Abstract

Head-mounted display (HMD) has been widely used in many fields, and most existing HMDs are complex and typically non-aesthetically pleasing. In this paper, a novel compact, lightweight and wearable off-axis HMD with freeform surface is reported. It is challenging to achieve large field of view (FOV) and maintain compact structure simultaneously for this type system. In this design, the compact off-axis HMD consists of a tilted ellipsoid combiner and a four pieces relay lenses. It offers a diagonal FOV of 30°, and an exit pupil diameter of 7 mm. No diffractive surfaces are used, thus avoiding the effect of stray light and ghost image in previous designs. The x-y polynomial freeform surface is adopted in the relay lens for improving the image quality and minimizing the structure size. Analytical expressions to determine the initial structure of HMD has been given, while structure constrains, optimization strategy and tolerance analysis are also described in details. The optical system is easy to manufacture by ordinary method which is beneficial for mass production. Further, a prototype of this compact HMD is successfully implemented with good imaging performance. The compact structure of HMD makes it well suited for integrating a normal glass, significantly advancing the application of HMD in people’s daily life.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Design and fabrication of an off-axis see-through head-mounted display with an x–y polynomial surface

Zhenrong Zheng, Xu Liu, Haifeng Li, and Liang Xu
Appl. Opt. 49(19) 3661-3668 (2010)

Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism

Dewen Cheng, Yongtian Wang, Hong Hua, and M. M. Talha
Appl. Opt. 48(14) 2655-2668 (2009)

Design, tolerance, and fabrication of an optical see-through head-mounted display with free-form surface elements

Qingfeng Wang, Dewen Cheng, Yongtian Wang, Hong Hua, and Guofan Jin
Appl. Opt. 52(7) C88-C99 (2013)

