Abstract

Raman spectroscopy paired with the partial least squares (PLS) method is commonly used for quantitative or qualitative analysis of complex samples. However, spectral shift induced by different Raman spectroscopy, different environment or different measured time will decrease the accuracy of the PLS model. In this work, the processing algorithms that improve the accuracy by removing the noise, background and varying sources of other spectral interference were first reviewed. The error induced by the spectral shift was analyzed and the formulas of the error were derived. The formulas were then used to calculate the theoretical error in the example of discriminating human and nonhuman blood. A comparison of the actual errors obtained from the mathematical method and experiment with the theoretical value demonstrated the effectiveness of the equation. The compensation for nonhuman blood according to the average error demonstrated the improvement of the accuracy. Finally, the non-uniform sampling of the Raman shift by charge-coupled device (CCD) was considered in the error equation. An accurate error equation was obtained. This work could help improve the stability of PLS models in the case of the spectral shift of the spectrometer in Raman spectroscopy.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Blood analysis by Raman spectroscopy

Annika M. K. Enejder, Tae-Woong Koo, Jeankun Oh, Martin Hunter, Slobodan Sasic, Michael S. Feld, and Gary L. Horowitz
Opt. Lett. 27(22) 2004-2006 (2002)

Discrimination of healthy and carious teeth using laser-induced breakdown spectroscopy and partial least square discriminant analysis

