Abstract

An optical/nuclear hybrid surgical technique using ICG-99mTc-nanocolloid can improve lesion detectability by detecting both fluorescence and gamma signals. However, a hybrid multimodal laparoscope that can obtain both NIR and gamma images is not available yet. In this work, we present a proof-of-concept study of a prototype multimodal laparoscope that can provide simultaneous NIR/gamma/visible imaging using wavelength division multiplexing. The performances of optical and gamma imaging were evaluated using a USAF 1951 negative resolution target and 99mTc-filled tumor-like sources, respectively. Simultaneous NIR/gamma/visible images of two Eppendorf tubes containing a mixture of 99mTc-ICG are presented.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dual-mode laparoscopic fluorescence image-guided surgery using a single camera

Daniel C. Gray, Evgenia M. Kim, Victoria E. Cotero, Anshika Bajaj, V. Paul Staudinger, Cristina A. Tan Hehir, and Siavash Yazdanfar
Biomed. Opt. Express 3(8) 1880-1890 (2012)

Electrically tunable fluidic lens imaging system for laparoscopic fluorescence-guided surgery

Davide Volpi, Iain D. C. Tullis, Paul R. Barber, Edyta M. Augustyniak, Sean C. Smart, Katherine A. Vallis, and Borivoj Vojnovic
Biomed. Opt. Express 8(7) 3232-3247 (2017)

Towards clinically translatable NIR fluorescence molecular guidance for colonoscopy

P. Beatriz Garcia-Allende, Jürgen Glatz, Maximilian Koch, Jolien J. Tjalma, Elmire Hartmans, Anton G.T. Terwisscha van Scheltinga, Panagiotis Symvoulidis, Gooitzen M. van Dam, Wouter B. Nagengast, and Vasilis Ntziachristos
Biomed. Opt. Express 5(1) 78-92 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. L. Vahrmeijer, M. Hutteman, J. R. van der Vorst, C. J. van de Velde, and J. V. Frangioni, “Image-guided cancer surgery using near-infrared fluorescence,” Nat. Rev. Clin. Oncol. 10(9), 507–518 (2013).
    [Crossref] [PubMed]
  2. H. G. van der Poel, T. Buckle, O. R. Brouwer, R. A. Valdés Olmos, and F. W. van Leeuwen, “Intraoperative laparoscopic fluorescence guidance to the sentinel lymph node in prostate cancer patients: clinical proof of concept of an integrated functional imaging approach using a multimodal tracer,” Eur. Urol. 60(4), 826–833 (2011).
    [Crossref] [PubMed]
  3. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
    [Crossref]
  4. R. Weissleder, “A clearer vision for in vivo imaging,” Nat. Biotechnol. 19(4), 316–317 (2001).
    [Crossref] [PubMed]
  5. J. V. Frangioni, “In vivo near-infrared fluorescence imaging,” Curr. Opin. Chem. Biol. 7(5), 626–634 (2003).
    [Crossref] [PubMed]
  6. C. Chi, Y. Du, J. Ye, D. Kou, J. Qiu, J. Wang, J. Tian, and X. Chen, “Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology,” Theranostics 4(11), 1072–1084 (2014).
    [Crossref] [PubMed]
  7. S. P. Povoski, R. L. Neff, C. M. Mojzisik, D. M. O’Malley, G. H. Hinkle, N. C. Hall, D. A. Murrey, M. V. Knopp, and E. W. Martin., “A comprehensive overview of radioguided surgery using gamma detection probe technology,” World J. Surg. Oncol. 7(1), 11 (2009).
    [Crossref] [PubMed]
  8. J. P. Gambini and T. P. Quinn, “Hybrid tracers and devices for intraoperative imaging: the future for radio guided surgery?” Clin. Transl. Imaging 4(5), 343–351 (2016).
    [Crossref]
  9. G. H. KleinJan, D. Hellingman, N. S. van den Berg, M. N. van Oosterom, K. Hendricksen, S. Horenblas, R. A. Valdes Olmos, and F. W. van Leeuwen, “Hybrid Surgical Guidance: Does Hardware Integration of gamma- and Fluorescence Imaging Modalities Make Sense?” J. Nucl. Med. 58(4), 646–650 (2017).
    [Crossref] [PubMed]
  10. N. S. van den Berg, H. Simon, G. H. Kleinjan, T. Engelen, A. Bunschoten, M. M. Welling, B. M. Tijink, S. Horenblas, J. Chambron, and F. W. B. van Leeuwen, “First-in-human evaluation of a hybrid modality that allows combined radio- and (near-infrared) fluorescence tracing during surgery,” Eur. J. Nucl. Med. Mol. Imaging 42(11), 1639–1647 (2015).
    [Crossref] [PubMed]
  11. H. G. Kang, H. Y. Lee, K. M. Kim, S. H. Song, G. C. Hong, and S. J. Hong, “A feasibility study of an integrated NIR/gamma/visible imaging system for endoscopic sentinel lymph node mapping,” Med. Phys. 44(1), 227–239 (2017).
    [Crossref] [PubMed]
  12. S. A. Burgess, D. Ratner, B. R. Chen, and E. M. C. Hillman, “Fiber-optic and articulating arm implementations of laminar optical tomography for clinical applications,” Biomed. Opt. Express 1(3), 780–790 (2010).
    [Crossref] [PubMed]
  13. G. Themelis, J. S. Yoo, K. S. Soh, R. Schulz, and V. Ntziachristos, “Real-time intraoperative fluorescence imaging system using light-absorption correction,” J. Biomed. Opt. 14(6), 064012 (2009).
    [Crossref] [PubMed]
  14. M. Model, “Intensity Calibration and Flat-Field Correction for Fluorescence Microscopes,” Curr. Protoc. Cytom. 68, 1–10 (2014).
    [PubMed]
  15. J. Glatz, J. Varga, P. B. Garcia-Allende, M. Koch, F. R. Greten, and V. Ntziachristos, “Concurrent video-rate color and near-infrared fluorescence laparoscopy,” J. Biomed. Opt. 18(10), 101302 (2013).
    [Crossref] [PubMed]
  16. H. G. Kang, S. H. Song, Y. B. Han, K. M. Kim, and S. J. Hong, “Lens implementation on the GATE Monte Carlo toolkit for optical imaging simulation,” J. Biomed. Opt. 23(2), 1–13 (2018).
    [Crossref] [PubMed]
  17. C. Chi, J. Ye, H. Ding, D. He, W. Huang, G. J. Zhang, and J. Tian, “Use of indocyanine green for detecting the sentinel lymph node in breast cancer patients: from preclinical evaluation to clinical validation,” PLoS One 8(12), e83927 (2013).
    [Crossref] [PubMed]
  18. Q. Wang, A. Khanicheh, D. Leiner, D. Shafer, and J. Zobel, “Endoscope field of view measurement,” Biomed. Opt. Express 8(3), 1441–1454 (2017).
    [Crossref] [PubMed]

