Abstract

While augmenting network on chips (NoC) with photonic links enables high-bandwidth communication, the overhead for photonics is rather large, mainly driven by bulky footprints and the multi-functionality of transceivers. The latter requires, in addition to a photon source, signal modulation and detection. If the NoC were photonically augmented at every network point to enable all-to-all connectivity, the resulting photonic overhead would be excessive. Besides, the high bandwidth of a single optical bus may be sufficient to supply the data-sharing demand of a network. Spatial signal routing is a necessary function of data communication in NoCs. However, if photonic links are used to augment electronics, an energy-costly optical-electrical-optical (OEO) conversion is required since routing is currently executed in the electronic domain. Here we show a novel integrated broadband hybrid photonic-plasmonic device termed an MO detector featuring dual light modulation and detection. With 10 dB extinction ratio and 0.8 dB insertion loss at the modulation state and 0.7 A/W responsivity at the detection state based on the finite-different time-domain simulation, this transceiver-like device (i) eliminates the OEO conversion, (ii) reduces optical losses from photodetectors via bypassing the photodetector when not needed, and (iii) enables cognitive routing strategies for network-on-chips. As such, the MO detector acts as a micrometer-compact transceiver for next-generation NoCs.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dual-Function Detector–Modulator Smart-Pixel Module

A. V. Krishnamoorthy, T. K. Woodward, K. W. Goossen, J. A. Walker, S. P. Hui, B. Tseng, J. E. Cunningham, W. Y. Jan, F. E. Kiamilev, and D. A. B. Miller
Appl. Opt. 36(20) 4866-4870 (1997)

Five-port optical router for photonic networks-on-chip

Ruiqiang Ji, Lin Yang, Lei Zhang, Yonghui Tian, Jianfeng Ding, Hongtao Chen, Yangyang Lu, Ping Zhou, and Weiwei Zhu
Opt. Express 19(21) 20258-20268 (2011)