References

  • View by:
  • |
  • |
  • |

  1. H. Hua and B. Javidi, “Augmented Reality: Easy on the Eyes,” Opt. Photonics News 26(2), 26–33 (2015).
    [Crossref]
  2. B. Kress, E. Saeedi, and V. Brac-de-la-Perriere, “The segmentation of the HMD market: Optics for smart glasses, smart eyewear, AR and VR headsets,” Proc. SPIE 9202, 92020D (2014).
  3. D. W. F. van Krevelen and R. Poelman, “A survey of augmented reality technologies, applications and limitations,” Int. J. Virtual Real. 9, 1–20 (2010).
  4. R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. Macintyre, “Recent advances in augmented reality,” IEEE Comput. Graph. Appl. 21(6), 34–47 (2001).
    [Crossref]
  5. C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
    [Crossref]
  6. A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic Near-Eye Displays for Virtual and Augmented Reality,” ACM Trans. Graph. 36(4), 85 (2017).
    [Crossref]
  7. S. Lee, J. Cho, B. Lee, Y. Jo, C. Jang, D. Kim, and B. Lee, “Foveated retinal optimization for see-through near-eye multi-layer displays,” IEEE Access 6(1), 2170–2180 (2018).
    [Crossref]
  8. Google Glasses, https://www.google.com/glass/start/ .
  9. Microsoft Hololens, https://www.microsoft.com/microsofthololens/en/us .
  10. Smart glasses, website http://www.epson.com/cgi-bin/Store/jsp/Landing/moverio-bt-200-smartglasses.do?ref=van_moverio_2014 .
  11. Optinvent, http://www.optinvent.com .
  12. Lumus, http://www.lumus-optical.com .
  13. O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).
    [Crossref]
  14. D. Cheng, Y. Wang, H. Hua, and M. M. Talha, “Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism,” Appl. Opt. 48(14), 2655–2668 (2009).
    [Crossref] [PubMed]
  15. Q. Wang, D. Cheng, Y. Wang, H. Hua, and G. Jin, “Design, tolerance, and fabrication of an optical see-through head-mounted display with free-form surface elements,” Appl. Opt. 52(7), C88–C99 (2013).
    [Crossref] [PubMed]
  16. Y. Amitai, “Extremely compact high-performance HMD based on substrate-guided optical element,” SID 2004 Digest 35(1), 310–313 (2004).
    [Crossref]
  17. Y. Amitai, “A two-dimensional aperture expander for ultra-compact, high-performance head-worn displays,” SID 2005 Digest 36(1), 360–363 (2005).
    [Crossref]
  18. K. Aiki and S. Nakano, “Illumination optical device and virtual image display,” U. S. Patent 2010/0027289.
  19. H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
    [Crossref]
  20. BAE Systems, https://www.baesystems.com/ .
  21. Z. Zheng, X. Liu, H. Li, and L. Xu, “Design and fabrication of an off-axis see-through head-mounted display with an x-y polynomial surface,” Appl. Opt. 49(19), 3661–3668 (2010).
    [Crossref] [PubMed]
  22. J. Wang, Y. Liang, and M. Xu, “Design of a see-through head-mounted display with a freeform surface,” J. Opt. Soc. Korea 19(6), 614–618 (2015).
    [Crossref]
  23. Q. Wang, D. Cheng, Q. Hou, Y. Hu, and Y. Wang, “Stray light and tolerance analysis of an ultrathin waveguide display,” Appl. Opt. 54(28), 8354–8362 (2015).
    [Crossref] [PubMed]
  24. K. W. Zhao and J. W. Pan, “Optical design for a see-through head-mounted display with high visibility,” Opt. Express 24(5), 4749–4760 (2016).
    [Crossref] [PubMed]
  25. M. Guillaumee, S. P. Vahdati, E. Tremblay, A. Mader, G. Bernasconi, V. J. Cadarso, J. Grossenbacher, J. Brugger, R. Sprague, and C. Moser, “Curved holographic combiner for color head worn display,” J. Disp. Technol. 10(6), 444–449 (2014).
    [Crossref]
  26. O. Cakmakci and J. Rolland, “Design and fabrication of a dual-element off-axis near-eye optical magnifier,” Opt. Lett. 32(11), 1363–1365 (2007).
    [Crossref] [PubMed]
  27. J. P. McGuire., “Nest-generation head-mounted display,” Proc. SPIE 7618, 761804 (2010).
    [Crossref]
  28. Y. Nie, R. Mohedano, P. Benítez, J. Chaves, J. C. Miñano, H. Thienpont, and F. Duerr, “Multifield direct design method for ultrashort throw ratio projection optics with two tailored mirrors,” Appl. Opt. 55(14), 3794–3800 (2016).
    [Crossref] [PubMed]
  29. T. Yang, J. Zhu, X. Wu, and G. Jin, “Direct design of freeform surfaces and freeform imaging systems with a point-by-point three-dimensional construction-iteration method,” Opt. Express 23(8), 10233–10246 (2015).
    [Crossref] [PubMed]
  30. H. Peng, D. Cheng, J. Han, C. Xu, W. Song, L. Ha, J. Yang, Q. Hu, and Y. Wang, “Design and fabrication of a holographic head-up display with asymmetric field of view,” Appl. Opt. 53(29), H177–H185 (2014).
    [Crossref] [PubMed]
  31. S. Lee, B. Lee, J. Cho, C. Jang, J. Kim, and B. Lee, “Analysis and implementation of hologram lenses for see-through head-mounted display,” IEEE Photonics Technol. Lett. 29(1), 82–85 (2017).
    [Crossref]
  32. J. Chen, W. Cranton, and M. Fihn, “Example of HWD Architectures: Low-, Mid- and Wide- Field of View Designs,” in Handbook of Visual Display Technology, J. Chen, W. Cranton, and M. Fihn, ed. (Springer, 2012).
  33. J. Pan and H. Hung, “Optical Design of a Compact See-Through Head-Mounted Display with Light Guide Plate,” J. Disp. Technol. 11(3), 223–228 (2015).
    [Crossref]
  34. C. McLaughlin, K. Moffitt, and J. Pfeiffer, “Human factors guidelines for binocular near-to-eye displays,” SID 2003 Digest 34(1), 280–283 (2003).
    [Crossref]
  35. Y. Nie, H. Gross, Y. Zhong, and F. Duerr, “Freeform optical design for a nonscanning corneal imaging system with a convexly curved image,” Appl. Opt. 56(20), 5630–5638 (2017).
    [Crossref] [PubMed]
  36. W. J. Cassarly and J. P. McGuire, “Light distribution apparatus and methods for illuminating optical system,” U.S. patent 7,206,133 (04/17/2007).
  37. J. Yang, W. Liu, W. Lv, D. Zhang, F. He, Z. Wei, and Y. Kang, “Method of achieving a wide field-of-view head-mounted display with small distortion,” Opt. Lett. 38(12), 2035–2037 (2013).
    [Crossref] [PubMed]
  38. Q. Meng, W. Wang, H. Ma, and J. Dong, “Easy-aligned off-axis three-mirror system with wide field of view using freeform surface based on integration of primary and tertiary mirror,” Appl. Opt. 53(14), 3028–3034 (2014).
    [Crossref] [PubMed]
  39. R. Tang, B. Zhang, G. Jin, and J. Zhu, “Multiple surface expansion method for design of freeform imaging systems,” Opt. Express 26(3), 2983–2994 (2018).
    [Crossref] [PubMed]
  40. Q. Meng, H. Wang, K. Wang, Y. Wang, Z. Ji, and D. Wang, “Off-axis three-mirror freeform telescope with a large linear field of view based on an integration mirror,” Appl. Opt. 55(32), 8962–8970 (2016).
    [Crossref] [PubMed]
  41. M. Beier, J. Hartung, T. Peschel, C. Damm, A. Gebhardt, S. Scheiding, D. Stumpf, U. D. Zeitner, S. Risse, R. Eberhardt, and A. Tünnermann, “Development, fabrication, and testing of an anamorphicimaging snap-together freeform telescope,” Appl. Opt. 54(12), 3530–3542 (2015).
    [Crossref]
  42. Y. Zhong, H. Gross, A. Broemel, S. Kirschstein, P. Petruck, and A. Tuennermann, “Investigation of TMA systems with different freeform surfaces,” Proc. SPIE 9626, 96260X (2015).
    [Crossref]
  43. T. Yang, G. Jin, and J. Zhu, “Automated design of freeform imaging systems,” Light Sci. Appl. 6(10), e17081 (2017).
    [Crossref]
  44. J. Zhu, W. Hou, X. Zhang, and G. Jin, “Design of a low F-number freeform off-axis three-mirror system with rectangular field-of-view,” J. Opt. 17(1), 015605 (2015).
    [Crossref]
  45. C. Supranowitz, P. Dumas, T. Nitzsche, J. D. Nelson, B. Light, K. Medicus, and N. Smith, “Fabrication and metrology of high-precision freeform surfaces,” Proc. SPIE 8884, 888411 (2013).
    [Crossref]
  46. Y. Liu, Y. Li, and Z. Cao, “Design of anamorphic magnification high-numerical aperture objective for extreme ultraviolet lithography by curvatures combination method,” Appl. Opt. 55(18), 4917–4923 (2016).
    [Crossref] [PubMed]
  47. M. Estribeau and P. Magnan, “Fast MTF measurement of CMOS imagers using ISO 12233 slanted-edge methodology,” Proc. SPIE 5570, 243–252 (2004).
    [Crossref]

2018 (2)

S. Lee, J. Cho, B. Lee, Y. Jo, C. Jang, D. Kim, and B. Lee, “Foveated retinal optimization for see-through near-eye multi-layer displays,” IEEE Access 6(1), 2170–2180 (2018).
[Crossref]

R. Tang, B. Zhang, G. Jin, and J. Zhu, “Multiple surface expansion method for design of freeform imaging systems,” Opt. Express 26(3), 2983–2994 (2018).
[Crossref] [PubMed]

2017 (5)