2018 (1)

H. G. Kang, S. H. Song, Y. B. Han, K. M. Kim, and S. J. Hong, “Lens implementation on the GATE Monte Carlo toolkit for optical imaging simulation,” J. Biomed. Opt. 23(2), 1–13 (2018).
[Crossref] [PubMed]

2017 (3)

G. H. KleinJan, D. Hellingman, N. S. van den Berg, M. N. van Oosterom, K. Hendricksen, S. Horenblas, R. A. Valdes Olmos, and F. W. van Leeuwen, “Hybrid Surgical Guidance: Does Hardware Integration of gamma- and Fluorescence Imaging Modalities Make Sense?” J. Nucl. Med. 58(4), 646–650 (2017).
[Crossref] [PubMed]

H. G. Kang, H. Y. Lee, K. M. Kim, S. H. Song, G. C. Hong, and S. J. Hong, “A feasibility study of an integrated NIR/gamma/visible imaging system for endoscopic sentinel lymph node mapping,” Med. Phys. 44(1), 227–239 (2017).
[Crossref] [PubMed]

Q. Wang, A. Khanicheh, D. Leiner, D. Shafer, and J. Zobel, “Endoscope field of view measurement,” Biomed. Opt. Express 8(3), 1441–1454 (2017).
[Crossref] [PubMed]

2016 (1)

J. P. Gambini and T. P. Quinn, “Hybrid tracers and devices for intraoperative imaging: the future for radio guided surgery?” Clin. Transl. Imaging 4(5), 343–351 (2016).
[Crossref]

2015 (1)

N. S. van den Berg, H. Simon, G. H. Kleinjan, T. Engelen, A. Bunschoten, M. M. Welling, B. M. Tijink, S. Horenblas, J. Chambron, and F. W. B. van Leeuwen, “First-in-human evaluation of a hybrid modality that allows combined radio- and (near-infrared) fluorescence tracing during surgery,” Eur. J. Nucl. Med. Mol. Imaging 42(11), 1639–1647 (2015).
[Crossref] [PubMed]

2014 (2)

M. Model, “Intensity Calibration and Flat-Field Correction for Fluorescence Microscopes,” Curr. Protoc. Cytom. 68, 1–10 (2014).
[PubMed]

C. Chi, Y. Du, J. Ye, D. Kou, J. Qiu, J. Wang, J. Tian, and X. Chen, “Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology,” Theranostics 4(11), 1072–1084 (2014).
[Crossref] [PubMed]

2013 (3)

A. L. Vahrmeijer, M. Hutteman, J. R. van der Vorst, C. J. van de Velde, and J. V. Frangioni, “Image-guided cancer surgery using near-infrared fluorescence,” Nat. Rev. Clin. Oncol. 10(9), 507–518 (2013).
[Crossref] [PubMed]

J. Glatz, J. Varga, P. B. Garcia-Allende, M. Koch, F. R. Greten, and V. Ntziachristos, “Concurrent video-rate color and near-infrared fluorescence laparoscopy,” J. Biomed. Opt. 18(10), 101302 (2013).
[Crossref] [PubMed]

C. Chi, J. Ye, H. Ding, D. He, W. Huang, G. J. Zhang, and J. Tian, “Use of indocyanine green for detecting the sentinel lymph node in breast cancer patients: from preclinical evaluation to clinical validation,” PLoS One 8(12), e83927 (2013).
[Crossref] [PubMed]

2011 (1)

H. G. van der Poel, T. Buckle, O. R. Brouwer, R. A. Valdés Olmos, and F. W. van Leeuwen, “Intraoperative laparoscopic fluorescence guidance to the sentinel lymph node in prostate cancer patients: clinical proof of concept of an integrated functional imaging approach using a multimodal tracer,” Eur. Urol. 60(4), 826–833 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (2)

G. Themelis, J. S. Yoo, K. S. Soh, R. Schulz, and V. Ntziachristos, “Real-time intraoperative fluorescence imaging system using light-absorption correction,” J. Biomed. Opt. 14(6), 064012 (2009).
[Crossref] [PubMed]

S. P. Povoski, R. L. Neff, C. M. Mojzisik, D. M. O’Malley, G. H. Hinkle, N. C. Hall, D. A. Murrey, M. V. Knopp, and E. W. Martin., “A comprehensive overview of radioguided surgery using gamma detection probe technology,” World J. Surg. Oncol. 7(1), 11 (2009).
[Crossref] [PubMed]

2005 (1)

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

2003 (1)

J. V. Frangioni, “In vivo near-infrared fluorescence imaging,” Curr. Opin. Chem. Biol. 7(5), 626–634 (2003).
[Crossref] [PubMed]

2001 (1)

R. Weissleder, “A clearer vision for in vivo imaging,” Nat. Biotechnol. 19(4), 316–317 (2001).
[Crossref] [PubMed]

Bashkatov, A. N.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Brouwer, O. R.

H. G. van der Poel, T. Buckle, O. R. Brouwer, R. A. Valdés Olmos, and F. W. van Leeuwen, “Intraoperative laparoscopic fluorescence guidance to the sentinel lymph node in prostate cancer patients: clinical proof of concept of an integrated functional imaging approach using a multimodal tracer,” Eur. Urol. 60(4), 826–833 (2011).
[Crossref] [PubMed]

Buckle, T.