Meisam Gazmeh, Maryam Bahreini, and Seyed Hassan Tavassoli
Appl. Opt. 54(1) 123-131 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. Ohira, H. Tanaka, Y. Harada, T. Minamikawa, Y. Kumamoto, S. Matoba, H. Yaku, and T. Takamatsu, “Label-free detection of myocardial ischaemia in the perfused rat heart by spontaneous Raman spectroscopy,” Sci. Rep. 7, 42401 (2017).
    [Crossref] [PubMed]
  2. H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
    [Crossref] [PubMed]
  3. Y. F. Huang, P. J. Kooyman, and M. T. M. Koper, “Intermediate stages of electrochemical oxidation of single-crystalline platinum revealed by in situ Raman spectroscopy,” Nat. Commun. 7, 12440 (2016).
    [Crossref] [PubMed]
  4. C. Tondepu, R. Toth, C. V. Navin, L. S. Lawson, and J. D. Rodriguez, “Screening of unapproved drugs using portable Raman spectroscopy,” Anal. Chim. Acta 973, 75–81 (2017).
    [Crossref] [PubMed]
  5. N. D. Kline, A. Tripathi, R. Mirsafavi, I. Pardoe, M. Moskovits, C. Meinhart, J. A. Guicheteau, S. D. Christesen, and A. W. Fountain, “Optimization of Surface-Enhanced Raman Spectroscopy Conditions for Implementation into a Microfluidic Device for Drug Detection,” Anal. Chem. 88(21), 10513–10522 (2016).
    [Crossref] [PubMed]
  6. J. Qin, M. S. Kim, K. Chao, W. F. Schmidt, S. Dhakal, B. K. Cho, Y. Peng, and M. Huang, “Subsurface inspection of food safety and quality using line-scan spatially offset Raman spectroscopy technique,” Food Control 75, 246–254 (2017).
    [Crossref]
  7. A. I. Radu, M. Kuellmer, B. Giese, U. Huebner, K. Weber, D. Cialla-May, and J. Popp, “Surface-Enhanced Raman Spectroscopy (SERS) in food analytics: Detection of vitamins B2 and B12 in cereals,” Talanta 160, 289–297 (2016).
    [Crossref] [PubMed]
  8. S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, and Z. Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1(6), 16021 (2016).
    [Crossref]
  9. X. Zhang, Q. H. Tan, J. B. Wu, W. Shi, and P. H. Tan, “Review on the Raman spectroscopy of different types of layered materials,” Nanoscale 8(12), 6435–6450 (2016).
    [Crossref] [PubMed]
  10. H. Bian, P. Wang, J. Wang, H. Yin, Y. Tian, P. Bai, X. Wu, N. Wang, Y. Tang, and J. Gao, “Discrimination of human and nonhuman blood using Raman spectroscopy with self-reference algorithm,” J. Biomed. Opt. 22(9), 1–7 (2017).
    [Crossref] [PubMed]
  11. K. C. Doty and I. K. Lednev, “Differentiation of human blood from animal blood using Raman spectroscopy: A survey of forensically relevant species,” Forensic Sci. Int. 282, 204–210 (2018).
    [Crossref] [PubMed]
  12. V. Sikirzhytski, A. Sikirzhytskaya, and I. K. Lednev, “Multidimensional Raman spectroscopic signatures as a tool for forensic identification of body fluid traces: a review,” Appl. Spectrosc. 65(11), 1223–1232 (2011).
    [Crossref] [PubMed]
  13. K. Kachrimanis, D. E. Braun, and U. J. Griesser, “Quantitative analysis of paracetamol polymorphs in powder mixtures by FT-Raman spectroscopy and PLS regression,” J. Pharm. Biomed. Anal. 43(2), 407–412 (2007).
    [Crossref] [PubMed]
  14. M. R. Almeida, C. H. V. Fidelis, L. E. S. Barata, and R. J. Poppi, “Classification of Amazonian rosewood essential oil by Raman spectroscopy and PLS-DA with reliability estimation,” Talanta 117, 305–311 (2013).
    [Crossref] [PubMed]
  15. A. Sikirzhytskaya, V. Sikirzhytski, and I. K. Lednev, “Raman spectroscopy coupled with advanced statistics for differentiating menstrual and peripheral blood,” J. Biophotonics 7(1-2), 59–67 (2014).
    [Crossref] [PubMed]
  16. A. Momenpour Tehran Monfared and H. Anis, “An improved partial least-squares regression method for Raman spectroscopy,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 185, 98–103 (2017).
    [Crossref] [PubMed]
  17. H. Wold, “Estimation of principal components and related methods by iterative least squares,” Multivariate Anal. 391–420 (1966).
  18. M. Jermyn, J. Mercier, K. Aubertin, J. Desroches, K. Urmey, J. Karamchandiani, E. Marple, M. C. Guiot, F. Leblond, and K. Petrecca, “Highly Accurate Detection of Cancer In Situ with Intraoperative, Label-Free, Multimodal Optical Spectroscopy,” Cancer Res. 77(14), 3942–3950 (2017).
    [Crossref] [PubMed]
  19. H. Lui, J. Zhao, D. McLean, and H. Zeng, “Real-time Raman spectroscopy for in vivo skin cancer diagnosis,” Cancer Res. 72(10), 2491–2500 (2012).
    [Crossref] [PubMed]
  20. D. Ballabio and V. Consonni, “Classification tools in chemistry. Part 1: linear models. PLS-DA,” Anal. Methods-UK 5(16), 3790–3798 (2013).
  21. M. Ledinský, P. Löper, B. Niesen, J. Holovský, S. J. Moon, J. H. Yum, S. De Wolf, A. Fejfar, and C. Ballif, “Raman spectroscopy of organic–inorganic halide perovskites,” J. Phys. Chem. Lett. 6(3), 401–406 (2015).
    [Crossref] [PubMed]
  22. A. L. Hook, D. J. Scurr, J. C. Burley, R. Langer, D. G. Anderson, M. C. Davies, and M. R. Alexander, “Analysis and prediction of defects in UV photo-initiated polymer microarrays,” J. Mater. Chem. B Mater. Biol. Med. 1(7), 1035–1043 (2013).