References

  • View by:
  • |
  • |
  • |

  1. S. Borkar, “State-of-the-art electronics,” presented at the Session 3 Panel Talk, NSF Workshop Emerging Technologies Interconnects, Washington, DC, USA, http://weti.cs.ohiou.edu/shekhar_weti.pdf (2012).
  2. M. Ujaldon, “A look ahead: Echelon,” NVIDIA Slides, http://gpu.cs.uct.ac.za/Slides/Echelon.pdf .
  3. K. Liu, S. Sun, A. Majumdar, and V. J. Sorger, “Fundamental scaling laws in nanophotonics,” Sci. Rep. 6(1), 37419 (2016).
    [Crossref] [PubMed]
  4. D. A. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
    [Crossref]
  5. D. A. Miller, “Attojoule optoelectronics for low-energy information processing and communications,” J. Lightwave Technol. 35(3), 346–396 (2017).
    [Crossref]
  6. S. Sun, A. H. A. Badawy, V. K. Narayana, T. El-Ghazawi, and V. J. Sorger, “The case for hybrid photonic plasmonic interconnects (HyPPIs): Low-latency energy-and-area-efficient on-chip interconnects,” IEEE Photonics J. 7(6), 1–14 (2015).
    [Crossref]
  7. V. K. Narayana, S. Sun, A. H. A. Badawy, V. J. Sorger, and T. El-Ghazawi, “MorphoNoC: Exploring the design space of a configurable hybrid NoC using nanophotonics,” Microprocess. Microsyst. 50, 113–126 (2017).
    [Crossref]
  8. A. Mehrabian, S. Sun, V. K. Narayana, V. J. Sorger, and T. El-Ghazawi, “D3NOC: Dynamic Data-Driven Network On Chip in Photonic Electronic Hybrids,” https://arxiv.org/abs/1708.06721 (2017).
  9. V. K. Narayana, S. Sun, A. Mehrabian, V. J. Sorger, and T. El-Ghazawi, “HyPPI NoC: Bringing Hybrid Plasmonics to an Opto-Electronic Network-on-Chip,” 46th International Conference on Parallel Processing, Bristol, United Kingdom, 2017, pp. 131–140 (2017).
    [Crossref]
  10. C. J. Nitta, M. K. Farrens, and V. Akella, “On-Chip Photonic Interconnects: A Computer Architect’s Perspective,” Synth. Lect. Comput. Architect. 8(5), 1–111 (2013).
    [Crossref]
  11. D. M. Marom and M. Blau, “Switching solutions for WDM-SDM optical networks,” IEEE Commun. Mag. 53(2), 60–68 (2015).
    [Crossref]
  12. C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29(4), 8–21 (2009).
    [Crossref]
  13. C. Ye, K. Liu, R. A. Soref, and V. J. Sorger, “A compact plasmonic MOS-based 2×2 electro-optic switch,” Nanophotonics 4(3), 261–268 (2015).
    [Crossref]
  14. Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-tin-oxide for high-performance electro-optic modulation,” Nanophotonics 4(1), 198–213 (2015).
    [Crossref]
  15. M. Mrejen, H. Suchowski, T. Hatakeyama, C. Wu, L. Feng, K. O’Brien, Y. Wang, and X. Zhang, “Adiabatic elimination-based coupling control in densely packed subwavelength waveguides,” Nat. Commun. 6(1), 7565 (2015).
    [Crossref] [PubMed]
  16. V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
    [Crossref]
  17. J. Donnelly, H. Haus, and N. Whitaker, “Symmetric three-guide optical coupler with nonidentical center and outside guides,” IEEE J. Quantum Electron. 23(4), 401–406 (1987).
    [Crossref]
  18. L. Vivien, A. Polzer, D. Marris-Morini, J. Osmond, J. M. Hartmann, P. Crozat, E. Cassan, C. Kopp, H. Zimmermann, and J. M. Fédéli, “Zero-bias 40Gbit/s germanium waveguide photodetector on silicon,” Opt. Express 20(2), 1096–1101 (2012).
    [Crossref] [PubMed]
  19. G. Li, Y. Luo, X. Zheng, G. Masini, A. Mekis, S. Sahni, H. Thacker, J. Yao, I. Shubin, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Improving CMOS-compatible Germanium photodetectors,” Opt. Express 20(24), 26345–26350 (2012).
    [Crossref] [PubMed]
  20. L. Vivien, M. Rouvière, J. M. Fédéli, D. Marris-Morini, J. F. Damlencourt, J. Mangeney, P. Crozat, L. El Melhaoui, E. Cassan, X. Le Roux, D. Pascal, and S. Laval, “High speed and high responsivity germanium photodetector integrated in a Silicon-On-Insulator microwaveguide,” Opt. Express 15(15), 9843–9848 (2007).
    [Crossref] [PubMed]
  21. M. Rouviere, M. Halbwax, J. L. Cercus, E. Cassan, L. Vivien, D. Pascal, M. Heitzmann, J. M. Hartmann, D. Bouchier, and S. Laval, “Integration of germanium waveguide photodetectors for optical intra-chip interconnects,” in Micro-Optics, VCSELs, and Photonic Interconnects (International Society for Optics and Photonics, 2004), vol. 5453, p.143.
  22. Imec-ePIXfab SiPhotonics: iSiPP50G, www.europractice-ic.com/SiPhotonics_technology_imec_ . ISIPP50G.php.
  23. H. M. Wassel, D. Dai, M. Tiwari, J. K. Valamehr, L. Theogarajan, J. Dionne, F. T. Chong, and T. Sherwood, “Opportunities and challenges of using plasmonic components in nanophotonic architectures,” IEEE J. Emerg Sel Top Circ Syst 2(2), 154–168 (2012).
    [Crossref]
  24. R. Min, R. Ji, Q. Chen, L. Zhang, and L. Yang, “A universal method for constructing N-port nonblocking optical router for photonic networks-on-chip,” J. Lightwave Technol. 30(23), 3736–3741 (2012).
    [Crossref]
  25. S. Sun, V. K. Narayana, I. Sarpkaya, J. Crandall, R. A. Soref, T. El-Ghazawi, and V. J. Sorger, “Hybrid Photonic-Plasmonic Non-blocking Broadband 5x5 Router for Optical Networks,” IEEE Photon. J. https://arxiv.org/abs/1708.07159 (2017).
  26. Dynamic Data-Driven Applications Systems, http://www.1dddas.org .

2017 (2)

D. A. Miller, “Attojoule optoelectronics for low-energy information processing and communications,” J. Lightwave Technol. 35(3), 346–396 (2017).
[Crossref]

V. K. Narayana, S. Sun, A. H. A. Badawy, V. J. Sorger, and T. El-Ghazawi, “MorphoNoC: Exploring the design space of a configurable hybrid NoC using nanophotonics,” Microprocess. Microsyst. 50, 113–126 (2017).
[Crossref]

2016 (1)

K. Liu, S. Sun, A. Majumdar, and V. J. Sorger, “Fundamental scaling laws in nanophotonics,” Sci. Rep. 6(1), 37419 (2016).
[Crossref] [PubMed]

2015 (5)

S. Sun, A. H. A. Badawy, V. K. Narayana, T. El-Ghazawi, and V. J. Sorger, “The case for hybrid photonic plasmonic interconnects (HyPPIs): Low-latency energy-and-area-efficient on-chip interconnects,” IEEE Photonics J. 7(6), 1–14 (2015).
[Crossref]