H. G. van der Poel, T. Buckle, O. R. Brouwer, R. A. Valdés Olmos, and F. W. van Leeuwen, “Intraoperative laparoscopic fluorescence guidance to the sentinel lymph node in prostate cancer patients: clinical proof of concept of an integrated functional imaging approach using a multimodal tracer,” Eur. Urol. 60(4), 826–833 (2011).
[Crossref] [PubMed]

Bunschoten, A.

N. S. van den Berg, H. Simon, G. H. Kleinjan, T. Engelen, A. Bunschoten, M. M. Welling, B. M. Tijink, S. Horenblas, J. Chambron, and F. W. B. van Leeuwen, “First-in-human evaluation of a hybrid modality that allows combined radio- and (near-infrared) fluorescence tracing during surgery,” Eur. J. Nucl. Med. Mol. Imaging 42(11), 1639–1647 (2015).
[Crossref] [PubMed]

Burgess, S. A.

Chambron, J.

N. S. van den Berg, H. Simon, G. H. Kleinjan, T. Engelen, A. Bunschoten, M. M. Welling, B. M. Tijink, S. Horenblas, J. Chambron, and F. W. B. van Leeuwen, “First-in-human evaluation of a hybrid modality that allows combined radio- and (near-infrared) fluorescence tracing during surgery,” Eur. J. Nucl. Med. Mol. Imaging 42(11), 1639–1647 (2015).
[Crossref] [PubMed]

Chen, B. R.

Chen, X.

C. Chi, Y. Du, J. Ye, D. Kou, J. Qiu, J. Wang, J. Tian, and X. Chen, “Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology,” Theranostics 4(11), 1072–1084 (2014).
[Crossref] [PubMed]

Chi, C.

C. Chi, Y. Du, J. Ye, D. Kou, J. Qiu, J. Wang, J. Tian, and X. Chen, “Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology,” Theranostics 4(11), 1072–1084 (2014).
[Crossref] [PubMed]

C. Chi, J. Ye, H. Ding, D. He, W. Huang, G. J. Zhang, and J. Tian, “Use of indocyanine green for detecting the sentinel lymph node in breast cancer patients: from preclinical evaluation to clinical validation,” PLoS One 8(12), e83927 (2013).
[Crossref] [PubMed]

Ding, H.

C. Chi, J. Ye, H. Ding, D. He, W. Huang, G. J. Zhang, and J. Tian, “Use of indocyanine green for detecting the sentinel lymph node in breast cancer patients: from preclinical evaluation to clinical validation,” PLoS One 8(12), e83927 (2013).
[Crossref] [PubMed]

Du, Y.

C. Chi, Y. Du, J. Ye, D. Kou, J. Qiu, J. Wang, J. Tian, and X. Chen, “Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology,” Theranostics 4(11), 1072–1084 (2014).
[Crossref] [PubMed]

Engelen, T.

N. S. van den Berg, H. Simon, G. H. Kleinjan, T. Engelen, A. Bunschoten, M. M. Welling, B. M. Tijink, S. Horenblas, J. Chambron, and F. W. B. van Leeuwen, “First-in-human evaluation of a hybrid modality that allows combined radio- and (near-infrared) fluorescence tracing during surgery,” Eur. J. Nucl. Med. Mol. Imaging 42(11), 1639–1647 (2015).
[Crossref] [PubMed]

Frangioni, J. V.

A. L. Vahrmeijer, M. Hutteman, J. R. van der Vorst, C. J. van de Velde, and J. V. Frangioni, “Image-guided cancer surgery using near-infrared fluorescence,” Nat. Rev. Clin. Oncol. 10(9), 507–518 (2013).
[Crossref] [PubMed]

J. V. Frangioni, “In vivo near-infrared fluorescence imaging,” Curr. Opin. Chem. Biol. 7(5), 626–634 (2003).
[Crossref] [PubMed]

Gambini, J. P.

J. P. Gambini and T. P. Quinn, “Hybrid tracers and devices for intraoperative imaging: the future for radio guided surgery?” Clin. Transl. Imaging 4(5), 343–351 (2016).
[Crossref]

Garcia-Allende, P. B.

J. Glatz, J. Varga, P. B. Garcia-Allende, M. Koch, F. R. Greten, and V. Ntziachristos, “Concurrent video-rate color and near-infrared fluorescence laparoscopy,” J. Biomed. Opt. 18(10), 101302 (2013).
[Crossref] [PubMed]

Genina, E. A.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Glatz, J.

J. Glatz, J. Varga, P. B. Garcia-Allende, M. Koch, F. R. Greten, and V. Ntziachristos, “Concurrent video-rate color and near-infrared fluorescence laparoscopy,” J. Biomed. Opt. 18(10), 101302 (2013).
[Crossref] [PubMed]

Greten, F. R.

J. Glatz, J. Varga, P. B. Garcia-Allende, M. Koch, F. R. Greten, and V. Ntziachristos, “Concurrent video-rate color and near-infrared fluorescence laparoscopy,” J. Biomed. Opt. 18(10), 101302 (2013).
[Crossref] [PubMed]

Hall, N. C.

S. P. Povoski, R. L. Neff, C. M. Mojzisik, D. M. O’Malley, G. H. Hinkle, N. C. Hall, D. A. Murrey, M. V. Knopp, and E. W. Martin., “A comprehensive overview of radioguided surgery using gamma detection probe technology,” World J. Surg. Oncol. 7(1), 11 (2009).
[Crossref] [PubMed]

Han, Y. B.

H. G. Kang, S. H. Song, Y. B. Han, K. M. Kim, and S. J. Hong, “Lens implementation on the GATE Monte Carlo toolkit for optical imaging simulation,” J. Biomed. Opt. 23(2), 1–13 (2018).
[Crossref] [PubMed]

He, D.

