Abstract

We introduce one-of-a-kind optical microscope that we have developed through optimized integration of wide-field and focused-light microscopies. This new instrument has accomplished operation of the same laser for both wide field illumination and holographic focused beam illumination interchangeably or simultaneously in a way scalable to multiple lasers. We have demonstrated its powerful capability by simultaneously carrying out Epi-fluorescence, total internal reflection fluorescence microscopy, selective plane illumination microscopy, and holographic optical tweezers with five lasers. Our instrument and the optical design will provide researchers across diverse fields, cell-biology and biophysics in particular, with a practical guidance to build an all-around multimodal microscope that will further inspire the development of novel hybrid microscopy experiments.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
The wide-field optical sectioning of microlens array and structured illumination-based plane-projection multiphoton microscopy

Jiun-Yann Yu, Daniel B. Holland, Geoffrey A. Blake, and Chin-Lin Guo
Opt. Express 21(2) 2097-2109 (2013)

LED-based interference-reflection microscopy combined with optical tweezers for quantitative three-dimensional microtubule imaging

Steve Simmert, Mohammad Kazem Abdosamadi, Gero Hermsdorf, and Erik Schäffer
Opt. Express 26(11) 14499-14513 (2018)

Compact plane illumination plugin device to enable light sheet fluorescence imaging of multi-cellular organisms on an inverted wide-field microscope

Zeyi Guan, Juhyun Lee, Hao Jiang, Siyan Dong, Nelson Jen, Tzung Hsiai, Chih-Ming Ho, and Peng Fei
Biomed. Opt. Express 7(1) 194-208 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. Funatsu, Y. Harada, H. Higuchi, M. Tokunaga, K. Saito, Y. Ishii, R. D. Vale, and T. Yanagida, “Imaging and nano-manipulation of single biomolecules,” Biophys. Chem. 68(1–3), 63–72 (1997).
    [Crossref]
  2. M. J. Lang, P. M. Fordyce, A. M. Engh, K. C. Neuman, and S. M. Block, “Simultaneous, coincident optical trapping and single-molecule fluorescence,” Nat. Methods 1(2), 133–139 (2004).
    [Crossref]
  3. M. I. Snijder-Van As, B. Rieger, B. Joosten, V. Subramaniam, C. G. Figdor, and J. S. Kanger, “A hybrid total internal reflection fluorescence and optical tweezers microscope to study cell adhesion and membrane protein dynamics of single living cells,” J. Microsc. 233(1), 84–92 (2009).
    [Crossref] [PubMed]
  4. S. Lee and S. Hohng, “An optical trap combined with three-color FRET,” J. Am. Chem. Soc. 135(49), 18260–18263 (2013).
    [Crossref] [PubMed]
  5. R. R. Gullapalli, T. Tabouillot, R. Mathura, J. H. Dangaria, and P. J. Butler, “Integrated multimodal microscopy, time-resolved fluorescence, and optical-trap rheometry: toward single molecule mechanobiology,” J. Biomed. Opt. 12(1), 014012 (2007).
    [Crossref] [PubMed]
  6. R. R. Brau, P. B. Tarsa, J. M. Ferrer, P. Lee, and M. J. Lang, “Interlaced optical force-fluorescence measurements for single molecule biophysics,” Biophys. J. 91(3), 1069–1077 (2006).
    [Crossref] [PubMed]
  7. P. B. Tarsa, R. R. Brau, M. Barch, J. M. Ferrer, Y. Freyzon, P. Matsudaira, and M. J. Lang, “Detecting force-induced molecular transitions with fluorescence resonant energy transfer,” Angew. Chem. (Int. Ed. Engl.) 46(12), 1999–2001 (2007).
    [Crossref]
  8. S. Hohng, R. Zhou, M. K. Nahas, J. Yu, K. Schulten, D. M. J. Lilley, and T. Ha, “Fluorescence-force spectroscopy maps two-dimensional reaction landscape of the holliday junction,” Science 318(5848), 279–283 (2007).
    [Crossref] [PubMed]
  9. R. Zhou, A. G. Kozlov, R. Roy, J. Zhang, S. Korolev, T. M. Lohman, and T. Ha, “SSB functions as a sliding platform that migrates on DNA via reptation,” Cell 146(2), 222–232 (2011).
    [Crossref] [PubMed]
  10. A. Candelli, G. J. L. Wuite, and E. J. G. Peterman, “Combining optical trapping, fluorescence microscopy and micro-fluidics for single molecule studies of DNA-protein interactions,” Phys. Chem. Chem. Phys. 13(16), 7263–7272 (2011).
    [Crossref] [PubMed]
  11. M. J. Comstock, T. Ha, and Y. R. Chemla, “Ultrahigh-resolution optical trap with single-fluorophore sensitivity,” Nat. Methods 8(4), 335–340 (2011).
    [Crossref] [PubMed]
  12. G. Sirinakis, Y. Ren, Y. Gao, Z. Xi, and Y. Zhang, “Combined versatile high-resolution optical tweezers and single-molecule fluorescence microscopy,” Rev. Sci. Instrum. 83(9), 093708 (2012).
    [Crossref] [PubMed]
  13. M. Kyoung, K. Karunwi, and E. D. Sheets, “A versatile multimode microscope to probe and manipulate nanoparticles and biomolecules,” J. Microsc. 225(2), 137–146 (2007).
    [Crossref] [PubMed]
  14. R. P. Trivedi, T. Lee, K. A. Bertness, and I. I. Smalyukh, “Three dimensional optical manipulation and structural imaging of soft materials by use of laser tweezers and multimodal nonlinear microscopy,” Opt. Express 18(26), 27658–27669 (2010).
    [Crossref]
  15. I. Heller, G. Sitters, O. D. Broekmans, G. Farge, C. Menges, W. Wende, S. W. Hell, E. J. G. Peterman, and G. J. L. Wuite, “STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA,” Nat. Methods 10(9), 910–916 (2013).
    [Crossref] [PubMed]
  16. H. Li and H. Yang, “A versatile optical microscope for time-dependent single-molecule and single-particle spectroscopy DNA,” J. Chem. Phys. 148(12), 123316 (2018).
    [Crossref]
  17. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1–6), 169–175 (2002).
    [Crossref]
  18. M. Polin, K. Ladavac, S. H. Lee, Y. Roichman, and D. G. Grier, “Optimized holographic optical traps,” Opt. Express 13(15), 5831–5845 (2005).
    [Crossref] [PubMed]
  19. V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM Microscopy: Scanless Two-Photon Imaging and Photostimulation with Spatial Light Modulators,” Front. Neural Circuits 2, 5 (2008).
    [Crossref]
  20. H. Zhang and K.-K. Liu, “Optical tweezers for single cells,” J. R. Soc., Interface 5(24), 671–690 (2008).
    [Crossref]
  21. D. Axelrod, “Selective imaging of surface fluorescence with very high aperture microscope objectives,” J. Biomed. Opt. 6(1), 6–13 (2001).
    [Crossref] [PubMed]
  22. R. Roy, S. Hohng, and T. Ha, “A practical guide to single-molecule FRET,” Nat. Methods 5(6), 507–516 (2008).
    [Crossref] [PubMed]
  23. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
    [Crossref] [PubMed]
  24. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
    [Crossref] [PubMed]
  25. D. S. Johnson, J. K. Jaiswal, and S. Simon, “Total internal reflection fluorescence (TIRF) microscopy illuminator for improved imaging of cell surface events,” Current protocols in cytometry, (, 2012), Chapter 12, Unit 12.29–12.29.19.
    [PubMed]
  26. A. Yildiz and R. D. Vale, “Total Internal Reflection Fluorescence Microscopy,” Cold Spring Harbor protocols 2015(9), 086348 (2015).
    [Crossref] [PubMed]
  27. S.-H. Lee and D. Grier, “Robustness of holographic optical traps against phase scaling errors,” Opt. Express 13(19), 7458–7465 (2005).
    [Crossref] [PubMed]
  28. G. Thalhammer, R. W. Bowman, G. D. Love, M. J. Padgett, and M. Ritsch-Marte, “Speeding up liquid crystal SLMs using overdrive with phase change reduction,” Opt. Express 21(2), 1779–1797 (2013).
    [Crossref] [PubMed]
  29. S. J. Yang, W. E. Allen, I. Kauvar, A. S. Andalman, N. P. Young, C. K. Kim, J. H. Marshel, G. Wetzstein, and K. Deisseroth, “Extended field-of-view and increased-signal 3D holographic illumination with time-division multiplexing,” Opt. Express 23(25), 32573–32581 (2015).
    [Crossref] [PubMed]
  30. J. Cheng, C. Gu, D. Zhang, and S.-C. Chen, “High-speed femtosecond laser beam shaping based on binary holography using a digital micromirror device,” Opt. Lett. 40(21), 4875–4878 (2015).
    [Crossref] [PubMed]
  31. J. Huisken and D. Y. R. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136(12), 1963–1975 (2009).
    [Crossref] [PubMed]
  32. T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
    [Crossref] [PubMed]
  33. Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100(1), 013602 (2008).
    [Crossref] [PubMed]
  34. S.-H. Lee, Y. Roichman, and D. G. Grier, “Optical solenoid beams,” Opt. Express 18(7), 6988–6993 (2010).
    [Crossref] [PubMed]
  35. E. Baumgart and U. Kubitscheck, “Scanned light sheet microscopy with confocal slit detection,” Opt. Express 20(19), 21805–21814 (2012).
    [Crossref] [PubMed]
  36. L. Silvestri, A. Bria, L. Sacconi, G. Iannello, and F. S. Pavone, “Confocal light sheet microscopy: micron-scale neuroanatomy of the entire mouse brain,” Opt. Express 20(18), 20582–20598 (2012).
    [Crossref] [PubMed]
  37. M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(Pt 2), 82–87 (2000).
    [Crossref] [PubMed]
  38. M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
    [Crossref] [PubMed]