D. M. Marom and M. Blau, “Switching solutions for WDM-SDM optical networks,” IEEE Commun. Mag. 53(2), 60–68 (2015).
[Crossref]

C. Ye, K. Liu, R. A. Soref, and V. J. Sorger, “A compact plasmonic MOS-based 2×2 electro-optic switch,” Nanophotonics 4(3), 261–268 (2015).
[Crossref]

Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-tin-oxide for high-performance electro-optic modulation,” Nanophotonics 4(1), 198–213 (2015).
[Crossref]

M. Mrejen, H. Suchowski, T. Hatakeyama, C. Wu, L. Feng, K. O’Brien, Y. Wang, and X. Zhang, “Adiabatic elimination-based coupling control in densely packed subwavelength waveguides,” Nat. Commun. 6(1), 7565 (2015).
[Crossref] [PubMed]

2013 (1)

C. J. Nitta, M. K. Farrens, and V. Akella, “On-Chip Photonic Interconnects: A Computer Architect’s Perspective,” Synth. Lect. Comput. Architect. 8(5), 1–111 (2013).
[Crossref]

2012 (5)

2009 (2)

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29(4), 8–21 (2009).
[Crossref]

D. A. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

2007 (1)

1987 (1)

J. Donnelly, H. Haus, and N. Whitaker, “Symmetric three-guide optical coupler with nonidentical center and outside guides,” IEEE J. Quantum Electron. 23(4), 401–406 (1987).
[Crossref]

Akella, V.

C. J. Nitta, M. K. Farrens, and V. Akella, “On-Chip Photonic Interconnects: A Computer Architect’s Perspective,” Synth. Lect. Comput. Architect. 8(5), 1–111 (2013).
[Crossref]

Asanovic, K.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29(4), 8–21 (2009).
[Crossref]

Badawy, A. H. A.

V. K. Narayana, S. Sun, A. H. A. Badawy, V. J. Sorger, and T. El-Ghazawi, “MorphoNoC: Exploring the design space of a configurable hybrid NoC using nanophotonics,” Microprocess. Microsyst. 50, 113–126 (2017).
[Crossref]

S. Sun, A. H. A. Badawy, V. K. Narayana, T. El-Ghazawi, and V. J. Sorger, “The case for hybrid photonic plasmonic interconnects (HyPPIs): Low-latency energy-and-area-efficient on-chip interconnects,” IEEE Photonics J. 7(6), 1–14 (2015).
[Crossref]

Batten, C.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29(4), 8–21 (2009).
[Crossref]

Blau, M.

D. M. Marom and M. Blau, “Switching solutions for WDM-SDM optical networks,” IEEE Commun. Mag. 53(2), 60–68 (2015).
[Crossref]

Cassan, E.

Chen, Q.

Chong, F. T.

H. M. Wassel, D. Dai, M. Tiwari, J. K. Valamehr, L. Theogarajan, J. Dionne, F. T. Chong, and T. Sherwood, “Opportunities and challenges of using plasmonic components in nanophotonic architectures,” IEEE J. Emerg Sel Top Circ Syst 2(2), 154–168 (2012).
[Crossref]

Crandall, J.

S. Sun, V. K. Narayana, I. Sarpkaya, J. Crandall, R. A. Soref, T. El-Ghazawi, and V. J. Sorger, “Hybrid Photonic-Plasmonic Non-blocking Broadband 5x5 Router for Optical Networks,” IEEE Photon. J. https://arxiv.org/abs/1708.07159 (2017).

Crozat, P.

Cunningham, J. E.

Dai, D.

H. M. Wassel, D. Dai, M. Tiwari, J. K. Valamehr, L. Theogarajan, J. Dionne, F. T. Chong, and T. Sherwood, “Opportunities and challenges of using plasmonic components in nanophotonic architectures,” IEEE J. Emerg Sel Top Circ Syst 2(2), 154–168 (2012).
[Crossref]

Damlencourt, J. F.

Dionne, J.

H. M. Wassel, D. Dai, M. Tiwari, J. K. Valamehr, L. Theogarajan, J. Dionne, F. T. Chong, and T. Sherwood, “Opportunities and challenges of using plasmonic components in nanophotonic architectures,” IEEE J. Emerg Sel Top Circ Syst 2(2), 154–168 (2012).
[Crossref]

Donnelly, J.

J. Donnelly, H. Haus, and N. Whitaker, “Symmetric three-guide optical coupler with nonidentical center and outside guides,” IEEE J. Quantum Electron. 23(4), 401–406 (1987).
[Crossref]

El Melhaoui, L.

El-Ghazawi, T.