    [Crossref] [PubMed]
  23. U. P. Agarwal and S. A. Ralph, “FT-Raman spectroscopy of wood: identifying contributions of lignin and carbohydrate polymers in the spectrum of black spruce (Picea mariana),” Appl. Spectrosc. 51(11), 1648–1655 (1997).
    [Crossref]
  24. E. L. Izake, “Forensic and homeland security applications of modern portable Raman spectroscopy,” Forensic Sci. Int. 202(1-3), 1–8 (2010).
    [Crossref] [PubMed]
  25. S. Boyd, M. F. Bertino, and S. J. Seashols, “Raman spectroscopy of blood samples for forensic applications,” Forensic Sci. Int. 208(1-3), 124–128 (2011).
    [Crossref] [PubMed]
  26. C. M. Hodges and J. Akhavan, “The use of Fourier transform Raman spectroscopy in the forensic identification of illicit drugs and explosives,” Spectrochim. Acta A 46(2), 303–307 (1990).
    [Crossref]
  27. C. Eliasson, N. A. Macleod, and P. Matousek, “Noninvasive detection of concealed liquid explosives using Raman spectroscopy,” Anal. Chem. 79(21), 8185–8189 (2007).
    [Crossref] [PubMed]
  28. D. Chen, Z. Chen, and E. R. Grant, “Adaptive multiscale regression for reliable Raman quantitative analysis,” Analyst (Lond.) 137(1), 237–244 (2012).
    [Crossref] [PubMed]
  29. Z. M. Zhang, X. Tong, Y. Peng, P. Ma, M. J. Zhang, H. M. Lu, X. Q. Chen, and Y. Z. Liang, “Multiscale peak detection in wavelet space,” Analyst (Lond.) 140(23), 7955–7964 (2015).
    [Crossref] [PubMed]
  30. M. Člupek, P. Matějka, and K. Volka, “Noise reduction in Raman spectra: Finite impulse response filtration versus Savitzky–Golay smoothing,” J. Raman Spectrosc. 38(9), 1174–1179 (2007).
    [Crossref]
  31. H. G. Schulze, R. B. Foist, A. Ivanov, and R. F. B. Turner, “Fully automated high-performance signal-to-noise ratio enhancement based on an iterative three-point zero-order Savitzky-Golay filter,” Appl. Spectrosc. 62(10), 1160–1166 (2008).
    [Crossref] [PubMed]
  32. F. Ehrentreich and L. Sümmchen, “Spike removal and denoising of Raman spectra by wavelet transform methods,” Anal. Chem. 73(17), 4364–4373 (2001).
    [Crossref] [PubMed]
  33. P. M. Ramos and I. Ruisanchez, “Noise and background removal in Raman spectra of ancient pigments using wavelet transform,” J. Raman Spectrosc. 36(9), 848–856 (2005).
    [Crossref]
  34. H. Bettermann and W. Rauch, “Quantitative determination of resonant Raman signals using signal accumulation, adapted Fourier filtering, and band-shape analysis,” Appl. Spectrosc. 44(9), 1534–1537 (1990).
    [Crossref]
  35. J. Zhao, H. Lui, D. I. McLean, and H. Zeng, “Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy,” Appl. Spectrosc. 61(11), 1225–1232 (2007).
    [Crossref] [PubMed]
  36. C. A. Lieber and A. Mahadevan-Jansen, “Automated method for subtraction of fluorescence from biological Raman spectra,” Appl. Spectrosc. 57(11), 1363–1367 (2003).
    [Crossref] [PubMed]
  37. Z. M. Zhang, S. Chen, Y. Z. Liang, Z. X. Liu, Q. M. Zhang, L. X. Ding, F. Ye, and H. Zhou, “An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy,” J. Raman Spectrosc. 41(6), 659–669 (2010).
    [Crossref]
  38. S. T. McCain, R. M. Willett, and D. J. Brady, “Multi-excitation Raman spectroscopy technique for fluorescence rejection,” Opt. Express 16(15), 10975–10991 (2008).
    [Crossref] [PubMed]
  39. A. P. Shreve, N. J. Cherepy, and R. A. Mathies, “Effective rejection of fluorescence interference in Raman spectroscopy using a shifted excitation difference technique,” Appl. Spectrosc. 46(4), 707–711 (1992).
    [Crossref]
  40. Z. M. Zhang, S. Chen, and Y. Z. Liang, “Baseline correction using adaptive iteratively reweighted penalized least squares,” Analyst (Lond.) 135(5), 1138–1146 (2010).
    [Crossref] [PubMed]
  41. S. Guo, T. Bocklitz, and J. Popp, “Optimization of Raman-spectrum baseline correction in biological application,” Analyst (Lond.) 141(8), 2396–2404 (2016).
    [Crossref] [PubMed]
  42. J. Von Frese, S. A. Kovalenko, and N. P. Ernsting, “Interactive curve resolution by using latent projections in polar coordinates,” J. Chemometr. 21(1–2), 2–9 (2007).
    [Crossref]
  43. J. Bin, F. Ai, W. Fan, J. Zhou, and Z. Zhang, “Rapid Determination of Unsaturated Fatty Acids in Vegetable Oil by Raman Spectroscopy and Chemometrics,” Anal. Lett. 49(6), 831–842 (2016).
    [Crossref]
  44. R. Wolthuis, G. C. H. Tjiang, G. J. Puppels, and T. C. B. Schut, “Estimating the influence of experimental parameters on the prediction error of PLS calibration models based on Raman spectra,” J. Raman Spectrosc. 37(1–3), 447–466 (2006).
    [Crossref]
  45. M. R. Almeida, D. N. Correa, W. F. C. Rocha, F. J. O. Scafi, and R. J. Poppi, “Discrimination between authentic and counterfeit banknotes using Raman spectroscopy and PLS-DA with uncertainty estimation,” Microchem. J. 109, 170–177 (2013).
    [Crossref]
  46. C. Liu and R. W. Berg, “Determining the spectral resolution of a charge-coupled device (CCD) Raman instrument,” Appl. Spectrosc. 66(9), 1034–1043 (2012).
    [Crossref]