T. Yang, G. Jin, and J. Zhu, “Automated design of freeform imaging systems,” Light Sci. Appl. 6(10), e17081 (2017).
[Crossref]

S. Lee, B. Lee, J. Cho, C. Jang, J. Kim, and B. Lee, “Analysis and implementation of hologram lenses for see-through head-mounted display,” IEEE Photonics Technol. Lett. 29(1), 82–85 (2017).
[Crossref]

Y. Nie, H. Gross, Y. Zhong, and F. Duerr, “Freeform optical design for a nonscanning corneal imaging system with a convexly curved image,” Appl. Opt. 56(20), 5630–5638 (2017).
[Crossref] [PubMed]

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
[Crossref]

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic Near-Eye Displays for Virtual and Augmented Reality,” ACM Trans. Graph. 36(4), 85 (2017).
[Crossref]

2016 (4)

2015 (8)

M. Beier, J. Hartung, T. Peschel, C. Damm, A. Gebhardt, S. Scheiding, D. Stumpf, U. D. Zeitner, S. Risse, R. Eberhardt, and A. Tünnermann, “Development, fabrication, and testing of an anamorphicimaging snap-together freeform telescope,” Appl. Opt. 54(12), 3530–3542 (2015).
[Crossref]

Y. Zhong, H. Gross, A. Broemel, S. Kirschstein, P. Petruck, and A. Tuennermann, “Investigation of TMA systems with different freeform surfaces,” Proc. SPIE 9626, 96260X (2015).
[Crossref]

J. Zhu, W. Hou, X. Zhang, and G. Jin, “Design of a low F-number freeform off-axis three-mirror system with rectangular field-of-view,” J. Opt. 17(1), 015605 (2015).
[Crossref]

T. Yang, J. Zhu, X. Wu, and G. Jin, “Direct design of freeform surfaces and freeform imaging systems with a point-by-point three-dimensional construction-iteration method,” Opt. Express 23(8), 10233–10246 (2015).
[Crossref] [PubMed]

J. Pan and H. Hung, “Optical Design of a Compact See-Through Head-Mounted Display with Light Guide Plate,” J. Disp. Technol. 11(3), 223–228 (2015).
[Crossref]

H. Hua and B. Javidi, “Augmented Reality: Easy on the Eyes,” Opt. Photonics News 26(2), 26–33 (2015).
[Crossref]

J. Wang, Y. Liang, and M. Xu, “Design of a see-through head-mounted display with a freeform surface,” J. Opt. Soc. Korea 19(6), 614–618 (2015).
[Crossref]

Q. Wang, D. Cheng, Q. Hou, Y. Hu, and Y. Wang, “Stray light and tolerance analysis of an ultrathin waveguide display,” Appl. Opt. 54(28), 8354–8362 (2015).
[Crossref] [PubMed]

2014 (4)

B. Kress, E. Saeedi, and V. Brac-de-la-Perriere, “The segmentation of the HMD market: Optics for smart glasses, smart eyewear, AR and VR headsets,” Proc. SPIE 9202, 92020D (2014).

H. Peng, D. Cheng, J. Han, C. Xu, W. Song, L. Ha, J. Yang, Q. Hu, and Y. Wang, “Design and fabrication of a holographic head-up display with asymmetric field of view,” Appl. Opt. 53(29), H177–H185 (2014).
[Crossref] [PubMed]

M. Guillaumee, S. P. Vahdati, E. Tremblay, A. Mader, G. Bernasconi, V. J. Cadarso, J. Grossenbacher, J. Brugger, R. Sprague, and C. Moser, “Curved holographic combiner for color head worn display,” J. Disp. Technol. 10(6), 444–449 (2014).
[Crossref]

Q. Meng, W. Wang, H. Ma, and J. Dong, “Easy-aligned off-axis three-mirror system with wide field of view using freeform surface based on integration of primary and tertiary mirror,” Appl. Opt. 53(14), 3028–3034 (2014).
[Crossref] [PubMed]

2013 (3)

2010 (3)

Z. Zheng, X. Liu, H. Li, and L. Xu, “Design and fabrication of an off-axis see-through head-mounted display with an x-y polynomial surface,” Appl. Opt. 49(19), 3661–3668 (2010).
[Crossref] [PubMed]

D. W. F. van Krevelen and R. Poelman, “A survey of augmented reality technologies, applications and limitations,” Int. J. Virtual Real. 9, 1–20 (2010).

J. P. McGuire., “Nest-generation head-mounted display,” Proc. SPIE 7618, 761804 (2010).
[Crossref]

2009 (2)

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

D. Cheng, Y. Wang, H. Hua, and M. M. Talha, “Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism,” Appl. Opt. 48(14), 2655–2668 (2009).
[Crossref] [PubMed]

2007 (1)

2006 (1)

O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).
[Crossref]

2005 (1)

Y. Amitai, “A two-dimensional aperture expander for ultra-compact, high-performance head-worn displays,” SID 2005 Digest 36(1), 360–363 (2005).
[Crossref]

2004 (2)

Y. Amitai, “Extremely compact high-performance HMD based on substrate-guided optical element,” SID 2004 Digest 35(1), 310–313 (2004).
[Crossref]

M. Estribeau and P. Magnan, “Fast MTF measurement of CMOS imagers using ISO 12233 slanted-edge methodology,” Proc. SPIE 5570, 243–252 (2004).
[Crossref]

2003 (1)

C. McLaughlin, K. Moffitt, and J. Pfeiffer, “Human factors guidelines for binocular near-to-eye displays,” SID 2003 Digest 34(1), 280–283 (2003).
[Crossref]

2001 (1)

R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. Macintyre, “Recent advances in augmented reality,” IEEE Comput. Graph. Appl. 21(6), 34–47 (2001).
[Crossref]

Aiki, K.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Akutsu, K.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Amitai, Y.