V. K. Narayana, S. Sun, A. H. A. Badawy, V. J. Sorger, and T. El-Ghazawi, “MorphoNoC: Exploring the design space of a configurable hybrid NoC using nanophotonics,” Microprocess. Microsyst. 50, 113–126 (2017).
[Crossref]

S. Sun, A. H. A. Badawy, V. K. Narayana, T. El-Ghazawi, and V. J. Sorger, “The case for hybrid photonic plasmonic interconnects (HyPPIs): Low-latency energy-and-area-efficient on-chip interconnects,” IEEE Photonics J. 7(6), 1–14 (2015).
[Crossref]

V. K. Narayana, S. Sun, A. Mehrabian, V. J. Sorger, and T. El-Ghazawi, “HyPPI NoC: Bringing Hybrid Plasmonics to an Opto-Electronic Network-on-Chip,” 46th International Conference on Parallel Processing, Bristol, United Kingdom, 2017, pp. 131–140 (2017).
[Crossref]

S. Sun, V. K. Narayana, I. Sarpkaya, J. Crandall, R. A. Soref, T. El-Ghazawi, and V. J. Sorger, “Hybrid Photonic-Plasmonic Non-blocking Broadband 5x5 Router for Optical Networks,” IEEE Photon. J. https://arxiv.org/abs/1708.07159 (2017).

Farrens, M. K.

C. J. Nitta, M. K. Farrens, and V. Akella, “On-Chip Photonic Interconnects: A Computer Architect’s Perspective,” Synth. Lect. Comput. Architect. 8(5), 1–111 (2013).
[Crossref]

Fédéli, J. M.

Feng, L.

M. Mrejen, H. Suchowski, T. Hatakeyama, C. Wu, L. Feng, K. O’Brien, Y. Wang, and X. Zhang, “Adiabatic elimination-based coupling control in densely packed subwavelength waveguides,” Nat. Commun. 6(1), 7565 (2015).
[Crossref] [PubMed]

Hartmann, J. M.

Hatakeyama, T.

M. Mrejen, H. Suchowski, T. Hatakeyama, C. Wu, L. Feng, K. O’Brien, Y. Wang, and X. Zhang, “Adiabatic elimination-based coupling control in densely packed subwavelength waveguides,” Nat. Commun. 6(1), 7565 (2015).
[Crossref] [PubMed]

Haus, H.

J. Donnelly, H. Haus, and N. Whitaker, “Symmetric three-guide optical coupler with nonidentical center and outside guides,” IEEE J. Quantum Electron. 23(4), 401–406 (1987).
[Crossref]

Holzwarth, C. W.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29(4), 8–21 (2009).
[Crossref]

Hoyt, J. L.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29(4), 8–21 (2009).
[Crossref]

Ji, R.

Joshi, A.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29(4), 8–21 (2009).
[Crossref]

Kartner, F. X.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29(4), 8–21 (2009).
[Crossref]

Khilo, A.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29(4), 8–21 (2009).
[Crossref]

Kopp, C.

Krishnamoorthy, A. V.

Lanzillotti-Kimura, N. D.

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

Laval, S.

Le Roux, X.

Li, G.

Li, H.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29(4), 8–21 (2009).
[Crossref]

Li, Z.

Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-tin-oxide for high-performance electro-optic modulation,” Nanophotonics 4(1), 198–213 (2015).
[Crossref]

Liu, K.

K. Liu, S. Sun, A. Majumdar, and V. J. Sorger, “Fundamental scaling laws in nanophotonics,” Sci. Rep. 6(1), 37419 (2016).
[Crossref] [PubMed]

Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-tin-oxide for high-performance electro-optic modulation,” Nanophotonics 4(1), 198–213 (2015).
[Crossref]

C. Ye, K. Liu, R. A. Soref, and V. J. Sorger, “A compact plasmonic MOS-based 2×2 electro-optic switch,” Nanophotonics 4(3), 261–268 (2015).
[Crossref]

Luo, Y.

Ma, R. M.

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

Ma, Z.

Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-tin-oxide for high-performance electro-optic modulation,” Nanophotonics 4(1), 198–213 (2015).
[Crossref]

Majumdar, A.

K. Liu, S. Sun, A. Majumdar, and V. J. Sorger, “Fundamental scaling laws in nanophotonics,” Sci. Rep. 6(1), 37419 (2016).
[Crossref] [PubMed]

Mangeney, J.

Marom, D. M.

D. M. Marom and M. Blau, “Switching solutions for WDM-SDM optical networks,” IEEE Commun. Mag. 53(2), 60–68 (2015).
[Crossref]

Marris-Morini, D.

Masini, G.

Mehrabian, A.