C. Chi, J. Ye, H. Ding, D. He, W. Huang, G. J. Zhang, and J. Tian, “Use of indocyanine green for detecting the sentinel lymph node in breast cancer patients: from preclinical evaluation to clinical validation,” PLoS One 8(12), e83927 (2013).
[Crossref] [PubMed]

Hellingman, D.

G. H. KleinJan, D. Hellingman, N. S. van den Berg, M. N. van Oosterom, K. Hendricksen, S. Horenblas, R. A. Valdes Olmos, and F. W. van Leeuwen, “Hybrid Surgical Guidance: Does Hardware Integration of gamma- and Fluorescence Imaging Modalities Make Sense?” J. Nucl. Med. 58(4), 646–650 (2017).
[Crossref] [PubMed]

Hendricksen, K.

G. H. KleinJan, D. Hellingman, N. S. van den Berg, M. N. van Oosterom, K. Hendricksen, S. Horenblas, R. A. Valdes Olmos, and F. W. van Leeuwen, “Hybrid Surgical Guidance: Does Hardware Integration of gamma- and Fluorescence Imaging Modalities Make Sense?” J. Nucl. Med. 58(4), 646–650 (2017).
[Crossref] [PubMed]

Hillman, E. M. C.

Hinkle, G. H.

S. P. Povoski, R. L. Neff, C. M. Mojzisik, D. M. O’Malley, G. H. Hinkle, N. C. Hall, D. A. Murrey, M. V. Knopp, and E. W. Martin., “A comprehensive overview of radioguided surgery using gamma detection probe technology,” World J. Surg. Oncol. 7(1), 11 (2009).
[Crossref] [PubMed]

Hong, G. C.

H. G. Kang, H. Y. Lee, K. M. Kim, S. H. Song, G. C. Hong, and S. J. Hong, “A feasibility study of an integrated NIR/gamma/visible imaging system for endoscopic sentinel lymph node mapping,” Med. Phys. 44(1), 227–239 (2017).
[Crossref] [PubMed]

Hong, S. J.

H. G. Kang, S. H. Song, Y. B. Han, K. M. Kim, and S. J. Hong, “Lens implementation on the GATE Monte Carlo toolkit for optical imaging simulation,” J. Biomed. Opt. 23(2), 1–13 (2018).
[Crossref] [PubMed]

H. G. Kang, H. Y. Lee, K. M. Kim, S. H. Song, G. C. Hong, and S. J. Hong, “A feasibility study of an integrated NIR/gamma/visible imaging system for endoscopic sentinel lymph node mapping,” Med. Phys. 44(1), 227–239 (2017).
[Crossref] [PubMed]

Horenblas, S.

G. H. KleinJan, D. Hellingman, N. S. van den Berg, M. N. van Oosterom, K. Hendricksen, S. Horenblas, R. A. Valdes Olmos, and F. W. van Leeuwen, “Hybrid Surgical Guidance: Does Hardware Integration of gamma- and Fluorescence Imaging Modalities Make Sense?” J. Nucl. Med. 58(4), 646–650 (2017).
[Crossref] [PubMed]

N. S. van den Berg, H. Simon, G. H. Kleinjan, T. Engelen, A. Bunschoten, M. M. Welling, B. M. Tijink, S. Horenblas, J. Chambron, and F. W. B. van Leeuwen, “First-in-human evaluation of a hybrid modality that allows combined radio- and (near-infrared) fluorescence tracing during surgery,” Eur. J. Nucl. Med. Mol. Imaging 42(11), 1639–1647 (2015).
[Crossref] [PubMed]

Huang, W.

C. Chi, J. Ye, H. Ding, D. He, W. Huang, G. J. Zhang, and J. Tian, “Use of indocyanine green for detecting the sentinel lymph node in breast cancer patients: from preclinical evaluation to clinical validation,” PLoS One 8(12), e83927 (2013).
[Crossref] [PubMed]

Hutteman, M.

A. L. Vahrmeijer, M. Hutteman, J. R. van der Vorst, C. J. van de Velde, and J. V. Frangioni, “Image-guided cancer surgery using near-infrared fluorescence,” Nat. Rev. Clin. Oncol. 10(9), 507–518 (2013).
[Crossref] [PubMed]

Kang, H. G.

H. G. Kang, S. H. Song, Y. B. Han, K. M. Kim, and S. J. Hong, “Lens implementation on the GATE Monte Carlo toolkit for optical imaging simulation,” J. Biomed. Opt. 23(2), 1–13 (2018).
[Crossref] [PubMed]

H. G. Kang, H. Y. Lee, K. M. Kim, S. H. Song, G. C. Hong, and S. J. Hong, “A feasibility study of an integrated NIR/gamma/visible imaging system for endoscopic sentinel lymph node mapping,” Med. Phys. 44(1), 227–239 (2017).
[Crossref] [PubMed]

Khanicheh, A.

Kim, K. M.

H. G. Kang, S. H. Song, Y. B. Han, K. M. Kim, and S. J. Hong, “Lens implementation on the GATE Monte Carlo toolkit for optical imaging simulation,” J. Biomed. Opt. 23(2), 1–13 (2018).
[Crossref] [PubMed]

H. G. Kang, H. Y. Lee, K. M. Kim, S. H. Song, G. C. Hong, and S. J. Hong, “A feasibility study of an integrated NIR/gamma/visible imaging system for endoscopic sentinel lymph node mapping,” Med. Phys. 44(1), 227–239 (2017).
[Crossref] [PubMed]

KleinJan, G. H.

G. H. KleinJan, D. Hellingman, N. S. van den Berg, M. N. van Oosterom, K. Hendricksen, S. Horenblas, R. A. Valdes Olmos, and F. W. van Leeuwen, “Hybrid Surgical Guidance: Does Hardware Integration of gamma- and Fluorescence Imaging Modalities Make Sense?” J. Nucl. Med. 58(4), 646–650 (2017).
[Crossref] [PubMed]

N. S. van den Berg, H. Simon, G. H. Kleinjan, T. Engelen, A. Bunschoten, M. M. Welling, B. M. Tijink, S. Horenblas, J. Chambron, and F. W. B. van Leeuwen, “First-in-human evaluation of a hybrid modality that allows combined radio- and (near-infrared) fluorescence tracing during surgery,” Eur. J. Nucl. Med. Mol. Imaging 42(11), 1639–1647 (2015).
[Crossref] [PubMed]

Knopp, M. V.