Y. Amitai, “A two-dimensional aperture expander for ultra-compact, high-performance head-worn displays,” SID 2005 Digest 36(1), 360–363 (2005).
[Crossref]

Y. Amitai, “Extremely compact high-performance HMD based on substrate-guided optical element,” SID 2004 Digest 35(1), 310–313 (2004).
[Crossref]

Azuma, R.

R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. Macintyre, “Recent advances in augmented reality,” IEEE Comput. Graph. Appl. 21(6), 34–47 (2001).
[Crossref]

Baillot, Y.

R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. Macintyre, “Recent advances in augmented reality,” IEEE Comput. Graph. Appl. 21(6), 34–47 (2001).
[Crossref]

Bang, K.

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
[Crossref]

Behringer, R.

R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. Macintyre, “Recent advances in augmented reality,” IEEE Comput. Graph. Appl. 21(6), 34–47 (2001).
[Crossref]

Beier, M.

Benítez, P.

Bernasconi, G.

M. Guillaumee, S. P. Vahdati, E. Tremblay, A. Mader, G. Bernasconi, V. J. Cadarso, J. Grossenbacher, J. Brugger, R. Sprague, and C. Moser, “Curved holographic combiner for color head worn display,” J. Disp. Technol. 10(6), 444–449 (2014).
[Crossref]

Brac-de-la-Perriere, V.

B. Kress, E. Saeedi, and V. Brac-de-la-Perriere, “The segmentation of the HMD market: Optics for smart glasses, smart eyewear, AR and VR headsets,” Proc. SPIE 9202, 92020D (2014).

Broemel, A.

Y. Zhong, H. Gross, A. Broemel, S. Kirschstein, P. Petruck, and A. Tuennermann, “Investigation of TMA systems with different freeform surfaces,” Proc. SPIE 9626, 96260X (2015).
[Crossref]

Brugger, J.

M. Guillaumee, S. P. Vahdati, E. Tremblay, A. Mader, G. Bernasconi, V. J. Cadarso, J. Grossenbacher, J. Brugger, R. Sprague, and C. Moser, “Curved holographic combiner for color head worn display,” J. Disp. Technol. 10(6), 444–449 (2014).
[Crossref]

Cadarso, V. J.

M. Guillaumee, S. P. Vahdati, E. Tremblay, A. Mader, G. Bernasconi, V. J. Cadarso, J. Grossenbacher, J. Brugger, R. Sprague, and C. Moser, “Curved holographic combiner for color head worn display,” J. Disp. Technol. 10(6), 444–449 (2014).
[Crossref]

Cakmakci, O.

Cao, Z.

Chaves, J.

Cheng, D.

Cho, J.

S. Lee, J. Cho, B. Lee, Y. Jo, C. Jang, D. Kim, and B. Lee, “Foveated retinal optimization for see-through near-eye multi-layer displays,” IEEE Access 6(1), 2170–2180 (2018).
[Crossref]

S. Lee, B. Lee, J. Cho, C. Jang, J. Kim, and B. Lee, “Analysis and implementation of hologram lenses for see-through head-mounted display,” IEEE Photonics Technol. Lett. 29(1), 82–85 (2017).
[Crossref]

Damm, C.

Dong, J.

Duerr, F.

Dumas, P.

C. Supranowitz, P. Dumas, T. Nitzsche, J. D. Nelson, B. Light, K. Medicus, and N. Smith, “Fabrication and metrology of high-precision freeform surfaces,” Proc. SPIE 8884, 888411 (2013).
[Crossref]

Eberhardt, R.

Estribeau, M.

M. Estribeau and P. Magnan, “Fast MTF measurement of CMOS imagers using ISO 12233 slanted-edge methodology,” Proc. SPIE 5570, 243–252 (2004).
[Crossref]

Feiner, S.

R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. Macintyre, “Recent advances in augmented reality,” IEEE Comput. Graph. Appl. 21(6), 34–47 (2001).
[Crossref]

Gebhardt, A.

Georgiou, A.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic Near-Eye Displays for Virtual and Augmented Reality,” ACM Trans. Graph. 36(4), 85 (2017).
[Crossref]

Gross, H.

Y. Nie, H. Gross, Y. Zhong, and F. Duerr, “Freeform optical design for a nonscanning corneal imaging system with a convexly curved image,” Appl. Opt. 56(20), 5630–5638 (2017).
[Crossref] [PubMed]

Y. Zhong, H. Gross, A. Broemel, S. Kirschstein, P. Petruck, and A. Tuennermann, “Investigation of TMA systems with different freeform surfaces,” Proc. SPIE 9626, 96260X (2015).
[Crossref]

Grossenbacher, J.

M. Guillaumee, S. P. Vahdati, E. Tremblay, A. Mader, G. Bernasconi, V. J. Cadarso, J. Grossenbacher, J. Brugger, R. Sprague, and C. Moser, “Curved holographic combiner for color head worn display,” J. Disp. Technol. 10(6), 444–449 (2014).
[Crossref]

Guillaumee, M.

M. Guillaumee, S. P. Vahdati, E. Tremblay, A. Mader, G. Bernasconi, V. J. Cadarso, J. Grossenbacher, J. Brugger, R. Sprague, and C. Moser, “Curved holographic combiner for color head worn display,” J. Disp. Technol. 10(6), 444–449 (2014).
[Crossref]

Ha, L.

Han, J.

Hartung, J.

He, F.

Hou, Q.

Hou, W.

J. Zhu, W. Hou, X. Zhang, and G. Jin, “Design of a low F-number freeform off-axis three-mirror system with rectangular field-of-view,” J. Opt. 17(1), 015605 (2015).
[Crossref]

Hu, Q.

Hu, Y.

Hua, H.

Hung, H.

J. Pan and H. Hung, “Optical Design of a Compact See-Through Head-Mounted Display with Light Guide Plate,” J. Disp. Technol. 11(3), 223–228 (2015).
[Crossref]

Jang, C.