V. K. Narayana, S. Sun, A. Mehrabian, V. J. Sorger, and T. El-Ghazawi, “HyPPI NoC: Bringing Hybrid Plasmonics to an Opto-Electronic Network-on-Chip,” 46th International Conference on Parallel Processing, Bristol, United Kingdom, 2017, pp. 131–140 (2017).
[Crossref]

Mekis, A.

Miller, D. A.

D. A. Miller, “Attojoule optoelectronics for low-energy information processing and communications,” J. Lightwave Technol. 35(3), 346–396 (2017).
[Crossref]

D. A. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

Min, R.

Moss, B.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29(4), 8–21 (2009).
[Crossref]

Mrejen, M.

M. Mrejen, H. Suchowski, T. Hatakeyama, C. Wu, L. Feng, K. O’Brien, Y. Wang, and X. Zhang, “Adiabatic elimination-based coupling control in densely packed subwavelength waveguides,” Nat. Commun. 6(1), 7565 (2015).
[Crossref] [PubMed]

Narayana, V. K.

V. K. Narayana, S. Sun, A. H. A. Badawy, V. J. Sorger, and T. El-Ghazawi, “MorphoNoC: Exploring the design space of a configurable hybrid NoC using nanophotonics,” Microprocess. Microsyst. 50, 113–126 (2017).
[Crossref]

S. Sun, A. H. A. Badawy, V. K. Narayana, T. El-Ghazawi, and V. J. Sorger, “The case for hybrid photonic plasmonic interconnects (HyPPIs): Low-latency energy-and-area-efficient on-chip interconnects,” IEEE Photonics J. 7(6), 1–14 (2015).
[Crossref]

V. K. Narayana, S. Sun, A. Mehrabian, V. J. Sorger, and T. El-Ghazawi, “HyPPI NoC: Bringing Hybrid Plasmonics to an Opto-Electronic Network-on-Chip,” 46th International Conference on Parallel Processing, Bristol, United Kingdom, 2017, pp. 131–140 (2017).
[Crossref]

S. Sun, V. K. Narayana, I. Sarpkaya, J. Crandall, R. A. Soref, T. El-Ghazawi, and V. J. Sorger, “Hybrid Photonic-Plasmonic Non-blocking Broadband 5x5 Router for Optical Networks,” IEEE Photon. J. https://arxiv.org/abs/1708.07159 (2017).

Nitta, C. J.

C. J. Nitta, M. K. Farrens, and V. Akella, “On-Chip Photonic Interconnects: A Computer Architect’s Perspective,” Synth. Lect. Comput. Architect. 8(5), 1–111 (2013).
[Crossref]

O’Brien, K.

M. Mrejen, H. Suchowski, T. Hatakeyama, C. Wu, L. Feng, K. O’Brien, Y. Wang, and X. Zhang, “Adiabatic elimination-based coupling control in densely packed subwavelength waveguides,” Nat. Commun. 6(1), 7565 (2015).
[Crossref] [PubMed]

Orcutt, J.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29(4), 8–21 (2009).
[Crossref]

Osmond, J.

Pascal, D.

Polzer, A.

Popovic, M. A.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29(4), 8–21 (2009).
[Crossref]

Raj, K.

Ram, R. J.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29(4), 8–21 (2009).
[Crossref]

Rouvière, M.

Sahni, S.

Sarpkaya, I.

S. Sun, V. K. Narayana, I. Sarpkaya, J. Crandall, R. A. Soref, T. El-Ghazawi, and V. J. Sorger, “Hybrid Photonic-Plasmonic Non-blocking Broadband 5x5 Router for Optical Networks,” IEEE Photon. J. https://arxiv.org/abs/1708.07159 (2017).

Sherwood, T.

H. M. Wassel, D. Dai, M. Tiwari, J. K. Valamehr, L. Theogarajan, J. Dionne, F. T. Chong, and T. Sherwood, “Opportunities and challenges of using plasmonic components in nanophotonic architectures,” IEEE J. Emerg Sel Top Circ Syst 2(2), 154–168 (2012).
[Crossref]

Shubin, I.

Smith, H. I.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29(4), 8–21 (2009).
[Crossref]

Soref, R. A.

C. Ye, K. Liu, R. A. Soref, and V. J. Sorger, “A compact plasmonic MOS-based 2×2 electro-optic switch,” Nanophotonics 4(3), 261–268 (2015).
[Crossref]

S. Sun, V. K. Narayana, I. Sarpkaya, J. Crandall, R. A. Soref, T. El-Ghazawi, and V. J. Sorger, “Hybrid Photonic-Plasmonic Non-blocking Broadband 5x5 Router for Optical Networks,” IEEE Photon. J. https://arxiv.org/abs/1708.07159 (2017).

Sorger, V. J.