2018 (1)

H. Li and H. Yang, “A versatile optical microscope for time-dependent single-molecule and single-particle spectroscopy DNA,” J. Chem. Phys. 148(12), 123316 (2018).
[Crossref]

2015 (3)

2013 (3)

I. Heller, G. Sitters, O. D. Broekmans, G. Farge, C. Menges, W. Wende, S. W. Hell, E. J. G. Peterman, and G. J. L. Wuite, “STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA,” Nat. Methods 10(9), 910–916 (2013).
[Crossref] [PubMed]

S. Lee and S. Hohng, “An optical trap combined with three-color FRET,” J. Am. Chem. Soc. 135(49), 18260–18263 (2013).
[Crossref] [PubMed]

G. Thalhammer, R. W. Bowman, G. D. Love, M. J. Padgett, and M. Ritsch-Marte, “Speeding up liquid crystal SLMs using overdrive with phase change reduction,” Opt. Express 21(2), 1779–1797 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (4)

R. Zhou, A. G. Kozlov, R. Roy, J. Zhang, S. Korolev, T. M. Lohman, and T. Ha, “SSB functions as a sliding platform that migrates on DNA via reptation,” Cell 146(2), 222–232 (2011).
[Crossref] [PubMed]

A. Candelli, G. J. L. Wuite, and E. J. G. Peterman, “Combining optical trapping, fluorescence microscopy and micro-fluidics for single molecule studies of DNA-protein interactions,” Phys. Chem. Chem. Phys. 13(16), 7263–7272 (2011).
[Crossref] [PubMed]

M. J. Comstock, T. Ha, and Y. R. Chemla, “Ultrahigh-resolution optical trap with single-fluorophore sensitivity,” Nat. Methods 8(4), 335–340 (2011).
[Crossref] [PubMed]

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

2010 (2)

2009 (2)

M. I. Snijder-Van As, B. Rieger, B. Joosten, V. Subramaniam, C. G. Figdor, and J. S. Kanger, “A hybrid total internal reflection fluorescence and optical tweezers microscope to study cell adhesion and membrane protein dynamics of single living cells,” J. Microsc. 233(1), 84–92 (2009).
[Crossref] [PubMed]

J. Huisken and D. Y. R. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136(12), 1963–1975 (2009).
[Crossref] [PubMed]

2008 (5)

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100(1), 013602 (2008).
[Crossref] [PubMed]

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM Microscopy: Scanless Two-Photon Imaging and Photostimulation with Spatial Light Modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref]

H. Zhang and K.-K. Liu, “Optical tweezers for single cells,” J. R. Soc., Interface 5(24), 671–690 (2008).
[Crossref]

R. Roy, S. Hohng, and T. Ha, “A practical guide to single-molecule FRET,” Nat. Methods 5(6), 507–516 (2008).
[Crossref] [PubMed]

2007 (4)

M. Kyoung, K. Karunwi, and E. D. Sheets, “A versatile multimode microscope to probe and manipulate nanoparticles and biomolecules,” J. Microsc. 225(2), 137–146 (2007).
[Crossref] [PubMed]

P. B. Tarsa, R. R. Brau, M. Barch, J. M. Ferrer, Y. Freyzon, P. Matsudaira, and M. J. Lang, “Detecting force-induced molecular transitions with fluorescence resonant energy transfer,” Angew. Chem. (Int. Ed. Engl.) 46(12), 1999–2001 (2007).
[Crossref]

S. Hohng, R. Zhou, M. K. Nahas, J. Yu, K. Schulten, D. M. J. Lilley, and T. Ha, “Fluorescence-force spectroscopy maps two-dimensional reaction landscape of the holliday junction,” Science 318(5848), 279–283 (2007).
[Crossref] [PubMed]

R. R. Gullapalli, T. Tabouillot, R. Mathura, J. H. Dangaria, and P. J. Butler, “Integrated multimodal microscopy, time-resolved fluorescence, and optical-trap rheometry: toward single molecule mechanobiology,” J. Biomed. Opt. 12(1), 014012 (2007).
[Crossref] [PubMed]

2006 (3)

R. R. Brau, P. B. Tarsa, J. M. Ferrer, P. Lee, and M. J. Lang, “Interlaced optical force-fluorescence measurements for single molecule biophysics,” Biophys. J. 91(3), 1069–1077 (2006).
[Crossref] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

2005 (2)

2004 (1)

M. J. Lang, P. M. Fordyce, A. M. Engh, K. C. Neuman, and S. M. Block, “Simultaneous, coincident optical trapping and single-molecule fluorescence,” Nat. Methods 1(2), 133–139 (2004).
[Crossref]

2002 (1)

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1–6), 169–175 (2002).
[Crossref]

2001 (1)

D. Axelrod, “Selective imaging of surface fluorescence with very high aperture microscope objectives,” J. Biomed. Opt. 6(1), 6–13 (2001).
[Crossref] [PubMed]

2000 (1)

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(Pt 2), 82–87 (2000).
[Crossref] [PubMed]

1997 (1)

T. Funatsu, Y. Harada, H. Higuchi, M. Tokunaga, K. Saito, Y. Ishii, R. D. Vale, and T. Yanagida, “Imaging and nano-manipulation of single biomolecules,” Biophys. Chem. 68(1–3), 63–72 (1997).
[Crossref]

Agard, D. A.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Allen, W. E.