2018 (1)

K. C. Doty and I. K. Lednev, “Differentiation of human blood from animal blood using Raman spectroscopy: A survey of forensically relevant species,” Forensic Sci. Int. 282, 204–210 (2018).
[Crossref] [PubMed]

2017 (6)

H. Bian, P. Wang, J. Wang, H. Yin, Y. Tian, P. Bai, X. Wu, N. Wang, Y. Tang, and J. Gao, “Discrimination of human and nonhuman blood using Raman spectroscopy with self-reference algorithm,” J. Biomed. Opt. 22(9), 1–7 (2017).
[Crossref] [PubMed]

A. Momenpour Tehran Monfared and H. Anis, “An improved partial least-squares regression method for Raman spectroscopy,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 185, 98–103 (2017).
[Crossref] [PubMed]

M. Jermyn, J. Mercier, K. Aubertin, J. Desroches, K. Urmey, J. Karamchandiani, E. Marple, M. C. Guiot, F. Leblond, and K. Petrecca, “Highly Accurate Detection of Cancer In Situ with Intraoperative, Label-Free, Multimodal Optical Spectroscopy,” Cancer Res. 77(14), 3942–3950 (2017).
[Crossref] [PubMed]

S. Ohira, H. Tanaka, Y. Harada, T. Minamikawa, Y. Kumamoto, S. Matoba, H. Yaku, and T. Takamatsu, “Label-free detection of myocardial ischaemia in the perfused rat heart by spontaneous Raman spectroscopy,” Sci. Rep. 7, 42401 (2017).
[Crossref] [PubMed]

C. Tondepu, R. Toth, C. V. Navin, L. S. Lawson, and J. D. Rodriguez, “Screening of unapproved drugs using portable Raman spectroscopy,” Anal. Chim. Acta 973, 75–81 (2017).
[Crossref] [PubMed]

J. Qin, M. S. Kim, K. Chao, W. F. Schmidt, S. Dhakal, B. K. Cho, Y. Peng, and M. Huang, “Subsurface inspection of food safety and quality using line-scan spatially offset Raman spectroscopy technique,” Food Control 75, 246–254 (2017).
[Crossref]

2016 (8)