S. Lee, J. Cho, B. Lee, Y. Jo, C. Jang, D. Kim, and B. Lee, “Foveated retinal optimization for see-through near-eye multi-layer displays,” IEEE Access 6(1), 2170–2180 (2018).
[Crossref]

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
[Crossref]

S. Lee, B. Lee, J. Cho, C. Jang, J. Kim, and B. Lee, “Analysis and implementation of hologram lenses for see-through head-mounted display,” IEEE Photonics Technol. Lett. 29(1), 82–85 (2017).
[Crossref]

Javidi, B.

H. Hua and B. Javidi, “Augmented Reality: Easy on the Eyes,” Opt. Photonics News 26(2), 26–33 (2015).
[Crossref]

Ji, Z.

Jin, G.

Jo, Y.

S. Lee, J. Cho, B. Lee, Y. Jo, C. Jang, D. Kim, and B. Lee, “Foveated retinal optimization for see-through near-eye multi-layer displays,” IEEE Access 6(1), 2170–2180 (2018).
[Crossref]

Julier, S.

R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. Macintyre, “Recent advances in augmented reality,” IEEE Comput. Graph. Appl. 21(6), 34–47 (2001).
[Crossref]

Kang, Y.

Kim, D.

S. Lee, J. Cho, B. Lee, Y. Jo, C. Jang, D. Kim, and B. Lee, “Foveated retinal optimization for see-through near-eye multi-layer displays,” IEEE Access 6(1), 2170–2180 (2018).
[Crossref]

Kim, J.

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
[Crossref]

S. Lee, B. Lee, J. Cho, C. Jang, J. Kim, and B. Lee, “Analysis and implementation of hologram lenses for see-through head-mounted display,” IEEE Photonics Technol. Lett. 29(1), 82–85 (2017).
[Crossref]

Kirschstein, S.

Y. Zhong, H. Gross, A. Broemel, S. Kirschstein, P. Petruck, and A. Tuennermann, “Investigation of TMA systems with different freeform surfaces,” Proc. SPIE 9626, 96260X (2015).
[Crossref]

Kollin, J. S.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic Near-Eye Displays for Virtual and Augmented Reality,” ACM Trans. Graph. 36(4), 85 (2017).
[Crossref]

Kress, B.

B. Kress, E. Saeedi, and V. Brac-de-la-Perriere, “The segmentation of the HMD market: Optics for smart glasses, smart eyewear, AR and VR headsets,” Proc. SPIE 9202, 92020D (2014).

Kuwahara, M.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Lee, B.

S. Lee, J. Cho, B. Lee, Y. Jo, C. Jang, D. Kim, and B. Lee, “Foveated retinal optimization for see-through near-eye multi-layer displays,” IEEE Access 6(1), 2170–2180 (2018).
[Crossref]

S. Lee, J. Cho, B. Lee, Y. Jo, C. Jang, D. Kim, and B. Lee, “Foveated retinal optimization for see-through near-eye multi-layer displays,” IEEE Access 6(1), 2170–2180 (2018).
[Crossref]

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
[Crossref]

S. Lee, B. Lee, J. Cho, C. Jang, J. Kim, and B. Lee, “Analysis and implementation of hologram lenses for see-through head-mounted display,” IEEE Photonics Technol. Lett. 29(1), 82–85 (2017).
[Crossref]

S. Lee, B. Lee, J. Cho, C. Jang, J. Kim, and B. Lee, “Analysis and implementation of hologram lenses for see-through head-mounted display,” IEEE Photonics Technol. Lett. 29(1), 82–85 (2017).
[Crossref]

Lee, S.

S. Lee, J. Cho, B. Lee, Y. Jo, C. Jang, D. Kim, and B. Lee, “Foveated retinal optimization for see-through near-eye multi-layer displays,” IEEE Access 6(1), 2170–2180 (2018).
[Crossref]

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
[Crossref]

S. Lee, B. Lee, J. Cho, C. Jang, J. Kim, and B. Lee, “Analysis and implementation of hologram lenses for see-through head-mounted display,” IEEE Photonics Technol. Lett. 29(1), 82–85 (2017).
[Crossref]

Li, H.

Li, Y.

Liang, Y.

Light, B.

C. Supranowitz, P. Dumas, T. Nitzsche, J. D. Nelson, B. Light, K. Medicus, and N. Smith, “Fabrication and metrology of high-precision freeform surfaces,” Proc. SPIE 8884, 888411 (2013).
[Crossref]

Liu, W.

Liu, X.

Liu, Y.

Lv, W.

Ma, H.

Macintyre, B.

R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. Macintyre, “Recent advances in augmented reality,” IEEE Comput. Graph. Appl. 21(6), 34–47 (2001).
[Crossref]

Mader, A.

M. Guillaumee, S. P. Vahdati, E. Tremblay, A. Mader, G. Bernasconi, V. J. Cadarso, J. Grossenbacher, J. Brugger, R. Sprague, and C. Moser, “Curved holographic combiner for color head worn display,” J. Disp. Technol. 10(6), 444–449 (2014).
[Crossref]

Magnan, P.

M. Estribeau and P. Magnan, “Fast MTF measurement of CMOS imagers using ISO 12233 slanted-edge methodology,” Proc. SPIE 5570, 243–252 (2004).
[Crossref]

Maimone, A.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic Near-Eye Displays for Virtual and Augmented Reality,” ACM Trans. Graph. 36(4), 85 (2017).
[Crossref]

Matsumura, I.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

McGuire, J. P.

J. P. McGuire., “Nest-generation head-mounted display,” Proc. SPIE 7618, 761804 (2010).
[Crossref]

McLaughlin, C.

C. McLaughlin, K. Moffitt, and J. Pfeiffer, “Human factors guidelines for binocular near-to-eye displays,” SID 2003 Digest 34(1), 280–283 (2003).
[Crossref]

Medicus, K.

