for a gaussian beam propagating through non-kolmogorov weak turbulence,” IEEE Trans. Antennas Propag. 57(6), 1783–1788 (2009).
[Crossref]

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Free-space optical system performance for laser beam propagation through non-Kolmogorov turbulence,” Opt. Eng. 47(2), 026003 (2008).
[Crossref]

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser beam scintillation with applications (SPIE, 2001).
[Crossref]

Plettemeier, D.

A. I. Efimov, I. V. Chashei, M. K. Bird, L. N. Samoznaev, and D. Plettemeier, “Turbulence in the inner solar wind determined from frequency fluctuations of the downlink signals from the ulysses and galileo spacecraft,” Astron. Rep. 49(6), 485–494 (2005).
[Crossref]

Preussler, S.

T. Schneider, A. Wiatrek, S. Preussler, M. Grigat, and R. P. Braun, “Link budget analysis for terahertz fixed wireless links,” IEEE Trans. Thz. Sci. Tech. 2(2), 250–256 (2012).
[Crossref]

Qu, T.

Riker, J. F.

Rino, C. L.

C. L. Rino and C. S. Carrano, “The application of numerical simulations in beacon scintillation analysis and modeling,” Radio Sci. 46(3), 1–10 (2011).
[Crossref]

Romano, P.

M. Bergmann, P. Romano, O. Koudelka, and M. Wittig, “Generic communication user and system requirements for future space science missions,” in Proceedings of IEEE International Workshop on Satellite and Space Communications (IEEE, 2009), pp. 295–299.

Romero-Hernandez, E.

E. Aguilar-Rodriguez, J. C. Mejia-Ambriz, B. V. Jackson, A. Buffington, E. Romero-Hernandez, and J. A. Gonzalez-Esparza, “Comparison of solar wind speeds using wavelet transform and fourier analysis in IPS data,” Solar Phys. 290(9), 1–12 (2015).
[Crossref]

Samoznaev, L. N.

A. I. Efimov, N. A. Armand, L. A. Lukanina, L. N. Samoznaev, I. V. Chashei, and M. K. Bird, “Radial dependence of the level of amplitude fluctuations of spacecraft radio signals probing circumsolar plasma,” J. Commun. Tech. Electron. 53(10), 1186–1194 (2008).
[Crossref]

A. I. Efimov, I. V. Chashei, M. K. Bird, L. N. Samoznaev, and D. Plettemeier, “Turbulence in the inner solar wind determined from frequency fluctuations of the downlink signals from the ulysses and galileo spacecraft,” Astron. Rep. 49(6), 485–494 (2005).
[Crossref]

Schneider, T.

T. Schneider, A. Wiatrek, S. Preussler, M. Grigat, and R. P. Braun, “Link budget analysis for terahertz fixed wireless links,” IEEE Trans. Thz. Sci. Tech. 2(2), 250–256 (2012).
[Crossref]

Sen, S.

S. Sen, M. A. Varshney, and Varshney, “Role of density profiles for the nonlinear propagation of intense laser beam through plasma channel,” Adv. Opt. Photon. 2014, 1–7 (2014).

Shang, Q. C.

Song, Z.

G. Xu and Z. Song, “Theoretical analysis of the angle-of-arrival fluctuations for optical wavext propagation through solar corona turbulence,” Opt. Express 25(23), 28022–28034 (2017).
[Crossref]

G. Xu and Z. Song, “A new model of amplitude fluctuations for radio propagation in solar corona during superior solar conjunction,” Radio Sci. 51(2), 71–81 (2016).
[Crossref]

Spangler, S. R.

S. R. Spangler, “The amplitude of magnetohydrodynamic turbulence in the inner solar wind,” Astrophys. J. 576(2), 997–1004 (2002).
[Crossref]

Stegun, I. S.

M. Abramowitz and I. S. Stegun, Handbook of Mathematical Functions with Formulas Graphs and Mathematical Tables (Dover Publications, 2007).

Thejappa, G.

G. Thejappa and R. J. Macdowall, “Effects of scattering on radio emission from the quiet sun at low frequencies,” Astrophys. J. 676(2), 1338–1345 (2008).
[Crossref]

Toselli, I.