A. I. Radu, M. Kuellmer, B. Giese, U. Huebner, K. Weber, D. Cialla-May, and J. Popp, “Surface-Enhanced Raman Spectroscopy (SERS) in food analytics: Detection of vitamins B2 and B12 in cereals,” Talanta 160, 289–297 (2016).
[Crossref] [PubMed]

S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, and Z. Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1(6), 16021 (2016).
[Crossref]

X. Zhang, Q. H. Tan, J. B. Wu, W. Shi, and P. H. Tan, “Review on the Raman spectroscopy of different types of layered materials,” Nanoscale 8(12), 6435–6450 (2016).
[Crossref] [PubMed]

N. D. Kline, A. Tripathi, R. Mirsafavi, I. Pardoe, M. Moskovits, C. Meinhart, J. A. Guicheteau, S. D. Christesen, and A. W. Fountain, “Optimization of Surface-Enhanced Raman Spectroscopy Conditions for Implementation into a Microfluidic Device for Drug Detection,” Anal. Chem. 88(21), 10513–10522 (2016).
[Crossref] [PubMed]

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Y. F. Huang, P. J. Kooyman, and M. T. M. Koper, “Intermediate stages of electrochemical oxidation of single-crystalline platinum revealed by in situ Raman spectroscopy,” Nat. Commun. 7, 12440 (2016).
[Crossref] [PubMed]

S. Guo, T. Bocklitz, and J. Popp, “Optimization of Raman-spectrum baseline correction in biological application,” Analyst (Lond.) 141(8), 2396–2404 (2016).
[Crossref] [PubMed]

J. Bin, F. Ai, W. Fan, J. Zhou, and Z. Zhang, “Rapid Determination of Unsaturated Fatty Acids in Vegetable Oil by Raman Spectroscopy and Chemometrics,” Anal. Lett. 49(6), 831–842 (2016).
[Crossref]

2015 (2)

M. Ledinský, P. Löper, B. Niesen, J. Holovský, S. J. Moon, J. H. Yum, S. De Wolf, A. Fejfar, and C. Ballif, “Raman spectroscopy of organic–inorganic halide perovskites,” J. Phys. Chem. Lett. 6(3), 401–406 (2015).
[Crossref] [PubMed]

Z. M. Zhang, X. Tong, Y. Peng, P. Ma, M. J. Zhang, H. M. Lu, X. Q. Chen, and Y. Z. Liang, “Multiscale peak detection in wavelet space,” Analyst (Lond.) 140(23), 7955–7964 (2015).
[Crossref] [PubMed]

2014 (1)

A. Sikirzhytskaya, V. Sikirzhytski, and I. K. Lednev, “Raman spectroscopy coupled with advanced statistics for differentiating menstrual and peripheral blood,” J. Biophotonics 7(1-2), 59–67 (2014).
[Crossref] [PubMed]

2013 (4)

D. Ballabio and V. Consonni, “Classification tools in chemistry. Part 1: linear models. PLS-DA,” Anal. Methods-UK 5(16), 3790–3798 (2013).

M. R. Almeida, C. H. V. Fidelis, L. E. S. Barata, and R. J. Poppi, “Classification of Amazonian rosewood essential oil by Raman spectroscopy and PLS-DA with reliability estimation,” Talanta 117, 305–311 (2013).
[Crossref] [PubMed]

A. L. Hook, D. J. Scurr, J. C. Burley, R. Langer, D. G. Anderson, M. C. Davies, and M. R. Alexander, “Analysis and prediction of defects in UV photo-initiated polymer microarrays,” J. Mater. Chem. B Mater. Biol. Med. 1(7), 1035–1043 (2013).
[Crossref] [PubMed]

M. R. Almeida, D. N. Correa, W. F. C. Rocha, F. J. O. Scafi, and R. J. Poppi, “Discrimination between authentic and counterfeit banknotes using Raman spectroscopy and PLS-DA with uncertainty estimation,” Microchem. J. 109, 170–177 (2013).
[Crossref]

2012 (3)