C. Supranowitz, P. Dumas, T. Nitzsche, J. D. Nelson, B. Light, K. Medicus, and N. Smith, “Fabrication and metrology of high-precision freeform surfaces,” Proc. SPIE 8884, 888411 (2013).
[Crossref]

Meng, Q.

Miñano, J. C.

Moffitt, K.

C. McLaughlin, K. Moffitt, and J. Pfeiffer, “Human factors guidelines for binocular near-to-eye displays,” SID 2003 Digest 34(1), 280–283 (2003).
[Crossref]

Mohedano, R.

Moon, S.

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
[Crossref]

Moser, C.

M. Guillaumee, S. P. Vahdati, E. Tremblay, A. Mader, G. Bernasconi, V. J. Cadarso, J. Grossenbacher, J. Brugger, R. Sprague, and C. Moser, “Curved holographic combiner for color head worn display,” J. Disp. Technol. 10(6), 444–449 (2014).
[Crossref]

Mukawa, H.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Nakano, S.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Nelson, J. D.

C. Supranowitz, P. Dumas, T. Nitzsche, J. D. Nelson, B. Light, K. Medicus, and N. Smith, “Fabrication and metrology of high-precision freeform surfaces,” Proc. SPIE 8884, 888411 (2013).
[Crossref]

Nie, Y.

Nitzsche, T.

C. Supranowitz, P. Dumas, T. Nitzsche, J. D. Nelson, B. Light, K. Medicus, and N. Smith, “Fabrication and metrology of high-precision freeform surfaces,” Proc. SPIE 8884, 888411 (2013).
[Crossref]

Pan, J.

J. Pan and H. Hung, “Optical Design of a Compact See-Through Head-Mounted Display with Light Guide Plate,” J. Disp. Technol. 11(3), 223–228 (2015).
[Crossref]

Pan, J. W.

Peng, H.

Peschel, T.

Petruck, P.

Y. Zhong, H. Gross, A. Broemel, S. Kirschstein, P. Petruck, and A. Tuennermann, “Investigation of TMA systems with different freeform surfaces,” Proc. SPIE 9626, 96260X (2015).
[Crossref]

Pfeiffer, J.

C. McLaughlin, K. Moffitt, and J. Pfeiffer, “Human factors guidelines for binocular near-to-eye displays,” SID 2003 Digest 34(1), 280–283 (2003).
[Crossref]

Poelman, R.

D. W. F. van Krevelen and R. Poelman, “A survey of augmented reality technologies, applications and limitations,” Int. J. Virtual Real. 9, 1–20 (2010).

Risse, S.

Rolland, J.

Saeedi, E.

B. Kress, E. Saeedi, and V. Brac-de-la-Perriere, “The segmentation of the HMD market: Optics for smart glasses, smart eyewear, AR and VR headsets,” Proc. SPIE 9202, 92020D (2014).

Scheiding, S.

Smith, N.

C. Supranowitz, P. Dumas, T. Nitzsche, J. D. Nelson, B. Light, K. Medicus, and N. Smith, “Fabrication and metrology of high-precision freeform surfaces,” Proc. SPIE 8884, 888411 (2013).
[Crossref]

Song, W.

Sprague, R.

M. Guillaumee, S. P. Vahdati, E. Tremblay, A. Mader, G. Bernasconi, V. J. Cadarso, J. Grossenbacher, J. Brugger, R. Sprague, and C. Moser, “Curved holographic combiner for color head worn display,” J. Disp. Technol. 10(6), 444–449 (2014).
[Crossref]

Stumpf, D.

Supranowitz, C.

C. Supranowitz, P. Dumas, T. Nitzsche, J. D. Nelson, B. Light, K. Medicus, and N. Smith, “Fabrication and metrology of high-precision freeform surfaces,” Proc. SPIE 8884, 888411 (2013).
[Crossref]

Talha, M. M.

Tang, R.

Thienpont, H.

Tremblay, E.

M. Guillaumee, S. P. Vahdati, E. Tremblay, A. Mader, G. Bernasconi, V. J. Cadarso, J. Grossenbacher, J. Brugger, R. Sprague, and C. Moser, “Curved holographic combiner for color head worn display,” J. Disp. Technol. 10(6), 444–449 (2014).
[Crossref]

Tuennermann, A.

Y. Zhong, H. Gross, A. Broemel, S. Kirschstein, P. Petruck, and A. Tuennermann, “Investigation of TMA systems with different freeform surfaces,” Proc. SPIE 9626, 96260X (2015).
[Crossref]

Tünnermann, A.

Vahdati, S. P.

M. Guillaumee, S. P. Vahdati, E. Tremblay, A. Mader, G. Bernasconi, V. J. Cadarso, J. Grossenbacher, J. Brugger, R. Sprague, and C. Moser, “Curved holographic combiner for color head worn display,” J. Disp. Technol. 10(6), 444–449 (2014).
[Crossref]

van Krevelen, D. W. F.

D. W. F. van Krevelen and R. Poelman, “A survey of augmented reality technologies, applications and limitations,” Int. J. Virtual Real. 9, 1–20 (2010).

Wang, D.

Wang, H.

Wang, J.

Wang, K.

Wang, Q.

Wang, W.

Wang, Y.

Wei, Z.

Wu, X.

Xu, C.

Xu, L.

Xu, M.

Yang, J.

Yang, T.

Yoshida, T.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Zeitner, U. D.

Zhang, B.

Zhang, D.

Zhang, X.

J. Zhu, W. Hou, X. Zhang, and G. Jin, “Design of a low F-number freeform off-axis three-mirror system with rectangular field-of-view,” J. Opt. 17(1), 015605 (2015).
[Crossref]

Zhao, K. W.

Zheng, Z.

Zhong, Y.

Y. Nie, H. Gross, Y. Zhong, and F. Duerr, “Freeform optical design for a nonscanning corneal imaging system with a convexly curved image,” Appl. Opt. 56(20), 5630–5638 (2017).
[Crossref] [PubMed]

Y. Zhong, H. Gross, A. Broemel, S. Kirschstein, P. Petruck, and A. Tuennermann, “Investigation of TMA systems with different freeform surfaces,” Proc. SPIE 9626, 96260X (2015).
[Crossref]

Zhu, J.