S. P. Povoski, R. L. Neff, C. M. Mojzisik, D. M. O’Malley, G. H. Hinkle, N. C. Hall, D. A. Murrey, M. V. Knopp, and E. W. Martin., “A comprehensive overview of radioguided surgery using gamma detection probe technology,” World J. Surg. Oncol. 7(1), 11 (2009).
[Crossref] [PubMed]

Koch, M.

J. Glatz, J. Varga, P. B. Garcia-Allende, M. Koch, F. R. Greten, and V. Ntziachristos, “Concurrent video-rate color and near-infrared fluorescence laparoscopy,” J. Biomed. Opt. 18(10), 101302 (2013).
[Crossref] [PubMed]

Kochubey, V. I.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Kou, D.

C. Chi, Y. Du, J. Ye, D. Kou, J. Qiu, J. Wang, J. Tian, and X. Chen, “Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology,” Theranostics 4(11), 1072–1084 (2014).
[Crossref] [PubMed]

Lee, H. Y.

H. G. Kang, H. Y. Lee, K. M. Kim, S. H. Song, G. C. Hong, and S. J. Hong, “A feasibility study of an integrated NIR/gamma/visible imaging system for endoscopic sentinel lymph node mapping,” Med. Phys. 44(1), 227–239 (2017).
[Crossref] [PubMed]

Leiner, D.

Martin, E. W.

S. P. Povoski, R. L. Neff, C. M. Mojzisik, D. M. O’Malley, G. H. Hinkle, N. C. Hall, D. A. Murrey, M. V. Knopp, and E. W. Martin., “A comprehensive overview of radioguided surgery using gamma detection probe technology,” World J. Surg. Oncol. 7(1), 11 (2009).
[Crossref] [PubMed]

Model, M.

M. Model, “Intensity Calibration and Flat-Field Correction for Fluorescence Microscopes,” Curr. Protoc. Cytom. 68, 1–10 (2014).
[PubMed]

Mojzisik, C. M.

S. P. Povoski, R. L. Neff, C. M. Mojzisik, D. M. O’Malley, G. H. Hinkle, N. C. Hall, D. A. Murrey, M. V. Knopp, and E. W. Martin., “A comprehensive overview of radioguided surgery using gamma detection probe technology,” World J. Surg. Oncol. 7(1), 11 (2009).
[Crossref] [PubMed]

Murrey, D. A.

S. P. Povoski, R. L. Neff, C. M. Mojzisik, D. M. O’Malley, G. H. Hinkle, N. C. Hall, D. A. Murrey, M. V. Knopp, and E. W. Martin., “A comprehensive overview of radioguided surgery using gamma detection probe technology,” World J. Surg. Oncol. 7(1), 11 (2009).
[Crossref] [PubMed]

Neff, R. L.

S. P. Povoski, R. L. Neff, C. M. Mojzisik, D. M. O’Malley, G. H. Hinkle, N. C. Hall, D. A. Murrey, M. V. Knopp, and E. W. Martin., “A comprehensive overview of radioguided surgery using gamma detection probe technology,” World J. Surg. Oncol. 7(1), 11 (2009).
[Crossref] [PubMed]

Ntziachristos, V.

J. Glatz, J. Varga, P. B. Garcia-Allende, M. Koch, F. R. Greten, and V. Ntziachristos, “Concurrent video-rate color and near-infrared fluorescence laparoscopy,” J. Biomed. Opt. 18(10), 101302 (2013).
[Crossref] [PubMed]

G. Themelis, J. S. Yoo, K. S. Soh, R. Schulz, and V. Ntziachristos, “Real-time intraoperative fluorescence imaging system using light-absorption correction,” J. Biomed. Opt. 14(6), 064012 (2009).
[Crossref] [PubMed]

O’Malley, D. M.

S. P. Povoski, R. L. Neff, C. M. Mojzisik, D. M. O’Malley, G. H. Hinkle, N. C. Hall, D. A. Murrey, M. V. Knopp, and E. W. Martin., “A comprehensive overview of radioguided surgery using gamma detection probe technology,” World J. Surg. Oncol. 7(1), 11 (2009).
[Crossref] [PubMed]

Povoski, S. P.

S. P. Povoski, R. L. Neff, C. M. Mojzisik, D. M. O’Malley, G. H. Hinkle, N. C. Hall, D. A. Murrey, M. V. Knopp, and E. W. Martin., “A comprehensive overview of radioguided surgery using gamma detection probe technology,” World J. Surg. Oncol. 7(1), 11 (2009).
[Crossref] [PubMed]

Qiu, J.

C. Chi, Y. Du, J. Ye, D. Kou, J. Qiu, J. Wang, J. Tian, and X. Chen, “Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology,” Theranostics 4(11), 1072–1084 (2014).
[Crossref] [PubMed]

Quinn, T. P.

J. P. Gambini and T. P. Quinn, “Hybrid tracers and devices for intraoperative imaging: the future for radio guided surgery?” Clin. Transl. Imaging 4(5), 343–351 (2016).
[Crossref]

Ratner, D.

Schulz, R.

G. Themelis, J. S. Yoo, K. S. Soh, R. Schulz, and V. Ntziachristos, “Real-time intraoperative fluorescence imaging system using light-absorption correction,” J. Biomed. Opt. 14(6), 064012 (2009).
[Crossref] [PubMed]

Shafer, D.

Simon, H.

N. S. van den Berg, H. Simon, G. H. Kleinjan, T. Engelen, A. Bunschoten, M. M. Welling, B. M. Tijink, S. Horenblas, J. Chambron, and F. W. B. van Leeuwen, “First-in-human evaluation of a hybrid modality that allows combined radio- and (near-infrared) fluorescence tracing during surgery,” Eur. J. Nucl. Med. Mol. Imaging 42(11), 1639–1647 (2015).
[Crossref] [PubMed]

Soh, K. S.