D. Chen, Z. Chen, and E. R. Grant, “Adaptive multiscale regression for reliable Raman quantitative analysis,” Analyst (Lond.) 137(1), 237–244 (2012).
[Crossref] [PubMed]

H. Lui, J. Zhao, D. McLean, and H. Zeng, “Real-time Raman spectroscopy for in vivo skin cancer diagnosis,” Cancer Res. 72(10), 2491–2500 (2012).
[Crossref] [PubMed]

C. Liu and R. W. Berg, “Determining the spectral resolution of a charge-coupled device (CCD) Raman instrument,” Appl. Spectrosc. 66(9), 1034–1043 (2012).
[Crossref]

2011 (2)

2010 (3)

E. L. Izake, “Forensic and homeland security applications of modern portable Raman spectroscopy,” Forensic Sci. Int. 202(1-3), 1–8 (2010).
[Crossref] [PubMed]

Z. M. Zhang, S. Chen, Y. Z. Liang, Z. X. Liu, Q. M. Zhang, L. X. Ding, F. Ye, and H. Zhou, “An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy,” J. Raman Spectrosc. 41(6), 659–669 (2010).
[Crossref]

Z. M. Zhang, S. Chen, and Y. Z. Liang, “Baseline correction using adaptive iteratively reweighted penalized least squares,” Analyst (Lond.) 135(5), 1138–1146 (2010).
[Crossref] [PubMed]

2008 (2)

2007 (5)

J. Zhao, H. Lui, D. I. McLean, and H. Zeng, “Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy,” Appl. Spectrosc. 61(11), 1225–1232 (2007).
[Crossref] [PubMed]

J. Von Frese, S. A. Kovalenko, and N. P. Ernsting, “Interactive curve resolution by using latent projections in polar coordinates,” J. Chemometr. 21(1–2), 2–9 (2007).
[Crossref]

C. Eliasson, N. A. Macleod, and P. Matousek, “Noninvasive detection of concealed liquid explosives using Raman spectroscopy,” Anal. Chem. 79(21), 8185–8189 (2007).
[Crossref] [PubMed]

M. Člupek, P. Matějka, and K. Volka, “Noise reduction in Raman spectra: Finite impulse response filtration versus Savitzky–Golay smoothing,” J. Raman Spectrosc. 38(9), 1174–1179 (2007).
[Crossref]

K. Kachrimanis, D. E. Braun, and U. J. Griesser, “Quantitative analysis of paracetamol polymorphs in powder mixtures by FT-Raman spectroscopy and PLS regression,” J. Pharm. Biomed. Anal. 43(2), 407–412 (2007).
[Crossref] [PubMed]

2006 (1)

R. Wolthuis, G. C. H. Tjiang, G. J. Puppels, and T. C. B. Schut, “Estimating the influence of experimental parameters on the prediction error of PLS calibration models based on Raman spectra,” J. Raman Spectrosc. 37(1–3), 447–466 (2006).
[Crossref]

2005 (1)

P. M. Ramos and I. Ruisanchez, “Noise and background removal in Raman spectra of ancient pigments using wavelet transform,” J. Raman Spectrosc. 36(9), 848–856 (2005).
[Crossref]

2003 (1)

2001 (1)

F. Ehrentreich and L. Sümmchen, “Spike removal and denoising of Raman spectra by wavelet transform methods,” Anal. Chem. 73(17), 4364–4373 (2001).
[Crossref] [PubMed]

1997 (1)

1992 (1)

1990 (2)

H. Bettermann and W. Rauch, “Quantitative determination of resonant Raman signals using signal accumulation, adapted Fourier filtering, and band-shape analysis,” Appl. Spectrosc. 44(9), 1534–1537 (1990).
[Crossref]

C. M. Hodges and J. Akhavan, “The use of Fourier transform Raman spectroscopy in the forensic identification of illicit drugs and explosives,” Spectrochim. Acta A 46(2), 303–307 (1990).
[Crossref]

Agarwal, U. P.

Ai, F.