Amato-Grill, J.

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100(1), 013602 (2008).
[Crossref] [PubMed]

Andalman, A. S.

Araya, R.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM Microscopy: Scanless Two-Photon Imaging and Photostimulation with Spatial Light Modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref]

Axelrod, D.

D. Axelrod, “Selective imaging of surface fluorescence with very high aperture microscope objectives,” J. Biomed. Opt. 6(1), 6–13 (2001).
[Crossref] [PubMed]

Barch, M.

P. B. Tarsa, R. R. Brau, M. Barch, J. M. Ferrer, Y. Freyzon, P. Matsudaira, and M. J. Lang, “Detecting force-induced molecular transitions with fluorescence resonant energy transfer,” Angew. Chem. (Int. Ed. Engl.) 46(12), 1999–2001 (2007).
[Crossref]

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

Baumgart, E.

Bertness, K. A.

Betzig, E.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Block, S. M.

M. J. Lang, P. M. Fordyce, A. M. Engh, K. C. Neuman, and S. M. Block, “Simultaneous, coincident optical trapping and single-molecule fluorescence,” Nat. Methods 1(2), 133–139 (2004).
[Crossref]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Bowman, R. W.

Brau, R. R.

P. B. Tarsa, R. R. Brau, M. Barch, J. M. Ferrer, Y. Freyzon, P. Matsudaira, and M. J. Lang, “Detecting force-induced molecular transitions with fluorescence resonant energy transfer,” Angew. Chem. (Int. Ed. Engl.) 46(12), 1999–2001 (2007).
[Crossref]

R. R. Brau, P. B. Tarsa, J. M. Ferrer, P. Lee, and M. J. Lang, “Interlaced optical force-fluorescence measurements for single molecule biophysics,” Biophys. J. 91(3), 1069–1077 (2006).
[Crossref] [PubMed]

Bria, A.

Broekmans, O. D.

I. Heller, G. Sitters, O. D. Broekmans, G. Farge, C. Menges, W. Wende, S. W. Hell, E. J. G. Peterman, and G. J. L. Wuite, “STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA,” Nat. Methods 10(9), 910–916 (2013).
[Crossref] [PubMed]

Butler, P. J.

R. R. Gullapalli, T. Tabouillot, R. Mathura, J. H. Dangaria, and P. J. Butler, “Integrated multimodal microscopy, time-resolved fluorescence, and optical-trap rheometry: toward single molecule mechanobiology,” J. Biomed. Opt. 12(1), 014012 (2007).
[Crossref] [PubMed]

Cande, W. Z.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Candelli, A.

A. Candelli, G. J. L. Wuite, and E. J. G. Peterman, “Combining optical trapping, fluorescence microscopy and micro-fluidics for single molecule studies of DNA-protein interactions,” Phys. Chem. Chem. Phys. 13(16), 7263–7272 (2011).
[Crossref] [PubMed]

Carlton, P. M.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Chemla, Y. R.

M. J. Comstock, T. Ha, and Y. R. Chemla, “Ultrahigh-resolution optical trap with single-fluorophore sensitivity,” Nat. Methods 8(4), 335–340 (2011).
[Crossref] [PubMed]

Chen, S.-C.

Cheng, J.

Comstock, M. J.

M. J. Comstock, T. Ha, and Y. R. Chemla, “Ultrahigh-resolution optical trap with single-fluorophore sensitivity,” Nat. Methods 8(4), 335–340 (2011).
[Crossref] [PubMed]

Curtis, J. E.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1–6), 169–175 (2002).
[Crossref]

Dangaria, J. H.

R. R. Gullapalli, T. Tabouillot, R. Mathura, J. H. Dangaria, and P. J. Butler, “Integrated multimodal microscopy, time-resolved fluorescence, and optical-trap rheometry: toward single molecule mechanobiology,” J. Biomed. Opt. 12(1), 014012 (2007).
[Crossref] [PubMed]

Davidson, M. W.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Deisseroth, K.

Engh, A. M.

M. J. Lang, P. M. Fordyce, A. M. Engh, K. C. Neuman, and S. M. Block, “Simultaneous, coincident optical trapping and single-molecule fluorescence,” Nat. Methods 1(2), 133–139 (2004).
[Crossref]

Farge, G.

I. Heller, G. Sitters, O. D. Broekmans, G. Farge, C. Menges, W. Wende, S. W. Hell, E. J. G. Peterman, and G. J. L. Wuite, “STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA,” Nat. Methods 10(9), 910–916 (2013).
[Crossref] [PubMed]

Ferrer, J. M.

P. B. Tarsa, R. R. Brau, M. Barch, J. M. Ferrer, Y. Freyzon, P. Matsudaira, and M. J. Lang, “Detecting force-induced molecular transitions with fluorescence resonant energy transfer,” Angew. Chem. (Int. Ed. Engl.) 46(12), 1999–2001 (2007).
[Crossref]

R. R. Brau, P. B. Tarsa, J. M. Ferrer, P. Lee, and M. J. Lang, “Interlaced optical force-fluorescence measurements for single molecule biophysics,” Biophys. J. 91(3), 1069–1077 (2006).
[Crossref] [PubMed]

Figdor, C. G.

M. I. Snijder-Van As, B. Rieger, B. Joosten, V. Subramaniam, C. G. Figdor, and J. S. Kanger, “A hybrid total internal reflection fluorescence and optical tweezers microscope to study cell adhesion and membrane protein dynamics of single living cells,” J. Microsc. 233(1), 84–92 (2009).
[Crossref] [PubMed]

Fordyce, P. M.

M. J. Lang, P. M. Fordyce, A. M. Engh, K. C. Neuman, and S. M. Block, “Simultaneous, coincident optical trapping and single-molecule fluorescence,” Nat. Methods 1(2), 133–139 (2004).
[Crossref]

Freyzon, Y.

P. B. Tarsa, R. R. Brau, M. Barch, J. M. Ferrer, Y. Freyzon, P. Matsudaira, and M. J. Lang, “Detecting force-induced molecular transitions with fluorescence resonant energy transfer,” Angew. Chem. (Int. Ed. Engl.) 46(12), 1999–2001 (2007).
[Crossref]

Funatsu, T.