G. Themelis, J. S. Yoo, K. S. Soh, R. Schulz, and V. Ntziachristos, “Real-time intraoperative fluorescence imaging system using light-absorption correction,” J. Biomed. Opt. 14(6), 064012 (2009).
[Crossref] [PubMed]

Song, S. H.

H. G. Kang, S. H. Song, Y. B. Han, K. M. Kim, and S. J. Hong, “Lens implementation on the GATE Monte Carlo toolkit for optical imaging simulation,” J. Biomed. Opt. 23(2), 1–13 (2018).
[Crossref] [PubMed]

H. G. Kang, H. Y. Lee, K. M. Kim, S. H. Song, G. C. Hong, and S. J. Hong, “A feasibility study of an integrated NIR/gamma/visible imaging system for endoscopic sentinel lymph node mapping,” Med. Phys. 44(1), 227–239 (2017).
[Crossref] [PubMed]

Themelis, G.

G. Themelis, J. S. Yoo, K. S. Soh, R. Schulz, and V. Ntziachristos, “Real-time intraoperative fluorescence imaging system using light-absorption correction,” J. Biomed. Opt. 14(6), 064012 (2009).
[Crossref] [PubMed]

Tian, J.

C. Chi, Y. Du, J. Ye, D. Kou, J. Qiu, J. Wang, J. Tian, and X. Chen, “Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology,” Theranostics 4(11), 1072–1084 (2014).
[Crossref] [PubMed]

C. Chi, J. Ye, H. Ding, D. He, W. Huang, G. J. Zhang, and J. Tian, “Use of indocyanine green for detecting the sentinel lymph node in breast cancer patients: from preclinical evaluation to clinical validation,” PLoS One 8(12), e83927 (2013).
[Crossref] [PubMed]

Tijink, B. M.

N. S. van den Berg, H. Simon, G. H. Kleinjan, T. Engelen, A. Bunschoten, M. M. Welling, B. M. Tijink, S. Horenblas, J. Chambron, and F. W. B. van Leeuwen, “First-in-human evaluation of a hybrid modality that allows combined radio- and (near-infrared) fluorescence tracing during surgery,” Eur. J. Nucl. Med. Mol. Imaging 42(11), 1639–1647 (2015).
[Crossref] [PubMed]

Tuchin, V. V.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Vahrmeijer, A. L.

A. L. Vahrmeijer, M. Hutteman, J. R. van der Vorst, C. J. van de Velde, and J. V. Frangioni, “Image-guided cancer surgery using near-infrared fluorescence,” Nat. Rev. Clin. Oncol. 10(9), 507–518 (2013).
[Crossref] [PubMed]

Valdes Olmos, R. A.

G. H. KleinJan, D. Hellingman, N. S. van den Berg, M. N. van Oosterom, K. Hendricksen, S. Horenblas, R. A. Valdes Olmos, and F. W. van Leeuwen, “Hybrid Surgical Guidance: Does Hardware Integration of gamma- and Fluorescence Imaging Modalities Make Sense?” J. Nucl. Med. 58(4), 646–650 (2017).
[Crossref] [PubMed]

Valdés Olmos, R. A.

H. G. van der Poel, T. Buckle, O. R. Brouwer, R. A. Valdés Olmos, and F. W. van Leeuwen, “Intraoperative laparoscopic fluorescence guidance to the sentinel lymph node in prostate cancer patients: clinical proof of concept of an integrated functional imaging approach using a multimodal tracer,” Eur. Urol. 60(4), 826–833 (2011).
[Crossref] [PubMed]

van de Velde, C. J.

A. L. Vahrmeijer, M. Hutteman, J. R. van der Vorst, C. J. van de Velde, and J. V. Frangioni, “Image-guided cancer surgery using near-infrared fluorescence,” Nat. Rev. Clin. Oncol. 10(9), 507–518 (2013).
[Crossref] [PubMed]

van den Berg, N. S.

G. H. KleinJan, D. Hellingman, N. S. van den Berg, M. N. van Oosterom, K. Hendricksen, S. Horenblas, R. A. Valdes Olmos, and F. W. van Leeuwen, “Hybrid Surgical Guidance: Does Hardware Integration of gamma- and Fluorescence Imaging Modalities Make Sense?” J. Nucl. Med. 58(4), 646–650 (2017).
[Crossref] [PubMed]

N. S. van den Berg, H. Simon, G. H. Kleinjan, T. Engelen, A. Bunschoten, M. M. Welling, B. M. Tijink, S. Horenblas, J. Chambron, and F. W. B. van Leeuwen, “First-in-human evaluation of a hybrid modality that allows combined radio- and (near-infrared) fluorescence tracing during surgery,” Eur. J. Nucl. Med. Mol. Imaging 42(11), 1639–1647 (2015).
[Crossref] [PubMed]

van der Poel, H. G.

H. G. van der Poel, T. Buckle, O. R. Brouwer, R. A. Valdés Olmos, and F. W. van Leeuwen, “Intraoperative laparoscopic fluorescence guidance to the sentinel lymph node in prostate cancer patients: clinical proof of concept of an integrated functional imaging approach using a multimodal tracer,” Eur. Urol. 60(4), 826–833 (2011).
[Crossref] [PubMed]

van der Vorst, J. R.

A. L. Vahrmeijer, M. Hutteman, J. R. van der Vorst, C. J. van de Velde, and J. V. Frangioni, “Image-guided cancer surgery using near-infrared fluorescence,” Nat. Rev. Clin. Oncol. 10(9), 507–518 (2013).
[Crossref] [PubMed]

van Leeuwen, F. W.