V. K. Narayana, S. Sun, A. H. A. Badawy, V. J. Sorger, and T. El-Ghazawi, “MorphoNoC: Exploring the design space of a configurable hybrid NoC using nanophotonics,” Microprocess. Microsyst. 50, 113–126 (2017).
[Crossref]

K. Liu, S. Sun, A. Majumdar, and V. J. Sorger, “Fundamental scaling laws in nanophotonics,” Sci. Rep. 6(1), 37419 (2016).
[Crossref] [PubMed]

S. Sun, A. H. A. Badawy, V. K. Narayana, T. El-Ghazawi, and V. J. Sorger, “The case for hybrid photonic plasmonic interconnects (HyPPIs): Low-latency energy-and-area-efficient on-chip interconnects,” IEEE Photonics J. 7(6), 1–14 (2015).
[Crossref]

C. Ye, K. Liu, R. A. Soref, and V. J. Sorger, “A compact plasmonic MOS-based 2×2 electro-optic switch,” Nanophotonics 4(3), 261–268 (2015).
[Crossref]

Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-tin-oxide for high-performance electro-optic modulation,” Nanophotonics 4(1), 198–213 (2015).
[Crossref]

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

V. K. Narayana, S. Sun, A. Mehrabian, V. J. Sorger, and T. El-Ghazawi, “HyPPI NoC: Bringing Hybrid Plasmonics to an Opto-Electronic Network-on-Chip,” 46th International Conference on Parallel Processing, Bristol, United Kingdom, 2017, pp. 131–140 (2017).
[Crossref]

S. Sun, V. K. Narayana, I. Sarpkaya, J. Crandall, R. A. Soref, T. El-Ghazawi, and V. J. Sorger, “Hybrid Photonic-Plasmonic Non-blocking Broadband 5x5 Router for Optical Networks,” IEEE Photon. J. https://arxiv.org/abs/1708.07159 (2017).

Stojanovic, V.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29(4), 8–21 (2009).
[Crossref]

Suchowski, H.

M. Mrejen, H. Suchowski, T. Hatakeyama, C. Wu, L. Feng, K. O’Brien, Y. Wang, and X. Zhang, “Adiabatic elimination-based coupling control in densely packed subwavelength waveguides,” Nat. Commun. 6(1), 7565 (2015).
[Crossref] [PubMed]

Sun, S.

V. K. Narayana, S. Sun, A. H. A. Badawy, V. J. Sorger, and T. El-Ghazawi, “MorphoNoC: Exploring the design space of a configurable hybrid NoC using nanophotonics,” Microprocess. Microsyst. 50, 113–126 (2017).
[Crossref]

K. Liu, S. Sun, A. Majumdar, and V. J. Sorger, “Fundamental scaling laws in nanophotonics,” Sci. Rep. 6(1), 37419 (2016).
[Crossref] [PubMed]

S. Sun, A. H. A. Badawy, V. K. Narayana, T. El-Ghazawi, and V. J. Sorger, “The case for hybrid photonic plasmonic interconnects (HyPPIs): Low-latency energy-and-area-efficient on-chip interconnects,” IEEE Photonics J. 7(6), 1–14 (2015).
[Crossref]

V. K. Narayana, S. Sun, A. Mehrabian, V. J. Sorger, and T. El-Ghazawi, “HyPPI NoC: Bringing Hybrid Plasmonics to an Opto-Electronic Network-on-Chip,” 46th International Conference on Parallel Processing, Bristol, United Kingdom, 2017, pp. 131–140 (2017).
[Crossref]

S. Sun, V. K. Narayana, I. Sarpkaya, J. Crandall, R. A. Soref, T. El-Ghazawi, and V. J. Sorger, “Hybrid Photonic-Plasmonic Non-blocking Broadband 5x5 Router for Optical Networks,” IEEE Photon. J. https://arxiv.org/abs/1708.07159 (2017).

Thacker, H.

Theogarajan, L.

H. M. Wassel, D. Dai, M. Tiwari, J. K. Valamehr, L. Theogarajan, J. Dionne, F. T. Chong, and T. Sherwood, “Opportunities and challenges of using plasmonic components in nanophotonic architectures,” IEEE J. Emerg Sel Top Circ Syst 2(2), 154–168 (2012).
[Crossref]

Tiwari, M.

H. M. Wassel, D. Dai, M. Tiwari, J. K. Valamehr, L. Theogarajan, J. Dionne, F. T. Chong, and T. Sherwood, “Opportunities and challenges of using plasmonic components in nanophotonic architectures,” IEEE J. Emerg Sel Top Circ Syst 2(2), 154–168 (2012).
[Crossref]

Valamehr, J. K.