T. Funatsu, Y. Harada, H. Higuchi, M. Tokunaga, K. Saito, Y. Ishii, R. D. Vale, and T. Yanagida, “Imaging and nano-manipulation of single biomolecules,” Biophys. Chem. 68(1–3), 63–72 (1997).
[Crossref]

Galbraith, C. G.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

Galbraith, J. A.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

Gao, L.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

Gao, Y.

G. Sirinakis, Y. Ren, Y. Gao, Z. Xi, and Y. Zhang, “Combined versatile high-resolution optical tweezers and single-molecule fluorescence microscopy,” Rev. Sci. Instrum. 83(9), 093708 (2012).
[Crossref] [PubMed]

Golubovskaya, I. N.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Grier, D.

Grier, D. G.

S.-H. Lee, Y. Roichman, and D. G. Grier, “Optical solenoid beams,” Opt. Express 18(7), 6988–6993 (2010).
[Crossref] [PubMed]

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100(1), 013602 (2008).
[Crossref] [PubMed]

M. Polin, K. Ladavac, S. H. Lee, Y. Roichman, and D. G. Grier, “Optimized holographic optical traps,” Opt. Express 13(15), 5831–5845 (2005).
[Crossref] [PubMed]

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1–6), 169–175 (2002).
[Crossref]

Gu, C.

Gullapalli, R. R.

R. R. Gullapalli, T. Tabouillot, R. Mathura, J. H. Dangaria, and P. J. Butler, “Integrated multimodal microscopy, time-resolved fluorescence, and optical-trap rheometry: toward single molecule mechanobiology,” J. Biomed. Opt. 12(1), 014012 (2007).
[Crossref] [PubMed]

Gustafsson, M. G.

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(Pt 2), 82–87 (2000).
[Crossref] [PubMed]

Gustafsson, M. G. L.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Ha, T.

M. J. Comstock, T. Ha, and Y. R. Chemla, “Ultrahigh-resolution optical trap with single-fluorophore sensitivity,” Nat. Methods 8(4), 335–340 (2011).
[Crossref] [PubMed]

R. Zhou, A. G. Kozlov, R. Roy, J. Zhang, S. Korolev, T. M. Lohman, and T. Ha, “SSB functions as a sliding platform that migrates on DNA via reptation,” Cell 146(2), 222–232 (2011).
[Crossref] [PubMed]

R. Roy, S. Hohng, and T. Ha, “A practical guide to single-molecule FRET,” Nat. Methods 5(6), 507–516 (2008).
[Crossref] [PubMed]

S. Hohng, R. Zhou, M. K. Nahas, J. Yu, K. Schulten, D. M. J. Lilley, and T. Ha, “Fluorescence-force spectroscopy maps two-dimensional reaction landscape of the holliday junction,” Science 318(5848), 279–283 (2007).
[Crossref] [PubMed]

Harada, Y.

T. Funatsu, Y. Harada, H. Higuchi, M. Tokunaga, K. Saito, Y. Ishii, R. D. Vale, and T. Yanagida, “Imaging and nano-manipulation of single biomolecules,” Biophys. Chem. 68(1–3), 63–72 (1997).
[Crossref]

Hell, S. W.

I. Heller, G. Sitters, O. D. Broekmans, G. Farge, C. Menges, W. Wende, S. W. Hell, E. J. G. Peterman, and G. J. L. Wuite, “STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA,” Nat. Methods 10(9), 910–916 (2013).
[Crossref] [PubMed]

Heller, I.

I. Heller, G. Sitters, O. D. Broekmans, G. Farge, C. Menges, W. Wende, S. W. Hell, E. J. G. Peterman, and G. J. L. Wuite, “STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA,” Nat. Methods 10(9), 910–916 (2013).
[Crossref] [PubMed]

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Higuchi, H.

T. Funatsu, Y. Harada, H. Higuchi, M. Tokunaga, K. Saito, Y. Ishii, R. D. Vale, and T. Yanagida, “Imaging and nano-manipulation of single biomolecules,” Biophys. Chem. 68(1–3), 63–72 (1997).
[Crossref]

Hohng, S.

S. Lee and S. Hohng, “An optical trap combined with three-color FRET,” J. Am. Chem. Soc. 135(49), 18260–18263 (2013).
[Crossref] [PubMed]

R. Roy, S. Hohng, and T. Ha, “A practical guide to single-molecule FRET,” Nat. Methods 5(6), 507–516 (2008).
[Crossref] [PubMed]

S. Hohng, R. Zhou, M. K. Nahas, J. Yu, K. Schulten, D. M. J. Lilley, and T. Ha, “Fluorescence-force spectroscopy maps two-dimensional reaction landscape of the holliday junction,” Science 318(5848), 279–283 (2007).
[Crossref] [PubMed]

Huisken, J.

J. Huisken and D. Y. R. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136(12), 1963–1975 (2009).
[Crossref] [PubMed]

Iannello, G.

Ishii, Y.

T. Funatsu, Y. Harada, H. Higuchi, M. Tokunaga, K. Saito, Y. Ishii, R. D. Vale, and T. Yanagida, “Imaging and nano-manipulation of single biomolecules,” Biophys. Chem. 68(1–3), 63–72 (1997).
[Crossref]

Jaiswal, J. K.

D. S. Johnson, J. K. Jaiswal, and S. Simon, “Total internal reflection fluorescence (TIRF) microscopy illuminator for improved imaging of cell surface events,” Current protocols in cytometry, (, 2012), Chapter 12, Unit 12.29–12.29.19.
[PubMed]

Johnson, D. S.

D. S. Johnson, J. K. Jaiswal, and S. Simon, “Total internal reflection fluorescence (TIRF) microscopy illuminator for improved imaging of cell surface events,” Current protocols in cytometry, (, 2012), Chapter 12, Unit 12.29–12.29.19.
[PubMed]

Joosten, B.

M. I. Snijder-Van As, B. Rieger, B. Joosten, V. Subramaniam, C. G. Figdor, and J. S. Kanger, “A hybrid total internal reflection fluorescence and optical tweezers microscope to study cell adhesion and membrane protein dynamics of single living cells,” J. Microsc. 233(1), 84–92 (2009).
[Crossref] [PubMed]

Kanger, J. S.

M. I. Snijder-Van As, B. Rieger, B. Joosten, V. Subramaniam, C. G. Figdor, and J. S. Kanger, “A hybrid total internal reflection fluorescence and optical tweezers microscope to study cell adhesion and membrane protein dynamics of single living cells,” J. Microsc. 233(1), 84–92 (2009).
[Crossref] [PubMed]

Karunwi, K.

M. Kyoung, K. Karunwi, and E. D. Sheets, “A versatile multimode microscope to probe and manipulate nanoparticles and biomolecules,” J. Microsc. 225(2), 137–146 (2007).
[Crossref] [PubMed]

Kauvar, I.

Kim, C. K.

Korolev, S.