J. Bin, F. Ai, W. Fan, J. Zhou, and Z. Zhang, “Rapid Determination of Unsaturated Fatty Acids in Vegetable Oil by Raman Spectroscopy and Chemometrics,” Anal. Lett. 49(6), 831–842 (2016).
[Crossref]

Akhavan, J.

C. M. Hodges and J. Akhavan, “The use of Fourier transform Raman spectroscopy in the forensic identification of illicit drugs and explosives,” Spectrochim. Acta A 46(2), 303–307 (1990).
[Crossref]

Alexander, M. R.

A. L. Hook, D. J. Scurr, J. C. Burley, R. Langer, D. G. Anderson, M. C. Davies, and M. R. Alexander, “Analysis and prediction of defects in UV photo-initiated polymer microarrays,” J. Mater. Chem. B Mater. Biol. Med. 1(7), 1035–1043 (2013).
[Crossref] [PubMed]

Almeida, M. R.

M. R. Almeida, C. H. V. Fidelis, L. E. S. Barata, and R. J. Poppi, “Classification of Amazonian rosewood essential oil by Raman spectroscopy and PLS-DA with reliability estimation,” Talanta 117, 305–311 (2013).
[Crossref] [PubMed]

M. R. Almeida, D. N. Correa, W. F. C. Rocha, F. J. O. Scafi, and R. J. Poppi, “Discrimination between authentic and counterfeit banknotes using Raman spectroscopy and PLS-DA with uncertainty estimation,” Microchem. J. 109, 170–177 (2013).
[Crossref]

Anderson, D. G.

A. L. Hook, D. J. Scurr, J. C. Burley, R. Langer, D. G. Anderson, M. C. Davies, and M. R. Alexander, “Analysis and prediction of defects in UV photo-initiated polymer microarrays,” J. Mater. Chem. B Mater. Biol. Med. 1(7), 1035–1043 (2013).
[Crossref] [PubMed]

Anis, H.

A. Momenpour Tehran Monfared and H. Anis, “An improved partial least-squares regression method for Raman spectroscopy,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 185, 98–103 (2017).
[Crossref] [PubMed]

Ashton, L.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Aubertin, K.

M. Jermyn, J. Mercier, K. Aubertin, J. Desroches, K. Urmey, J. Karamchandiani, E. Marple, M. C. Guiot, F. Leblond, and K. Petrecca, “Highly Accurate Detection of Cancer In Situ with Intraoperative, Label-Free, Multimodal Optical Spectroscopy,” Cancer Res. 77(14), 3942–3950 (2017).
[Crossref] [PubMed]

Bai, P.

H. Bian, P. Wang, J. Wang, H. Yin, Y. Tian, P. Bai, X. Wu, N. Wang, Y. Tang, and J. Gao, “Discrimination of human and nonhuman blood using Raman spectroscopy with self-reference algorithm,” J. Biomed. Opt. 22(9), 1–7 (2017).
[Crossref] [PubMed]

Ballabio, D.

D. Ballabio and V. Consonni, “Classification tools in chemistry. Part 1: linear models. PLS-DA,” Anal. Methods-UK 5(16), 3790–3798 (2013).

Ballif, C.

M. Ledinský, P. Löper, B. Niesen, J. Holovský, S. J. Moon, J. H. Yum, S. De Wolf, A. Fejfar, and C. Ballif, “Raman spectroscopy of organic–inorganic halide perovskites,” J. Phys. Chem. Lett. 6(3), 401–406 (2015).
[Crossref] [PubMed]

Barata, L. E. S.

M. R. Almeida, C. H. V. Fidelis, L. E. S. Barata, and R. J. Poppi, “Classification of Amazonian rosewood essential oil by Raman spectroscopy and PLS-DA with reliability estimation,” Talanta 117, 305–311 (2013).
[Crossref] [PubMed]

Berg, R. W.

Bertino, M. F.