R. Tang, B. Zhang, G. Jin, and J. Zhu, “Multiple surface expansion method for design of freeform imaging systems,” Opt. Express 26(3), 2983–2994 (2018).
[Crossref] [PubMed]

T. Yang, G. Jin, and J. Zhu, “Automated design of freeform imaging systems,” Light Sci. Appl. 6(10), e17081 (2017).
[Crossref]

J. Zhu, W. Hou, X. Zhang, and G. Jin, “Design of a low F-number freeform off-axis three-mirror system with rectangular field-of-view,” J. Opt. 17(1), 015605 (2015).
[Crossref]

T. Yang, J. Zhu, X. Wu, and G. Jin, “Direct design of freeform surfaces and freeform imaging systems with a point-by-point three-dimensional construction-iteration method,” Opt. Express 23(8), 10233–10246 (2015).
[Crossref] [PubMed]

ACM Trans. Graph. (2)

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
[Crossref]

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic Near-Eye Displays for Virtual and Augmented Reality,” ACM Trans. Graph. 36(4), 85 (2017).
[Crossref]

Appl. Opt. (11)

D. Cheng, Y. Wang, H. Hua, and M. M. Talha, “Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism,” Appl. Opt. 48(14), 2655–2668 (2009).
[Crossref] [PubMed]

Q. Wang, D. Cheng, Y. Wang, H. Hua, and G. Jin, “Design, tolerance, and fabrication of an optical see-through head-mounted display with free-form surface elements,” Appl. Opt. 52(7), C88–C99 (2013).
[Crossref] [PubMed]

Z. Zheng, X. Liu, H. Li, and L. Xu, “Design and fabrication of an off-axis see-through head-mounted display with an x-y polynomial surface,” Appl. Opt. 49(19), 3661–3668 (2010).
[Crossref] [PubMed]

Q. Wang, D. Cheng, Q. Hou, Y. Hu, and Y. Wang, “Stray light and tolerance analysis of an ultrathin waveguide display,” Appl. Opt. 54(28), 8354–8362 (2015).
[Crossref] [PubMed]

Y. Nie, R. Mohedano, P. Benítez, J. Chaves, J. C. Miñano, H. Thienpont, and F. Duerr, “Multifield direct design method for ultrashort throw ratio projection optics with two tailored mirrors,” Appl. Opt. 55(14), 3794–3800 (2016).
[Crossref] [PubMed]

H. Peng, D. Cheng, J. Han, C. Xu, W. Song, L. Ha, J. Yang, Q. Hu, and Y. Wang, “Design and fabrication of a holographic head-up display with asymmetric field of view,” Appl. Opt. 53(29), H177–H185 (2014).
[Crossref] [PubMed]

Y. Nie, H. Gross, Y. Zhong, and F. Duerr, “Freeform optical design for a nonscanning corneal imaging system with a convexly curved image,” Appl. Opt. 56(20), 5630–5638 (2017).
[Crossref] [PubMed]

Q. Meng, W. Wang, H. Ma, and J. Dong, “Easy-aligned off-axis three-mirror system with wide field of view using freeform surface based on integration of primary and tertiary mirror,” Appl. Opt. 53(14), 3028–3034 (2014).
[Crossref] [PubMed]

Q. Meng, H. Wang, K. Wang, Y. Wang, Z. Ji, and D. Wang, “Off-axis three-mirror freeform telescope with a large linear field of view based on an integration mirror,” Appl. Opt. 55(32), 8962–8970 (2016).
[Crossref] [PubMed]

M. Beier, J. Hartung, T. Peschel, C. Damm, A. Gebhardt, S. Scheiding, D. Stumpf, U. D. Zeitner, S. Risse, R. Eberhardt, and A. Tünnermann, “Development, fabrication, and testing of an anamorphicimaging snap-together freeform telescope,” Appl. Opt. 54(12), 3530–3542 (2015).
[Crossref]

Y. Liu, Y. Li, and Z. Cao, “Design of anamorphic magnification high-numerical aperture objective for extreme ultraviolet lithography by curvatures combination method,” Appl. Opt. 55(18), 4917–4923 (2016).
[Crossref] [PubMed]

IEEE Access (1)

S. Lee, J. Cho, B. Lee, Y. Jo, C. Jang, D. Kim, and B. Lee, “Foveated retinal optimization for see-through near-eye multi-layer displays,” IEEE Access 6(1), 2170–2180 (2018).
[Crossref]

IEEE Comput. Graph. Appl. (1)

R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. Macintyre, “Recent advances in augmented reality,” IEEE Comput. Graph. Appl. 21(6), 34–47 (2001).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S. Lee, B. Lee, J. Cho, C. Jang, J. Kim, and B. Lee, “Analysis and implementation of hologram lenses for see-through head-mounted display,” IEEE Photonics Technol. Lett. 29(1), 82–85 (2017).
[Crossref]

Int. J. Virtual Real. (1)

D. W. F. van Krevelen and R. Poelman, “A survey of augmented reality technologies, applications and limitations,” Int. J. Virtual Real. 9, 1–20 (2010).