R. Zhou, A. G. Kozlov, R. Roy, J. Zhang, S. Korolev, T. M. Lohman, and T. Ha, “SSB functions as a sliding platform that migrates on DNA via reptation,” Cell 146(2), 222–232 (2011).
[Crossref] [PubMed]

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1–6), 169–175 (2002).
[Crossref]

Kozlov, A. G.

R. Zhou, A. G. Kozlov, R. Roy, J. Zhang, S. Korolev, T. M. Lohman, and T. Ha, “SSB functions as a sliding platform that migrates on DNA via reptation,” Cell 146(2), 222–232 (2011).
[Crossref] [PubMed]

Kubitscheck, U.

Kyoung, M.

M. Kyoung, K. Karunwi, and E. D. Sheets, “A versatile multimode microscope to probe and manipulate nanoparticles and biomolecules,” J. Microsc. 225(2), 137–146 (2007).
[Crossref] [PubMed]

Ladavac, K.

Lang, M. J.

P. B. Tarsa, R. R. Brau, M. Barch, J. M. Ferrer, Y. Freyzon, P. Matsudaira, and M. J. Lang, “Detecting force-induced molecular transitions with fluorescence resonant energy transfer,” Angew. Chem. (Int. Ed. Engl.) 46(12), 1999–2001 (2007).
[Crossref]

R. R. Brau, P. B. Tarsa, J. M. Ferrer, P. Lee, and M. J. Lang, “Interlaced optical force-fluorescence measurements for single molecule biophysics,” Biophys. J. 91(3), 1069–1077 (2006).
[Crossref] [PubMed]

M. J. Lang, P. M. Fordyce, A. M. Engh, K. C. Neuman, and S. M. Block, “Simultaneous, coincident optical trapping and single-molecule fluorescence,” Nat. Methods 1(2), 133–139 (2004).
[Crossref]

Lee, P.

R. R. Brau, P. B. Tarsa, J. M. Ferrer, P. Lee, and M. J. Lang, “Interlaced optical force-fluorescence measurements for single molecule biophysics,” Biophys. J. 91(3), 1069–1077 (2006).
[Crossref] [PubMed]

Lee, S.

S. Lee and S. Hohng, “An optical trap combined with three-color FRET,” J. Am. Chem. Soc. 135(49), 18260–18263 (2013).
[Crossref] [PubMed]

Lee, S. H.

Lee, S.-H.

Lee, T.

Li, H.

H. Li and H. Yang, “A versatile optical microscope for time-dependent single-molecule and single-particle spectroscopy DNA,” J. Chem. Phys. 148(12), 123316 (2018).
[Crossref]

Lilley, D. M. J.

S. Hohng, R. Zhou, M. K. Nahas, J. Yu, K. Schulten, D. M. J. Lilley, and T. Ha, “Fluorescence-force spectroscopy maps two-dimensional reaction landscape of the holliday junction,” Science 318(5848), 279–283 (2007).
[Crossref] [PubMed]

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Liu, K.-K.

H. Zhang and K.-K. Liu, “Optical tweezers for single cells,” J. R. Soc., Interface 5(24), 671–690 (2008).
[Crossref]

Lohman, T. M.

R. Zhou, A. G. Kozlov, R. Roy, J. Zhang, S. Korolev, T. M. Lohman, and T. Ha, “SSB functions as a sliding platform that migrates on DNA via reptation,” Cell 146(2), 222–232 (2011).
[Crossref] [PubMed]

Love, G. D.

Marshel, J. H.

Mathura, R.

R. R. Gullapalli, T. Tabouillot, R. Mathura, J. H. Dangaria, and P. J. Butler, “Integrated multimodal microscopy, time-resolved fluorescence, and optical-trap rheometry: toward single molecule mechanobiology,” J. Biomed. Opt. 12(1), 014012 (2007).
[Crossref] [PubMed]

Matsudaira, P.

P. B. Tarsa, R. R. Brau, M. Barch, J. M. Ferrer, Y. Freyzon, P. Matsudaira, and M. J. Lang, “Detecting force-induced molecular transitions with fluorescence resonant energy transfer,” Angew. Chem. (Int. Ed. Engl.) 46(12), 1999–2001 (2007).
[Crossref]

Menges, C.

I. Heller, G. Sitters, O. D. Broekmans, G. Farge, C. Menges, W. Wende, S. W. Hell, E. J. G. Peterman, and G. J. L. Wuite, “STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA,” Nat. Methods 10(9), 910–916 (2013).
[Crossref] [PubMed]

Milkie, D. E.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

Nahas, M. K.

S. Hohng, R. Zhou, M. K. Nahas, J. Yu, K. Schulten, D. M. J. Lilley, and T. Ha, “Fluorescence-force spectroscopy maps two-dimensional reaction landscape of the holliday junction,” Science 318(5848), 279–283 (2007).
[Crossref] [PubMed]

Neuman, K. C.

M. J. Lang, P. M. Fordyce, A. M. Engh, K. C. Neuman, and S. M. Block, “Simultaneous, coincident optical trapping and single-molecule fluorescence,” Nat. Methods 1(2), 133–139 (2004).
[Crossref]

Nikolenko, V.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM Microscopy: Scanless Two-Photon Imaging and Photostimulation with Spatial Light Modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Padgett, M. J.

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Pavone, F. S.

Peterka, D. S.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM Microscopy: Scanless Two-Photon Imaging and Photostimulation with Spatial Light Modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref]

Peterman, E. J. G.

I. Heller, G. Sitters, O. D. Broekmans, G. Farge, C. Menges, W. Wende, S. W. Hell, E. J. G. Peterman, and G. J. L. Wuite, “STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA,” Nat. Methods 10(9), 910–916 (2013).
[Crossref] [PubMed]

A. Candelli, G. J. L. Wuite, and E. J. G. Peterman, “Combining optical trapping, fluorescence microscopy and micro-fluidics for single molecule studies of DNA-protein interactions,” Phys. Chem. Chem. Phys. 13(16), 7263–7272 (2011).
[Crossref] [PubMed]

Planchon, T. A.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

Polin, M.

Ren, Y.

G. Sirinakis, Y. Ren, Y. Gao, Z. Xi, and Y. Zhang, “Combined versatile high-resolution optical tweezers and single-molecule fluorescence microscopy,” Rev. Sci. Instrum. 83(9), 093708 (2012).
[Crossref] [PubMed]

Rieger, B.

M. I. Snijder-Van As, B. Rieger, B. Joosten, V. Subramaniam, C. G. Figdor, and J. S. Kanger, “A hybrid total internal reflection fluorescence and optical tweezers microscope to study cell adhesion and membrane protein dynamics of single living cells,” J. Microsc. 233(1), 84–92 (2009).
[Crossref] [PubMed]

Ritsch-Marte, M.

Roichman, Y.

S.-H. Lee, Y. Roichman, and D. G. Grier, “Optical solenoid beams,” Opt. Express 18(7), 6988–6993 (2010).
[Crossref] [PubMed]

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100(1), 013602 (2008).
[Crossref] [PubMed]

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100(1), 013602 (2008).
[Crossref] [PubMed]

M. Polin, K. Ladavac, S. H. Lee, Y. Roichman, and D. G. Grier, “Optimized holographic optical traps,” Opt. Express 13(15), 5831–5845 (2005).
[Crossref] [PubMed]

Roy, R.