H. M. Wassel, D. Dai, M. Tiwari, J. K. Valamehr, L. Theogarajan, J. Dionne, F. T. Chong, and T. Sherwood, “Opportunities and challenges of using plasmonic components in nanophotonic architectures,” IEEE J. Emerg Sel Top Circ Syst 2(2), 154–168 (2012).
[Crossref]

Vivien, L.

Wang, Y.

M. Mrejen, H. Suchowski, T. Hatakeyama, C. Wu, L. Feng, K. O’Brien, Y. Wang, and X. Zhang, “Adiabatic elimination-based coupling control in densely packed subwavelength waveguides,” Nat. Commun. 6(1), 7565 (2015).
[Crossref] [PubMed]

Wassel, H. M.

H. M. Wassel, D. Dai, M. Tiwari, J. K. Valamehr, L. Theogarajan, J. Dionne, F. T. Chong, and T. Sherwood, “Opportunities and challenges of using plasmonic components in nanophotonic architectures,” IEEE J. Emerg Sel Top Circ Syst 2(2), 154–168 (2012).
[Crossref]

Whitaker, N.

J. Donnelly, H. Haus, and N. Whitaker, “Symmetric three-guide optical coupler with nonidentical center and outside guides,” IEEE J. Quantum Electron. 23(4), 401–406 (1987).
[Crossref]

Wu, C.

M. Mrejen, H. Suchowski, T. Hatakeyama, C. Wu, L. Feng, K. O’Brien, Y. Wang, and X. Zhang, “Adiabatic elimination-based coupling control in densely packed subwavelength waveguides,” Nat. Commun. 6(1), 7565 (2015).
[Crossref] [PubMed]

Yang, L.

Yao, J.

Ye, C.

Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-tin-oxide for high-performance electro-optic modulation,” Nanophotonics 4(1), 198–213 (2015).
[Crossref]

C. Ye, K. Liu, R. A. Soref, and V. J. Sorger, “A compact plasmonic MOS-based 2×2 electro-optic switch,” Nanophotonics 4(3), 261–268 (2015).
[Crossref]

Zhang, L.

Zhang, X.

M. Mrejen, H. Suchowski, T. Hatakeyama, C. Wu, L. Feng, K. O’Brien, Y. Wang, and X. Zhang, “Adiabatic elimination-based coupling control in densely packed subwavelength waveguides,” Nat. Commun. 6(1), 7565 (2015).
[Crossref] [PubMed]

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

Zheng, X.

Zimmermann, H.

IEEE Commun. Mag. (1)

D. M. Marom and M. Blau, “Switching solutions for WDM-SDM optical networks,” IEEE Commun. Mag. 53(2), 60–68 (2015).
[Crossref]

IEEE J. Emerg Sel Top Circ Syst (1)

H. M. Wassel, D. Dai, M. Tiwari, J. K. Valamehr, L. Theogarajan, J. Dionne, F. T. Chong, and T. Sherwood, “Opportunities and challenges of using plasmonic components in nanophotonic architectures,” IEEE J. Emerg Sel Top Circ Syst 2(2), 154–168 (2012).
[Crossref]

IEEE J. Quantum Electron. (1)

J. Donnelly, H. Haus, and N. Whitaker, “Symmetric three-guide optical coupler with nonidentical center and outside guides,” IEEE J. Quantum Electron. 23(4), 401–406 (1987).
[Crossref]

IEEE Micro (1)

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building many-core processor-to-DRAM networks with monolithic CMOS silicon photonics,” IEEE Micro 29(4), 8–21 (2009).
[Crossref]

IEEE Photonics J. (1)

S. Sun, A. H. A. Badawy, V. K. Narayana, T. El-Ghazawi, and V. J. Sorger, “The case for hybrid photonic plasmonic interconnects (HyPPIs): Low-latency energy-and-area-efficient on-chip interconnects,” IEEE Photonics J. 7(6), 1–14 (2015).
[Crossref]

J. Lightwave Technol. (2)

Microprocess. Microsyst. (1)

V. K. Narayana, S. Sun, A. H. A. Badawy, V. J. Sorger, and T. El-Ghazawi, “MorphoNoC: Exploring the design space of a configurable hybrid NoC using nanophotonics,” Microprocess. Microsyst. 50, 113–126 (2017).
[Crossref]

Nanophotonics (3)

C. Ye, K. Liu, R. A. Soref, and V. J. Sorger, “A compact plasmonic MOS-based 2×2 electro-optic switch,” Nanophotonics 4(3), 261–268 (2015).
[Crossref]

Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-tin-oxide for high-performance electro-optic modulation,” Nanophotonics 4(1), 198–213 (2015).
[Crossref]

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

Nat. Commun. (1)