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Free space optical system performance for a gaussian beam propagating through non-kolmogorov weak turbulence,” IEEE Trans. Antennas Propag. 57(6), 1783–1788 (2009).
[Crossref]

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Free-space optical system performance for laser beam propagation through non-Kolmogorov turbulence,” Opt. Eng. 47(2), 026003 (2008).
[Crossref]

Varshney,

S. Sen, M. A. Varshney, and Varshney, “Role of density profiles for the nonlinear propagation of intense laser beam through plasma channel,” Adv. Opt. Photon. 2014, 1–7 (2014).

Varshney, M. A.

S. Sen, M. A. Varshney, and Varshney, “Role of density profiles for the nonlinear propagation of intense laser beam through plasma channel,” Adv. Opt. Photon. 2014, 1–7 (2014).

Wheelon, A. D.

A. D. Wheelon, Electromagnetic scintillation. II: Weak scattering (Cambridge University, 2003).
[Crossref]

A. D. Wheelon, Electromagnetic scintillation. I. geometrical optics (Cambridge University, 2001).
[Crossref]

Wiatrek, A.

T. Schneider, A. Wiatrek, S. Preussler, M. Grigat, and R. P. Braun, “Link budget analysis for terahertz fixed wireless links,” IEEE Trans. Thz. Sci. Tech. 2(2), 250–256 (2012).
[Crossref]

Wittig, M.

M. Bergmann, P. Romano, O. Koudelka, and M. Wittig, “Generic communication user and system requirements for future space science missions,” in Proceedings of IEEE International Workshop on Satellite and Space Communications (IEEE, 2009), pp. 295–299.

Woo, R.

C. M. Ho, D. D. Morabito, and R. Woo, “Using phase scintillation spectral measurements to determine angle-of-arrival fluctuations during solar superior conjunction,” Radio Sci. 45(3), 1–12 (2010).
[Crossref]

C. M. Ho, D. D. Morabito, and R. Woo, “Solar corona effects on angle of arrival fluctuations for microwave telecommunication links during superior solar conjunction,” Radio Sci. 43(2), 1–13 (2008).
[Crossref]

Wu, Z. S.

Xu, G.

G. Xu and Z. Song, “Theoretical analysis of the angle-of-arrival fluctuations for optical wavext propagation through solar corona turbulence,” Opt. Express 25(23), 28022–28034 (2017).
[Crossref]

G. Xu and Z. Song, “A new model of amplitude fluctuations for radio propagation in solar corona during superior solar conjunction,” Radio Sci. 51(2), 71–81 (2016).
[Crossref]

Xue, B.

Yakovlev, O. I.

O. I. Yakovlev, “Determination of the solar-wind velocity, density, power, and acceleration by the method of radio sounding of the near-solar plasma by the spacecraft signals,” Radiophys. Quantum Electron. 57(5), 313–325 (2014).
[Crossref]

Zhang, Y.

Adv. Opt. Photon. (1)

S. Sen, M. A. Varshney, and Varshney, “Role of density profiles for the nonlinear propagation of intense laser beam through plasma channel,” Adv. Opt. Photon. 2014, 1–7 (2014).

Astron. Rep. (1)

A. I. Efimov, I. V. Chashei, M. K. Bird, L. N. Samoznaev, and D. Plettemeier, “Turbulence in the inner solar wind determined from frequency fluctuations of the downlink signals from the ulysses and galileo spacecraft,” Astron. Rep. 49(6), 485–494 (2005).
[Crossref]

Astrophys. J. (2)

G. Thejappa and R. J. Macdowall, “Effects of scattering on radio emission from the quiet sun at low frequencies,” Astrophys. J. 676(2), 1338–1345 (2008).
[Crossref]

S. R. Spangler, “The amplitude of magnetohydrodynamic turbulence in the inner solar wind,” Astrophys. J. 576(2), 997–1004 (2002).
[Crossref]

Astrophys. Space Sci. (1)

T. S. Bastian, “Radio wave propagation in the corona and the interplanetary medium,” Astrophys. Space Sci. 277(1–2), 107–116 (2001).
[Crossref]

IEEE Trans. Antennas Propag. (1)

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Free space optical system performance for a gaussian beam propagating through non-kolmogorov weak turbulence,” IEEE Trans. Antennas Propag. 57(6), 1783–1788 (2009).
[Crossref]

IEEE Trans. Thz. Sci. Tech. (1)