R. Zhou, A. G. Kozlov, R. Roy, J. Zhang, S. Korolev, T. M. Lohman, and T. Ha, “SSB functions as a sliding platform that migrates on DNA via reptation,” Cell 146(2), 222–232 (2011).
[Crossref] [PubMed]

R. Roy, S. Hohng, and T. Ha, “A practical guide to single-molecule FRET,” Nat. Methods 5(6), 507–516 (2008).
[Crossref] [PubMed]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

Sacconi, L.

Saito, K.

T. Funatsu, Y. Harada, H. Higuchi, M. Tokunaga, K. Saito, Y. Ishii, R. D. Vale, and T. Yanagida, “Imaging and nano-manipulation of single biomolecules,” Biophys. Chem. 68(1–3), 63–72 (1997).
[Crossref]

Schulten, K.

S. Hohng, R. Zhou, M. K. Nahas, J. Yu, K. Schulten, D. M. J. Lilley, and T. Ha, “Fluorescence-force spectroscopy maps two-dimensional reaction landscape of the holliday junction,” Science 318(5848), 279–283 (2007).
[Crossref] [PubMed]

Sedat, J. W.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Shao, L.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Sheets, E. D.

M. Kyoung, K. Karunwi, and E. D. Sheets, “A versatile multimode microscope to probe and manipulate nanoparticles and biomolecules,” J. Microsc. 225(2), 137–146 (2007).
[Crossref] [PubMed]

Silvestri, L.

Simon, S.

D. S. Johnson, J. K. Jaiswal, and S. Simon, “Total internal reflection fluorescence (TIRF) microscopy illuminator for improved imaging of cell surface events,” Current protocols in cytometry, (, 2012), Chapter 12, Unit 12.29–12.29.19.
[PubMed]

Sirinakis, G.

G. Sirinakis, Y. Ren, Y. Gao, Z. Xi, and Y. Zhang, “Combined versatile high-resolution optical tweezers and single-molecule fluorescence microscopy,” Rev. Sci. Instrum. 83(9), 093708 (2012).
[Crossref] [PubMed]

Sitters, G.

I. Heller, G. Sitters, O. D. Broekmans, G. Farge, C. Menges, W. Wende, S. W. Hell, E. J. G. Peterman, and G. J. L. Wuite, “STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA,” Nat. Methods 10(9), 910–916 (2013).
[Crossref] [PubMed]

Smalyukh, I. I.

Snijder-Van As, M. I.

M. I. Snijder-Van As, B. Rieger, B. Joosten, V. Subramaniam, C. G. Figdor, and J. S. Kanger, “A hybrid total internal reflection fluorescence and optical tweezers microscope to study cell adhesion and membrane protein dynamics of single living cells,” J. Microsc. 233(1), 84–92 (2009).
[Crossref] [PubMed]

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Stainier, D. Y. R.

J. Huisken and D. Y. R. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136(12), 1963–1975 (2009).
[Crossref] [PubMed]

Subramaniam, V.

M. I. Snijder-Van As, B. Rieger, B. Joosten, V. Subramaniam, C. G. Figdor, and J. S. Kanger, “A hybrid total internal reflection fluorescence and optical tweezers microscope to study cell adhesion and membrane protein dynamics of single living cells,” J. Microsc. 233(1), 84–92 (2009).
[Crossref] [PubMed]

Sun, B.

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100(1), 013602 (2008).
[Crossref] [PubMed]

Tabouillot, T.

R. R. Gullapalli, T. Tabouillot, R. Mathura, J. H. Dangaria, and P. J. Butler, “Integrated multimodal microscopy, time-resolved fluorescence, and optical-trap rheometry: toward single molecule mechanobiology,” J. Biomed. Opt. 12(1), 014012 (2007).
[Crossref] [PubMed]

Tarsa, P. B.

P. B. Tarsa, R. R. Brau, M. Barch, J. M. Ferrer, Y. Freyzon, P. Matsudaira, and M. J. Lang, “Detecting force-induced molecular transitions with fluorescence resonant energy transfer,” Angew. Chem. (Int. Ed. Engl.) 46(12), 1999–2001 (2007).
[Crossref]

R. R. Brau, P. B. Tarsa, J. M. Ferrer, P. Lee, and M. J. Lang, “Interlaced optical force-fluorescence measurements for single molecule biophysics,” Biophys. J. 91(3), 1069–1077 (2006).
[Crossref] [PubMed]

Thalhammer, G.

Tokunaga, M.

T. Funatsu, Y. Harada, H. Higuchi, M. Tokunaga, K. Saito, Y. Ishii, R. D. Vale, and T. Yanagida, “Imaging and nano-manipulation of single biomolecules,” Biophys. Chem. 68(1–3), 63–72 (1997).
[Crossref]

Trivedi, R. P.

Vale, R. D.

A. Yildiz and R. D. Vale, “Total Internal Reflection Fluorescence Microscopy,” Cold Spring Harbor protocols 2015(9), 086348 (2015).
[Crossref] [PubMed]

T. Funatsu, Y. Harada, H. Higuchi, M. Tokunaga, K. Saito, Y. Ishii, R. D. Vale, and T. Yanagida, “Imaging and nano-manipulation of single biomolecules,” Biophys. Chem. 68(1–3), 63–72 (1997).
[Crossref]

Wang, C. J. R.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Watson, B. O.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM Microscopy: Scanless Two-Photon Imaging and Photostimulation with Spatial Light Modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref]

Wende, W.

I. Heller, G. Sitters, O. D. Broekmans, G. Farge, C. Menges, W. Wende, S. W. Hell, E. J. G. Peterman, and G. J. L. Wuite, “STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA,” Nat. Methods 10(9), 910–916 (2013).
[Crossref] [PubMed]

Wetzstein, G.

Woodruff, A.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM Microscopy: Scanless Two-Photon Imaging and Photostimulation with Spatial Light Modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref]

Wuite, G. J. L.

I. Heller, G. Sitters, O. D. Broekmans, G. Farge, C. Menges, W. Wende, S. W. Hell, E. J. G. Peterman, and G. J. L. Wuite, “STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA,” Nat. Methods 10(9), 910–916 (2013).
[Crossref] [PubMed]

A. Candelli, G. J. L. Wuite, and E. J. G. Peterman, “Combining optical trapping, fluorescence microscopy and micro-fluidics for single molecule studies of DNA-protein interactions,” Phys. Chem. Chem. Phys. 13(16), 7263–7272 (2011).
[Crossref] [PubMed]

Xi, Z.

G. Sirinakis, Y. Ren, Y. Gao, Z. Xi, and Y. Zhang, “Combined versatile high-resolution optical tweezers and single-molecule fluorescence microscopy,” Rev. Sci. Instrum. 83(9), 093708 (2012).
[Crossref] [PubMed]

Yanagida, T.

T. Funatsu, Y. Harada, H. Higuchi, M. Tokunaga, K. Saito, Y. Ishii, R. D. Vale, and T. Yanagida, “Imaging and nano-manipulation of single biomolecules,” Biophys. Chem. 68(1–3), 63–72 (1997).
[Crossref]

Yang, H.