M. Mrejen, H. Suchowski, T. Hatakeyama, C. Wu, L. Feng, K. O’Brien, Y. Wang, and X. Zhang, “Adiabatic elimination-based coupling control in densely packed subwavelength waveguides,” Nat. Commun. 6(1), 7565 (2015).
[Crossref] [PubMed]

Opt. Express (3)

Proc. IEEE (1)

D. A. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

Sci. Rep. (1)

K. Liu, S. Sun, A. Majumdar, and V. J. Sorger, “Fundamental scaling laws in nanophotonics,” Sci. Rep. 6(1), 37419 (2016).
[Crossref] [PubMed]

Synth. Lect. Comput. Architect. (1)

C. J. Nitta, M. K. Farrens, and V. Akella, “On-Chip Photonic Interconnects: A Computer Architect’s Perspective,” Synth. Lect. Comput. Architect. 8(5), 1–111 (2013).
[Crossref]

Other (8)

M. Rouviere, M. Halbwax, J. L. Cercus, E. Cassan, L. Vivien, D. Pascal, M. Heitzmann, J. M. Hartmann, D. Bouchier, and S. Laval, “Integration of germanium waveguide photodetectors for optical intra-chip interconnects,” in Micro-Optics, VCSELs, and Photonic Interconnects (International Society for Optics and Photonics, 2004), vol. 5453, p.143.

Imec-ePIXfab SiPhotonics: iSiPP50G, www.europractice-ic.com/SiPhotonics_technology_imec_ . ISIPP50G.php.

S. Borkar, “State-of-the-art electronics,” presented at the Session 3 Panel Talk, NSF Workshop Emerging Technologies Interconnects, Washington, DC, USA, http://weti.cs.ohiou.edu/shekhar_weti.pdf (2012).

M. Ujaldon, “A look ahead: Echelon,” NVIDIA Slides, http://gpu.cs.uct.ac.za/Slides/Echelon.pdf .

A. Mehrabian, S. Sun, V. K. Narayana, V. J. Sorger, and T. El-Ghazawi, “D3NOC: Dynamic Data-Driven Network On Chip in Photonic Electronic Hybrids,” https://arxiv.org/abs/1708.06721 (2017).

V. K. Narayana, S. Sun, A. Mehrabian, V. J. Sorger, and T. El-Ghazawi, “HyPPI NoC: Bringing Hybrid Plasmonics to an Opto-Electronic Network-on-Chip,” 46th International Conference on Parallel Processing, Bristol, United Kingdom, 2017, pp. 131–140 (2017).
[Crossref]

S. Sun, V. K. Narayana, I. Sarpkaya, J. Crandall, R. A. Soref, T. El-Ghazawi, and V. J. Sorger, “Hybrid Photonic-Plasmonic Non-blocking Broadband 5x5 Router for Optical Networks,” IEEE Photon. J. https://arxiv.org/abs/1708.07159 (2017).

Dynamic Data-Driven Applications Systems, http://www.1dddas.org .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic of the MODetector concept. a) 3D overview of MOD with the ITO hybrid switch on the left and Ge photodetector on the right. b) The cross-section of MOD at A plane. Both a) and b) are color-coded and sharing the same legend on the top-right. All the parameters are optimized for the highest coupling efficiency [17].
Fig. 2
Fig. 2 The switch analysis at the Cross and the Bar states. a) The top view of the MOD with the same color coding as Fig. 1. b) Fundamental TM mode effective indices change of the 3-waveguide switch at the cross-section (BB’) based on ITO carrier concentrations. c)-f) The FDTD simulations of all four functionalities at different switch and detector state combinations: c) switch OFF, detector OFF; d) switch ON, detector OFF; e) switch OFF, detector ON; f) switch OFF, detector ON. All simulations are based on 1550 nm light source. The ITO refractive indices are calculated based on the Drude model. Vbias = Vdd = 4V. Note, the MODetector is simulated in 3D using Lumerical FDTD software as a complete device.
Fig. 3
Fig. 3 Detector performance analysis of MOD. a) The cross section FDTD simulated electrical field of the detector part CC’ in Fig. 2(a) where light enters from the left side and propagates to the right side. b) The trade-offs between the metal contacts width and the speed, responsivity as well as the light leakages after the detection region. The insets are the generation rate at the same CC’ cross section. c) The illuminated and the dark current of the detector at different bias voltages.
Fig. 4
Fig. 4 The optical 3 × 3 network topology comparison among: a) the P2P-based mesh network; b) the P2P-based all-to-all network and c) the MOD enabled ring network.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

( n T M 1 + n T M 2 ) / 2 = n T M 3
C L = λ 2 ( n T M 1 n T M 3 )

Metrics