G. H. KleinJan, D. Hellingman, N. S. van den Berg, M. N. van Oosterom, K. Hendricksen, S. Horenblas, R. A. Valdes Olmos, and F. W. van Leeuwen, “Hybrid Surgical Guidance: Does Hardware Integration of gamma- and Fluorescence Imaging Modalities Make Sense?” J. Nucl. Med. 58(4), 646–650 (2017).
[Crossref] [PubMed]

H. G. van der Poel, T. Buckle, O. R. Brouwer, R. A. Valdés Olmos, and F. W. van Leeuwen, “Intraoperative laparoscopic fluorescence guidance to the sentinel lymph node in prostate cancer patients: clinical proof of concept of an integrated functional imaging approach using a multimodal tracer,” Eur. Urol. 60(4), 826–833 (2011).
[Crossref] [PubMed]

van Leeuwen, F. W. B.

N. S. van den Berg, H. Simon, G. H. Kleinjan, T. Engelen, A. Bunschoten, M. M. Welling, B. M. Tijink, S. Horenblas, J. Chambron, and F. W. B. van Leeuwen, “First-in-human evaluation of a hybrid modality that allows combined radio- and (near-infrared) fluorescence tracing during surgery,” Eur. J. Nucl. Med. Mol. Imaging 42(11), 1639–1647 (2015).
[Crossref] [PubMed]

van Oosterom, M. N.

G. H. KleinJan, D. Hellingman, N. S. van den Berg, M. N. van Oosterom, K. Hendricksen, S. Horenblas, R. A. Valdes Olmos, and F. W. van Leeuwen, “Hybrid Surgical Guidance: Does Hardware Integration of gamma- and Fluorescence Imaging Modalities Make Sense?” J. Nucl. Med. 58(4), 646–650 (2017).
[Crossref] [PubMed]

Varga, J.

J. Glatz, J. Varga, P. B. Garcia-Allende, M. Koch, F. R. Greten, and V. Ntziachristos, “Concurrent video-rate color and near-infrared fluorescence laparoscopy,” J. Biomed. Opt. 18(10), 101302 (2013).
[Crossref] [PubMed]

Wang, J.

C. Chi, Y. Du, J. Ye, D. Kou, J. Qiu, J. Wang, J. Tian, and X. Chen, “Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology,” Theranostics 4(11), 1072–1084 (2014).
[Crossref] [PubMed]

Wang, Q.

Weissleder, R.

R. Weissleder, “A clearer vision for in vivo imaging,” Nat. Biotechnol. 19(4), 316–317 (2001).
[Crossref] [PubMed]

Welling, M. M.

N. S. van den Berg, H. Simon, G. H. Kleinjan, T. Engelen, A. Bunschoten, M. M. Welling, B. M. Tijink, S. Horenblas, J. Chambron, and F. W. B. van Leeuwen, “First-in-human evaluation of a hybrid modality that allows combined radio- and (near-infrared) fluorescence tracing during surgery,” Eur. J. Nucl. Med. Mol. Imaging 42(11), 1639–1647 (2015).
[Crossref] [PubMed]

Ye, J.

C. Chi, Y. Du, J. Ye, D. Kou, J. Qiu, J. Wang, J. Tian, and X. Chen, “Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology,” Theranostics 4(11), 1072–1084 (2014).
[Crossref] [PubMed]

C. Chi, J. Ye, H. Ding, D. He, W. Huang, G. J. Zhang, and J. Tian, “Use of indocyanine green for detecting the sentinel lymph node in breast cancer patients: from preclinical evaluation to clinical validation,” PLoS One 8(12), e83927 (2013).
[Crossref] [PubMed]

Yoo, J. S.

G. Themelis, J. S. Yoo, K. S. Soh, R. Schulz, and V. Ntziachristos, “Real-time intraoperative fluorescence imaging system using light-absorption correction,” J. Biomed. Opt. 14(6), 064012 (2009).
[Crossref] [PubMed]

Zhang, G. J.

C. Chi, J. Ye, H. Ding, D. He, W. Huang, G. J. Zhang, and J. Tian, “Use of indocyanine green for detecting the sentinel lymph node in breast cancer patients: from preclinical evaluation to clinical validation,” PLoS One 8(12), e83927 (2013).
[Crossref] [PubMed]

Zobel, J.

Biomed. Opt. Express (2)

Clin. Transl. Imaging (1)

J. P. Gambini and T. P. Quinn, “Hybrid tracers and devices for intraoperative imaging: the future for radio guided surgery?” Clin. Transl. Imaging 4(5), 343–351 (2016).
[Crossref]

Curr. Opin. Chem. Biol. (1)

J. V. Frangioni, “In vivo near-infrared fluorescence imaging,” Curr. Opin. Chem. Biol. 7(5), 626–634 (2003).
[Crossref] [PubMed]

Curr. Protoc. Cytom. (1)

M. Model, “Intensity Calibration and Flat-Field Correction for Fluorescence Microscopes,” Curr. Protoc. Cytom. 68, 1–10 (2014).
[PubMed]

Eur. J. Nucl. Med. Mol. Imaging (1)

N. S. van den Berg, H. Simon, G. H. Kleinjan, T. Engelen, A. Bunschoten, M. M. Welling, B. M. Tijink, S. Horenblas, J. Chambron, and F. W. B. van Leeuwen, “First-in-human evaluation of a hybrid modality that allows combined radio- and (near-infrared) fluorescence tracing during surgery,” Eur. J. Nucl. Med. Mol. Imaging 42(11), 1639–1647 (2015).
[Crossref] [PubMed]

Eur. Urol. (1)

H. G. van der Poel, T. Buckle, O. R. Brouwer, R. A. Valdés Olmos, and F. W. van Leeuwen, “Intraoperative laparoscopic fluorescence guidance to the sentinel lymph node in prostate cancer patients: clinical proof of concept of an integrated functional imaging approach using a multimodal tracer,” Eur. Urol. 60(4), 826–833 (2011).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

J. Glatz, J. Varga, P. B. Garcia-Allende, M. Koch, F. R. Greten, and V. Ntziachristos, “Concurrent video-rate color and near-infrared fluorescence laparoscopy,” J. Biomed. Opt. 18(10), 101302 (2013).
[Crossref] [PubMed]