T. Schneider, A. Wiatrek, S. Preussler, M. Grigat, and R. P. Braun, “Link budget analysis for terahertz fixed wireless links,” IEEE Trans. Thz. Sci. Tech. 2(2), 250–256 (2012).
[Crossref]

J. Commun. Tech. Electron. (1)

A. I. Efimov, N. A. Armand, L. A. Lukanina, L. N. Samoznaev, I. V. Chashei, and M. K. Bird, “Radial dependence of the level of amplitude fluctuations of spacecraft radio signals probing circumsolar plasma,” J. Commun. Tech. Electron. 53(10), 1186–1194 (2008).
[Crossref]

J. Opt. Soc. Am. A (3)

Opt. Eng. (1)

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Free-space optical system performance for laser beam propagation through non-Kolmogorov turbulence,” Opt. Eng. 47(2), 026003 (2008).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Proc. IEEE (1)

H. Hemmati, A. Biswas, and I. B. Djordjevic, “Deep-space optical communications: future perspectives and applications,” Proc. IEEE 99(11), 2020–2039 (2015).
[Crossref]

Radio Sci. (4)

G. Xu and Z. Song, “A new model of amplitude fluctuations for radio propagation in solar corona during superior solar conjunction,” Radio Sci. 51(2), 71–81 (2016).
[Crossref]

C. L. Rino and C. S. Carrano, “The application of numerical simulations in beacon scintillation analysis and modeling,” Radio Sci. 46(3), 1–10 (2011).
[Crossref]

C. M. Ho, D. D. Morabito, and R. Woo, “Using phase scintillation spectral measurements to determine angle-of-arrival fluctuations during solar superior conjunction,” Radio Sci. 45(3), 1–12 (2010).
[Crossref]

C. M. Ho, D. D. Morabito, and R. Woo, “Solar corona effects on angle of arrival fluctuations for microwave telecommunication links during superior solar conjunction,” Radio Sci. 43(2), 1–13 (2008).
[Crossref]

Radiophys. Quantum Electron. (1)

O. I. Yakovlev, “Determination of the solar-wind velocity, density, power, and acceleration by the method of radio sounding of the near-solar plasma by the spacecraft signals,” Radiophys. Quantum Electron. 57(5), 313–325 (2014).
[Crossref]

Solar Phys. (2)

A. N. Afanasiev and N. T. Afanasiev, “Diagnostics of near-solar plasma turbulence parameters using the radio sounding technique at small heliocentric distances,” Solar Phys. 245(2), 355–367 (2007).
[Crossref]

E. Aguilar-Rodriguez, J. C. Mejia-Ambriz, B. V. Jackson, A. Buffington, E. Romero-Hernandez, and J. A. Gonzalez-Esparza, “Comparison of solar wind speeds using wavelet transform and fourier analysis in IPS data,” Solar Phys. 290(9), 1–12 (2015).
[Crossref]

Other (5)

A. D. Wheelon, Electromagnetic scintillation. II: Weak scattering (Cambridge University, 2003).
[Crossref]

M. Abramowitz and I. S. Stegun, Handbook of Mathematical Functions with Formulas Graphs and Mathematical Tables (Dover Publications, 2007).

A. D. Wheelon, Electromagnetic scintillation. I. geometrical optics (Cambridge University, 2001).
[Crossref]

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser beam scintillation with applications (SPIE, 2001).
[Crossref]

M. Bergmann, P. Romano, O. Koudelka, and M. Wittig, “Generic communication user and system requirements for future space science missions,” in Proceedings of IEEE International Workshop on Satellite and Space Communications (IEEE, 2009), pp. 295–299.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Geometric diagram for deep space optical communication during superior conjunction and the coordinate used for analyzing amplitude fluctuations.
Fig. 2
Fig. 2 Normalized amplitude fluctuations dependence on both SEP angle SPE angle.
Fig. 3
Fig. 3 Normalized amplitude fluctuations dependence on SEP angle for various outer scales.
Fig. 4
Fig. 4 Normalized amplitude fluctuations dependence on SEP angle for various non-Kolmogorov spectral indices.
Fig. 5
Fig. 5 Normalized amplitude fluctuations dependence on SEP angle for various wavelengths.
Fig. 6
Fig. 6 Normalized amplitude fluctuations dependence on SEP angle for various density relative fluctuation factors.
Fig. 7
Fig. 7 BER performance against normalized SNR0 for optical waves in weak coronal turbulence channel under different (a) outer scales, (b) spectral indices, (c) wavelengths, and (d) density fluctuation factors.
Fig. 8
Fig. 8 (a) The scintillation index as a function of wavelength and (b) the BER performance against normalized SNR0 under different scintillation index.