H. Li and H. Yang, “A versatile optical microscope for time-dependent single-molecule and single-particle spectroscopy DNA,” J. Chem. Phys. 148(12), 123316 (2018).
[Crossref]

Yang, S. J.

Yildiz, A.

A. Yildiz and R. D. Vale, “Total Internal Reflection Fluorescence Microscopy,” Cold Spring Harbor protocols 2015(9), 086348 (2015).
[Crossref] [PubMed]

Young, N. P.

Yu, J.

S. Hohng, R. Zhou, M. K. Nahas, J. Yu, K. Schulten, D. M. J. Lilley, and T. Ha, “Fluorescence-force spectroscopy maps two-dimensional reaction landscape of the holliday junction,” Science 318(5848), 279–283 (2007).
[Crossref] [PubMed]

Yuste, R.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM Microscopy: Scanless Two-Photon Imaging and Photostimulation with Spatial Light Modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref]

Zhang, D.

Zhang, H.

H. Zhang and K.-K. Liu, “Optical tweezers for single cells,” J. R. Soc., Interface 5(24), 671–690 (2008).
[Crossref]

Zhang, J.

R. Zhou, A. G. Kozlov, R. Roy, J. Zhang, S. Korolev, T. M. Lohman, and T. Ha, “SSB functions as a sliding platform that migrates on DNA via reptation,” Cell 146(2), 222–232 (2011).
[Crossref] [PubMed]

Zhang, Y.

G. Sirinakis, Y. Ren, Y. Gao, Z. Xi, and Y. Zhang, “Combined versatile high-resolution optical tweezers and single-molecule fluorescence microscopy,” Rev. Sci. Instrum. 83(9), 093708 (2012).
[Crossref] [PubMed]

Zhou, R.

R. Zhou, A. G. Kozlov, R. Roy, J. Zhang, S. Korolev, T. M. Lohman, and T. Ha, “SSB functions as a sliding platform that migrates on DNA via reptation,” Cell 146(2), 222–232 (2011).
[Crossref] [PubMed]

S. Hohng, R. Zhou, M. K. Nahas, J. Yu, K. Schulten, D. M. J. Lilley, and T. Ha, “Fluorescence-force spectroscopy maps two-dimensional reaction landscape of the holliday junction,” Science 318(5848), 279–283 (2007).
[Crossref] [PubMed]

Zhuang, X.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

Angew. Chem. (Int. Ed. Engl.) (1)

P. B. Tarsa, R. R. Brau, M. Barch, J. M. Ferrer, Y. Freyzon, P. Matsudaira, and M. J. Lang, “Detecting force-induced molecular transitions with fluorescence resonant energy transfer,” Angew. Chem. (Int. Ed. Engl.) 46(12), 1999–2001 (2007).
[Crossref]

Biophys. Chem. (1)

T. Funatsu, Y. Harada, H. Higuchi, M. Tokunaga, K. Saito, Y. Ishii, R. D. Vale, and T. Yanagida, “Imaging and nano-manipulation of single biomolecules,” Biophys. Chem. 68(1–3), 63–72 (1997).
[Crossref]

Biophys. J. (2)

R. R. Brau, P. B. Tarsa, J. M. Ferrer, P. Lee, and M. J. Lang, “Interlaced optical force-fluorescence measurements for single molecule biophysics,” Biophys. J. 91(3), 1069–1077 (2006).
[Crossref] [PubMed]

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Cell (1)

R. Zhou, A. G. Kozlov, R. Roy, J. Zhang, S. Korolev, T. M. Lohman, and T. Ha, “SSB functions as a sliding platform that migrates on DNA via reptation,” Cell 146(2), 222–232 (2011).
[Crossref] [PubMed]

Cold Spring Harbor protocols (1)

A. Yildiz and R. D. Vale, “Total Internal Reflection Fluorescence Microscopy,” Cold Spring Harbor protocols 2015(9), 086348 (2015).
[Crossref] [PubMed]

Development (1)

J. Huisken and D. Y. R. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136(12), 1963–1975 (2009).
[Crossref] [PubMed]

Front. Neural Circuits (1)

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM Microscopy: Scanless Two-Photon Imaging and Photostimulation with Spatial Light Modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref]

J. Am. Chem. Soc. (1)

S. Lee and S. Hohng, “An optical trap combined with three-color FRET,” J. Am. Chem. Soc. 135(49), 18260–18263 (2013).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

R. R. Gullapalli, T. Tabouillot, R. Mathura, J. H. Dangaria, and P. J. Butler, “Integrated multimodal microscopy, time-resolved fluorescence, and optical-trap rheometry: toward single molecule mechanobiology,” J. Biomed. Opt. 12(1), 014012 (2007).
[Crossref] [PubMed]

D. Axelrod, “Selective imaging of surface fluorescence with very high aperture microscope objectives,” J. Biomed. Opt. 6(1), 6–13 (2001).
[Crossref] [PubMed]

J. Chem. Phys. (1)

H. Li and H. Yang, “A versatile optical microscope for time-dependent single-molecule and single-particle spectroscopy DNA,” J. Chem. Phys. 148(12), 123316 (2018).
[Crossref]

J. Microsc. (3)

M. I. Snijder-Van As, B. Rieger, B. Joosten, V. Subramaniam, C. G. Figdor, and J. S. Kanger, “A hybrid total internal reflection fluorescence and optical tweezers microscope to study cell adhesion and membrane protein dynamics of single living cells,” J. Microsc. 233(1), 84–92 (2009).
[Crossref] [PubMed]

M. Kyoung, K. Karunwi, and E. D. Sheets, “A versatile multimode microscope to probe and manipulate nanoparticles and biomolecules,” J. Microsc. 225(2), 137–146 (2007).
[Crossref] [PubMed]

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(Pt 2), 82–87 (2000).
[Crossref] [PubMed]

J. R. Soc., Interface (1)

H. Zhang and K.-K. Liu, “Optical tweezers for single cells,” J. R. Soc., Interface 5(24), 671–690 (2008).
[Crossref]

Nat. Methods (6)

R. Roy, S. Hohng, and T. Ha, “A practical guide to single-molecule FRET,” Nat. Methods 5(6), 507–516 (2008).
[Crossref] [PubMed]

M. J. Comstock, T. Ha, and Y. R. Chemla, “Ultrahigh-resolution optical trap with single-fluorophore sensitivity,” Nat. Methods 8(4), 335–340 (2011).
[Crossref] [PubMed]

M. J. Lang, P. M. Fordyce, A. M. Engh, K. C. Neuman, and S. M. Block, “Simultaneous, coincident optical trapping and single-molecule fluorescence,” Nat. Methods 1(2), 133–139 (2004).
[Crossref]

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

I. Heller, G. Sitters, O. D. Broekmans, G. Farge, C. Menges, W. Wende, S. W. Hell, E. J. G. Peterman, and G. J. L. Wuite, “STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA,” Nat. Methods 10(9), 910–916 (2013).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

Opt. Commun. (1)