H. G. Kang, S. H. Song, Y. B. Han, K. M. Kim, and S. J. Hong, “Lens implementation on the GATE Monte Carlo toolkit for optical imaging simulation,” J. Biomed. Opt. 23(2), 1–13 (2018).
[Crossref] [PubMed]

G. Themelis, J. S. Yoo, K. S. Soh, R. Schulz, and V. Ntziachristos, “Real-time intraoperative fluorescence imaging system using light-absorption correction,” J. Biomed. Opt. 14(6), 064012 (2009).
[Crossref] [PubMed]

J. Nucl. Med. (1)

G. H. KleinJan, D. Hellingman, N. S. van den Berg, M. N. van Oosterom, K. Hendricksen, S. Horenblas, R. A. Valdes Olmos, and F. W. van Leeuwen, “Hybrid Surgical Guidance: Does Hardware Integration of gamma- and Fluorescence Imaging Modalities Make Sense?” J. Nucl. Med. 58(4), 646–650 (2017).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Med. Phys. (1)

H. G. Kang, H. Y. Lee, K. M. Kim, S. H. Song, G. C. Hong, and S. J. Hong, “A feasibility study of an integrated NIR/gamma/visible imaging system for endoscopic sentinel lymph node mapping,” Med. Phys. 44(1), 227–239 (2017).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

R. Weissleder, “A clearer vision for in vivo imaging,” Nat. Biotechnol. 19(4), 316–317 (2001).
[Crossref] [PubMed]

Nat. Rev. Clin. Oncol. (1)

A. L. Vahrmeijer, M. Hutteman, J. R. van der Vorst, C. J. van de Velde, and J. V. Frangioni, “Image-guided cancer surgery using near-infrared fluorescence,” Nat. Rev. Clin. Oncol. 10(9), 507–518 (2013).
[Crossref] [PubMed]

PLoS One (1)

C. Chi, J. Ye, H. Ding, D. He, W. Huang, G. J. Zhang, and J. Tian, “Use of indocyanine green for detecting the sentinel lymph node in breast cancer patients: from preclinical evaluation to clinical validation,” PLoS One 8(12), e83927 (2013).
[Crossref] [PubMed]

Theranostics (1)

C. Chi, Y. Du, J. Ye, D. Kou, J. Qiu, J. Wang, J. Tian, and X. Chen, “Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology,” Theranostics 4(11), 1072–1084 (2014).
[Crossref] [PubMed]

World J. Surg. Oncol. (1)

S. P. Povoski, R. L. Neff, C. M. Mojzisik, D. M. O’Malley, G. H. Hinkle, N. C. Hall, D. A. Murrey, M. V. Knopp, and E. W. Martin., “A comprehensive overview of radioguided surgery using gamma detection probe technology,” World J. Surg. Oncol. 7(1), 11 (2009).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Schematic diagram of the prototype multimodal laparoscope system using wavelength division multiplexing method.
Fig. 2
Fig. 2 Photograph of the prototype multimodal laparoscope system using wavelength division multiplexing method.
Fig. 3
Fig. 3 Laparoscope design: (a) cross section of the laparoscope, (b) distal-end cross section, (c) isotropic cross sectional view of the distal-end, and (d) photograph of the distal-end assemblies.
Fig. 4
Fig. 4 Beam splitter module design: (a) ZEMAX simulation of the beam splitter, (b) photograph of the beam splitter module with three CCD cameras.
Fig. 5
Fig. 5 (a) Transmission spectra of the optical filters and dichroic mirrors for the multiplexed NIR, gamma, visible imaging, (b) quantum efficiencies of the gamma CCD (Andor, iKon-M) and NIR CCD (FLI, MLx285) cameras, respectively.
Fig. 6
Fig. 6 Illumination system: (a) white light illumination, (b) NIR excitation light illumination, and (c) design of the illumination source combiner.
Fig. 7
Fig. 7 Visible and NIR images of a USAF 1951 negative resolution target taken at a working distance of 20 mm: (a) visible image, (b) enlarged inner pattern image, (c) line profile of the group number 2, element 5, (d) NIR image, (e) enlarged inner pattern image, and (f) line profile of the group number 2, element 5 corresponding to the spatial resolution of 6.35 lp/mm.
Fig. 8
Fig. 8 The contrast transfer functions of (a) visible and (b) NIR images of the USAF 1951 negative target.
Fig. 9
Fig. 9 (a) Gamma image obtained for 2 min with different pinhole sizes (0.5, 1, 2, 3,and 4 mm), and (b) line profile across the three 99mTc sources (0.6, 1.2, and 2.3 MBq).
Fig. 10
Fig. 10 Gamma image quality evaluation with different acquisition times: (a) gamma images of an EP-tube containing a 99mTc of 2.85 MBq (volume = 50 μL) with different acquisition times (5, 10, 20, 30, and 40 sec), using pinhole diameter of 2 mm, (b) total pixel intensities of signal and background regions, and (c) CNR and net count/pixel values of the signal and background regions.
Fig. 11
Fig. 11 Simultaneous NIR/gamma/visible images: (a) visible image of two EP-tube containing a mixture of 99mTc and ICG dye, (b) NIR image, (c) visible/NIR fusion image, (d) photograph of the imaging setup, (e) gamma image obtained for 30 sec, and (f) visible/gamma/fusion image.
Fig. 12
Fig. 12 Comparison of penetration depth between NIR and gamma images with a custom-made gelatin phantom: (a) NIR images of an EP tube containing a mixture of 99mTc (1.1 MBq) and ICG (0.15 mL) obtained for 100 ms, (b) gamma images of the identical EP tube obtained for 30 s.
Fig. 13
Fig. 13 Comparison of penetration depth between NIR and gamma images with a custom-made gelatin phantom. The NIR noise level was calculated from the ROI enclosed by a white solid rectangle.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

C o n t r a s t ( f ) = I max I min I max + I min
C N R l e s i o n = | C l e s i o n | C n o i s e
C l e s i o n = I s i g I b k g I b k g
C n o i s e = I b k g I b k g

Metrics