Tables (1)

Tables Icon

Table 1 Parameters used in the calculations.

Equations (34)

Equations on this page are rendered with MathJax. Learn more.

L = L se cos α + L sp cos β ,
N e ( r ) = 2.21 × 10 14 ( r R sun ) 6 + 1.55 × 10 12 ( r R sun ) 2.3 .
δ N e ( r ) = η N e ( r ) ,
δ ε ( r ) δ ε ( r ) = r e 2 λ 4 π 2 δ N e ( r ) δ N e ( r ) .
Φ N ( κ , z ) = C N 2 ( z ) κ p ,
C N 2 ( z ) = { ( 2 π ) 3 / 2 ( p 3 ) Γ ( p 2 ) κ o p 3 Γ ( p 1 2 ) δ N e 2 , for 3 < p < 4 4 π ln ( 2 κ o κ i ) δ N e 2 , for p = 3 ,
Φ N ( κ , z ) = ( 2 π ) 3 / 2 ( p 3 ) Γ ( p 2 ) Γ ( p 1 2 ) κ o p 3 δ N e 2 κ p .
χ = k 2 4 π d 3 ρ δ ε ( r ) 1 z cos ( k r 2 2 z ) ,
χ ( d B ) = 4.34 χ ( N p ) .
χ 2 = k 4 16 π 2 d 3 ρ d 3 ρ 1 z 1 z 2 cos ( k r 1 2 2 z 1 ) cos ( k r 2 2 2 z 2 ) δ ε ( ρ ) δ ε ( ρ ) .
χ 2 = 1 2 π r e 2 λ 4 k 2 0 d z 1 0 d z 2 sin ( κ 2 z 1 sin 2 ψ 2 k ) sin ( κ 2 z 2 sin 2 ψ 2 k ) exp [ i κ ( z 1 z 2 ) cos ψ ] 0 κ 2 d κ 0 π d ψ sin ψ Φ N ( κ , z 1 + z 2 2 ) .
0 R d x 0 R d x f ( x ) g ( x ) exp [ i κ ( x x ) ] = 2 π δ ( κ ) 0 R d x f ( x ) g ( x ) ,
0 d z 1 0 d z 2 exp [ i κ ( z 1 z 2 ) cos ψ ] F ( z 1 , z 2 ) = 2 π δ ( κ cos ψ ) 0 d z F ( z , z ) ,
χ 2 = r e 2 λ 4 k 2 0 κ 2 d κ 0 π d ψ sin ψ Φ N ( κ , z ) δ ( κ cos ψ ) 0 d z sin 2 ( z κ 2 sin 2 ψ 2 k ) .
χ 2 = 16 π 4 r e 2 k 2 0 κ d κ 0 d z sin 2 ( z κ 2 2 k ) Φ N ( κ , z ) .
χ 2 = r e 2 k 2 ( 2 π ) 5 / 2 2 ( p 3 ) Γ ( p 2 ) Γ ( p 1 2 ) L δ N e 2 κ o p 3 0 κ 1 p d κ [ 1 sin ( L κ 2 k ) L κ 2 k ] .
0 1 x μ ( 1 sin ( a x ) a x ) d x = a μ 1 π 2 Γ ( 1 + μ ) cos ( π 2 μ ) , 1 < μ < 3 , a > 0 .
χ 2 = r e 2 ( 2 π ) 11 / 2 p 8 ( p 3 ) Γ ( p 2 ) Γ ( p 1 2 ) Γ ( 1 + p 2 ) δ N e 2 l o 3 p L p 2 k p 2 1 π cos ( π 4 p ) .
χ 2 = ( p 3 ) Γ ( p 2 ) r e 2 ( 2 π ) 11 / 2 p π 8 Γ ( p 1 2 ) Γ ( 1 + p 2 ) η 2 N e 2 l o 3 p L p 2 k p 2 1 sec ( π 4 p ) .
m 2 = 4 χ 2 .