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1–6), 169–175 (2002).
[Crossref]

Opt. Express (8)

M. Polin, K. Ladavac, S. H. Lee, Y. Roichman, and D. G. Grier, “Optimized holographic optical traps,” Opt. Express 13(15), 5831–5845 (2005).
[Crossref] [PubMed]

S.-H. Lee and D. Grier, “Robustness of holographic optical traps against phase scaling errors,” Opt. Express 13(19), 7458–7465 (2005).
[Crossref] [PubMed]

S.-H. Lee, Y. Roichman, and D. G. Grier, “Optical solenoid beams,” Opt. Express 18(7), 6988–6993 (2010).
[Crossref] [PubMed]

R. P. Trivedi, T. Lee, K. A. Bertness, and I. I. Smalyukh, “Three dimensional optical manipulation and structural imaging of soft materials by use of laser tweezers and multimodal nonlinear microscopy,” Opt. Express 18(26), 27658–27669 (2010).
[Crossref]

L. Silvestri, A. Bria, L. Sacconi, G. Iannello, and F. S. Pavone, “Confocal light sheet microscopy: micron-scale neuroanatomy of the entire mouse brain,” Opt. Express 20(18), 20582–20598 (2012).
[Crossref] [PubMed]

E. Baumgart and U. Kubitscheck, “Scanned light sheet microscopy with confocal slit detection,” Opt. Express 20(19), 21805–21814 (2012).
[Crossref] [PubMed]

G. Thalhammer, R. W. Bowman, G. D. Love, M. J. Padgett, and M. Ritsch-Marte, “Speeding up liquid crystal SLMs using overdrive with phase change reduction,” Opt. Express 21(2), 1779–1797 (2013).
[Crossref] [PubMed]

S. J. Yang, W. E. Allen, I. Kauvar, A. S. Andalman, N. P. Young, C. K. Kim, J. H. Marshel, G. Wetzstein, and K. Deisseroth, “Extended field-of-view and increased-signal 3D holographic illumination with time-division multiplexing,” Opt. Express 23(25), 32573–32581 (2015).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (1)

A. Candelli, G. J. L. Wuite, and E. J. G. Peterman, “Combining optical trapping, fluorescence microscopy and micro-fluidics for single molecule studies of DNA-protein interactions,” Phys. Chem. Chem. Phys. 13(16), 7263–7272 (2011).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100(1), 013602 (2008).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

G. Sirinakis, Y. Ren, Y. Gao, Z. Xi, and Y. Zhang, “Combined versatile high-resolution optical tweezers and single-molecule fluorescence microscopy,” Rev. Sci. Instrum. 83(9), 093708 (2012).
[Crossref] [PubMed]

Science (2)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

S. Hohng, R. Zhou, M. K. Nahas, J. Yu, K. Schulten, D. M. J. Lilley, and T. Ha, “Fluorescence-force spectroscopy maps two-dimensional reaction landscape of the holliday junction,” Science 318(5848), 279–283 (2007).
[Crossref] [PubMed]

Other (1)

D. S. Johnson, J. K. Jaiswal, and S. Simon, “Total internal reflection fluorescence (TIRF) microscopy illuminator for improved imaging of cell surface events,” Current protocols in cytometry, (, 2012), Chapter 12, Unit 12.29–12.29.19.
[PubMed]

Supplementary Material (2)

NameDescription
» Visualization 1       Simultaneous holographic optical tweezers and fluorescence imaging. Water-suspended 0.8µm fluorescent beads are trapped by 561nm laser spots forming a letter ’R’, and are also imaged with 405nm laser excitation.
» Visualization 2       Time-resolved multicolor multimodal laser illumination. 561nm, 488nm, and 637nm lasers sequentially illuminate on wall in wide-field mode, holographic optical tweezers mode (i.e. local-field mode), and combined mode. Multiple lasers are controlled in

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Two illumination schemes in microscopy. (a) In ‘wide-field’ scheme, light focused on the back focal plane of objective shines on specimen (e.g., to excite fluorescent molecules) in wide area. Fluorescence emission is shown for only one fluorescent molecule for simplicity. (b) In ’local-field’ scheme, collimated beams enter into objective and get focused on sample plane, which then can be used for trapping microspheres (optical tweezers) or locally exciting fluorescent molecules (confocal microscopy).
Fig. 2
Fig. 2 Schematics of the multimodal microscope. (M) mirror, (GM) galvo mirror, (SH) shutter, (D1-D4) long-pass dichroic mirrors for 405nm, 488nm, 532nm, and 561nm, (L1-L7) lens, (PBS) polarizing beam splitter, (HWP) half-wave plate, (AOTF) acousto-optic tunable filter, (OBJ) objective, (SLM) spatial light modulator, (TE) lens pair forming a telescope, (FW) filter wheel, (*0) specimen plane and its conjugate images, (*1) objective back aperture plane and its conjugate images, (*2) objective back focal plane and its conjugate images.
Fig. 3
Fig. 3 Multi-color luminescence images of 80nm gold nanospheres attached on coverslip. (a) Bright field image. (b) Epi-fluorescence illumination scheme. (c) TIRF illumination scheme. Gold particles were adsorbed to a coverslip by drying gold suspension in air and the coverslip was replenished with water for imaging. Laser beam size was adjusted to fill the whole camera field of view (133µm × 133µm) and the power was adjusted to 2.5mW for 405nm laser and 5mW for others when measured in front of objective. Scale bar: 10µm.
Fig. 4
Fig. 4 Simultaneous holographic optical tweezers and fluorescence imaging. Water-suspended 0.8µm fluorescent beads are trapped by 561nm laser. (a) Simultaneous Epi-fluorescence image of the trapped beads with 405nm laser excitation (see Visualization 1). (b) Simultaneous TIRF image of 100nm gold nanoparticles adsorbed on the coverslip surface using 488nm laser illumination. The signal at the trapped bead position is due to fluorescence bleed-through of the bead by strong 561nm trapping laser.
Fig. 5
Fig. 5 Overlaid image of time-resolved multicolor holographic illumination with 405nm, 488nm, 561nm, and 637nm lasers. Channel-to-channel frame rate: 10Hz, Scale bar: 10µm.
Fig. 6
Fig. 6 Selective plane illumination fluorescence microscopy with 1-D scanning of optical line tweezers. (a) Optical line tweezers are created using 561nm and shape phase holography [33,34]. 1-D scanning in perpendicular to the line generates a diffraction-limited thin light sheet for fast optical sectioning fluorescence microscopy. The light image was obtained by placing a mirror in front of microscope objective (Nikon PlanApo VC60X Oil NA 1.4 WD 0.13mm). Scale bar: 10µm. (b) Comparison of line-scan and Epi-fluorescence imaging of Arabidopsis stem section autofluorescence with 561nm excitation. Line-scan imaging shows superior optical sectioning capability when the thick specimen is imaged at 12µm deep inside the surface (red arrow heads). In contrast, Epi-fluorescence image is significantly affected by out-of-focus signal (white arrows), misrepresenting the structures. Scale bar: 10µm.

Tables (1)

Tables Icon

Table 1 Parts list of critical components in Fig. 2.

Metrics