J. Disp. Technol. (3)

J. Pan and H. Hung, “Optical Design of a Compact See-Through Head-Mounted Display with Light Guide Plate,” J. Disp. Technol. 11(3), 223–228 (2015).
[Crossref]

M. Guillaumee, S. P. Vahdati, E. Tremblay, A. Mader, G. Bernasconi, V. J. Cadarso, J. Grossenbacher, J. Brugger, R. Sprague, and C. Moser, “Curved holographic combiner for color head worn display,” J. Disp. Technol. 10(6), 444–449 (2014).
[Crossref]

O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).
[Crossref]

J. Opt. (1)

J. Zhu, W. Hou, X. Zhang, and G. Jin, “Design of a low F-number freeform off-axis three-mirror system with rectangular field-of-view,” J. Opt. 17(1), 015605 (2015).
[Crossref]

J. Opt. Soc. Korea (1)

J. Soc. Inf. Disp. (1)

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Light Sci. Appl. (1)

T. Yang, G. Jin, and J. Zhu, “Automated design of freeform imaging systems,” Light Sci. Appl. 6(10), e17081 (2017).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Opt. Photonics News (1)

H. Hua and B. Javidi, “Augmented Reality: Easy on the Eyes,” Opt. Photonics News 26(2), 26–33 (2015).
[Crossref]

Proc. SPIE (5)

B. Kress, E. Saeedi, and V. Brac-de-la-Perriere, “The segmentation of the HMD market: Optics for smart glasses, smart eyewear, AR and VR headsets,” Proc. SPIE 9202, 92020D (2014).

J. P. McGuire., “Nest-generation head-mounted display,” Proc. SPIE 7618, 761804 (2010).
[Crossref]

C. Supranowitz, P. Dumas, T. Nitzsche, J. D. Nelson, B. Light, K. Medicus, and N. Smith, “Fabrication and metrology of high-precision freeform surfaces,” Proc. SPIE 8884, 888411 (2013).
[Crossref]

Y. Zhong, H. Gross, A. Broemel, S. Kirschstein, P. Petruck, and A. Tuennermann, “Investigation of TMA systems with different freeform surfaces,” Proc. SPIE 9626, 96260X (2015).
[Crossref]

M. Estribeau and P. Magnan, “Fast MTF measurement of CMOS imagers using ISO 12233 slanted-edge methodology,” Proc. SPIE 5570, 243–252 (2004).
[Crossref]

SID 2003 Digest (1)

C. McLaughlin, K. Moffitt, and J. Pfeiffer, “Human factors guidelines for binocular near-to-eye displays,” SID 2003 Digest 34(1), 280–283 (2003).
[Crossref]

SID 2004 Digest (1)

Y. Amitai, “Extremely compact high-performance HMD based on substrate-guided optical element,” SID 2004 Digest 35(1), 310–313 (2004).
[Crossref]

SID 2005 Digest (1)

Y. Amitai, “A two-dimensional aperture expander for ultra-compact, high-performance head-worn displays,” SID 2005 Digest 36(1), 360–363 (2005).
[Crossref]

Other (9)

K. Aiki and S. Nakano, “Illumination optical device and virtual image display,” U. S. Patent 2010/0027289.

Google Glasses, https://www.google.com/glass/start/ .

Microsoft Hololens, https://www.microsoft.com/microsofthololens/en/us .

Smart glasses, website http://www.epson.com/cgi-bin/Store/jsp/Landing/moverio-bt-200-smartglasses.do?ref=van_moverio_2014 .

Optinvent, http://www.optinvent.com .

Lumus, http://www.lumus-optical.com .

W. J. Cassarly and J. P. McGuire, “Light distribution apparatus and methods for illuminating optical system,” U.S. patent 7,206,133 (04/17/2007).

J. Chen, W. Cranton, and M. Fihn, “Example of HWD Architectures: Low-, Mid- and Wide- Field of View Designs,” in Handbook of Visual Display Technology, J. Chen, W. Cranton, and M. Fihn, ed. (Springer, 2012).

BAE Systems, https://www.baesystems.com/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 Layout of the off-axis compact HMD optical system.
Fig. 2
Fig. 2 The frame constrains of the HMD in binocular configuration.
Fig. 3
Fig. 3 Sketch of a coaxial HMD system.
Fig. 4
Fig. 4 Layout of coaxial initial structure.
Fig. 5
Fig. 5 Design process of the off-axis compact HMD optical system.
Fig. 6
Fig. 6 Ultimate structure of the compact HMD.
Fig. 7
Fig. 7 The 3D model of the compact off-axis HMD with a model of human head.
Fig. 8
Fig. 8 (a) MTF plot of the center fields; and (b) MTF plot of the marginal fields.
Fig. 9
Fig. 9 (a) RMS spot diameter across the full fields; and (b) the distortion grid of the optical system.
Fig. 10
Fig. 10 The design of the see-through combiner (a) Layout; (b) MTF plot; and (c) distortion grid.
Fig. 11
Fig. 11 Local curvatures of the freeform surface: (a) x axis; and (b) y axis.
Fig. 12
Fig. 12 Cumulative probability of MTF values at different fields.
Fig. 13
Fig. 13 (a) Prototype of the compact off-axis HMD; and (b) the fabricated freeform lens.
Fig. 14
Fig. 14 The experiment demonstration: (a) the real scene through the combiner captured by camera; (b) the virtual image reflected by the combiner from the OLED captured by camera; (c) MTF curve of the real world path; and (d) MTF curve of the real world path.
Fig. 15
Fig. 15 Augmented reality experiment result captured at the pupil by the camera.

Tables (6)

Tables Icon

Table 1 Specifications of the ultra-compact off-axis HMD

Tables Icon

Table 2 Initial configuration parameters

Tables Icon

Table 3 Optical system parameters

Tables Icon

Table 4 Coefficients of even aspherical and freeform surfaces

Tables Icon

Table 5 Five most sensitive tolerance items influencing the optical system

Tables Icon

Table 6 Tolerances of the compact off-axis of HMD

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

{ z D - z A 70 y P - y C 25 y D - y B 60
1 l' + 1 l = 2 r
f c ' =r/2
f ' =β f c '
z(x,y)= c r 2 1+ 1(1+k) c 2 r 2 + i=1 N A i E i (x,y) ,
z(x,y)= c r 2 1+ 1(1+k) c 2 r 2 + A 3 x 0 y 1 + A 4 x 2 y 0 + A 6 x 0 y 2 + A 28 x 0 y 6 ,

Metrics