BER = 1 2 0 f I ( u ) erfc ( SNR 0 2 2 u ) d u ,
f I ( u ) = 1 u 2 π m exp { [ ln ( u ) + 1 2 m ] 2 2 m } .
f ( x ) exp ( x 2 ) d x i = 1 n w i f ( x i )
BER 1 π 0 π 2 1 π i = 1 n w i exp { SNR 0 exp ( 2 2 m x i m ) 2 sin 2 θ } d θ
BER 1 2 π i = 1 n w i erfc [ 1 2 SNR 0 exp ( 2 m x i m 2 ) ]
χ 2 = r e 2 λ 4 k 4 16 π 4 0 d z 1 0 2 π d ϕ 1 0 r 1 d r 1 [ 1 z 1 cos ( k r 1 2 2 z 1 ) ] 0 d z 2 0 2 π d ϕ 2 0 r 2 d r 2 [ 1 z 2 cos ( k r 2 2 2 z 2 ) ] δ N e ( ρ ) δ N e ( ρ ) .
δ N e ( ρ ) δ N e ( ρ ) = d 3 κ Φ N ( κ ) exp [ i κ ( ρ ρ ) ] .
κ ( ρ ρ ) = ( κ z i z + κ r cos ω i x + κ r sin ω i y ) [ ( z 1 z 2 ) i z + ( r 1 cos ϕ 1 r 2 cos ϕ 2 ) i x + ( r 1 sin ϕ 1 r 2 sin ϕ 2 ) i y ] = κ z ( z 1 z 2 ) + κ r cos ω ( r 1 cos ϕ 1 r 2 cos ϕ 2 ) + κ r sin ω ( r 1 sin ϕ 1 r 2 sin ϕ 2 ) ,
δ N e ( ρ ) δ N e ( ρ ) = 0 κ 2 d k 0 π d ψ sin ψ Φ N ( κ , z 1 + z 2 2 ) 0 2 π d ω exp { i [ κ z z 1 + κ r r 1 cos ( ω ϕ 1 ) ] i [ κ z z 2 + κ r r 2 cos ( ω ϕ 2 ) ] } .
χ 2 = r e 2 λ 4 16 π 4 k 4 0 d z 1 z 1 0 d z 2 z 2 0 r 1 d r 1 0 r 2 d r 2 cos ( k r 1 2 2 z 1 ) cos ( k r 2 2 2 z 2 ) 0 κ 2 d κ 0 π d ψ sin ψ Φ N ( κ , z 1 + z 2 2 ) 0 2 π d ϕ 1 0 2 π d ϕ 2 0 2 π d ω exp { i [ κ z z 1 + κ r r 1 cos ( ω ϕ 1 ) ] i [ κ z z 2 + κ r r 2 cos ( ω ϕ 2 ) ] } ,
χ 2 = r e 2 λ 4 16 π 4 k 4 0 d z 1 z 1 0 d z 2 z 2 0 r 1 d r 1 0 r 2 d r 2 cos ( k r 1 2 2 z 1 ) cos ( k r 2 2 2 z 2 ) exp [ i κ ( z 1 z 2 ) cos ψ ] 0 κ 2 d κ 0 π d ψ sin ψ Φ N ( κ , z 1 + z 2 2 ) 0 2 π d ω 0 2 π d ϕ 1 exp [ i κ r 1 sin ψ cos ( ω ϕ 1 ) ] 0 2 π d ϕ 2 exp [ i κ r 2 sin ψ cos ( ω ϕ 2 ) ] .
0 2 π exp [ i ( a sin x + b cos x ) ] d x = 2 π J 0 ( a 2 + b 2 ) ,
0 J 0 ( a x ) cos ( b x 2 ) x d x = 1 2 b sin ( a 2 4 b ) ,
χ 2 = 1 2 π r e 2 λ 4 k 2 0 d z 1 0 d z 2 sin ( κ 2 z 1 sin 2 ψ 2 k ) sin ( κ 2 z 2 sin 2 ψ 2 k ) exp [ i κ ( z 1 z 2 ) cos ψ ] 0 κ 2 d κ 0 π d ψ sin ψ Φ N ( κ , z 1 + z 2 2 ) .

Metrics