S. Boyd, M. F. Bertino, and S. J. Seashols, “Raman spectroscopy of blood samples for forensic applications,” Forensic Sci. Int. 208(1-3), 124–128 (2011).
[Crossref] [PubMed]

Bettermann, H.

Bian, H.

H. Bian, P. Wang, J. Wang, H. Yin, Y. Tian, P. Bai, X. Wu, N. Wang, Y. Tang, and J. Gao, “Discrimination of human and nonhuman blood using Raman spectroscopy with self-reference algorithm,” J. Biomed. Opt. 22(9), 1–7 (2017).
[Crossref] [PubMed]

Bin, J.

J. Bin, F. Ai, W. Fan, J. Zhou, and Z. Zhang, “Rapid Determination of Unsaturated Fatty Acids in Vegetable Oil by Raman Spectroscopy and Chemometrics,” Anal. Lett. 49(6), 831–842 (2016).
[Crossref]

Bird, B.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Bocklitz, T.

S. Guo, T. Bocklitz, and J. Popp, “Optimization of Raman-spectrum baseline correction in biological application,” Analyst (Lond.) 141(8), 2396–2404 (2016).
[Crossref] [PubMed]

Boyd, S.

S. Boyd, M. F. Bertino, and S. J. Seashols, “Raman spectroscopy of blood samples for forensic applications,” Forensic Sci. Int. 208(1-3), 124–128 (2011).
[Crossref] [PubMed]

Brady, D. J.

Braun, D. E.

K. Kachrimanis, D. E. Braun, and U. J. Griesser, “Quantitative analysis of paracetamol polymorphs in powder mixtures by FT-Raman spectroscopy and PLS regression,” J. Pharm. Biomed. Anal. 43(2), 407–412 (2007).
[Crossref] [PubMed]

Burley, J. C.

A. L. Hook, D. J. Scurr, J. C. Burley, R. Langer, D. G. Anderson, M. C. Davies, and M. R. Alexander, “Analysis and prediction of defects in UV photo-initiated polymer microarrays,” J. Mater. Chem. B Mater. Biol. Med. 1(7), 1035–1043 (2013).
[Crossref] [PubMed]

Butler, H. J.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Chao, K.

J. Qin, M. S. Kim, K. Chao, W. F. Schmidt, S. Dhakal, B. K. Cho, Y. Peng, and M. Huang, “Subsurface inspection of food safety and quality using line-scan spatially offset Raman spectroscopy technique,” Food Control 75, 246–254 (2017).
[Crossref]

Chen, D.

D. Chen, Z. Chen, and E. R. Grant, “Adaptive multiscale regression for reliable Raman quantitative analysis,” Analyst (Lond.) 137(1), 237–244 (2012).
[Crossref] [PubMed]

Chen, S.

Z. M. Zhang, S. Chen, and Y. Z. Liang, “Baseline correction using adaptive iteratively reweighted penalized least squares,” Analyst (Lond.) 135(5), 1138–1146 (2010).
[Crossref] [PubMed]

Z. M. Zhang, S. Chen, Y. Z. Liang, Z. X. Liu, Q. M. Zhang, L. X. Ding, F. Ye, and H. Zhou, “An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy,” J. Raman Spectrosc. 41(6), 659–669 (2010).
[Crossref]

Chen, X. Q.

Z. M. Zhang, X. Tong, Y. Peng, P. Ma, M. J. Zhang, H. M. Lu, X. Q. Chen, and Y. Z. Liang, “Multiscale peak detection in wavelet space,” Analyst (Lond.) 140(23), 7955–7964 (2015).
[Crossref] [PubMed]

Chen, Z.

D. Chen, Z. Chen, and E. R. Grant, “Adaptive multiscale regression for reliable Raman quantitative analysis,” Analyst (Lond.) 137(1), 237–244 (2012).
[Crossref] [PubMed]

Cherepy, N. J.

Cho, B. K.

J. Qin, M. S. Kim, K. Chao, W. F. Schmidt, S. Dhakal, B. K. Cho, Y. Peng, and M. Huang, “Subsurface inspection of food safety and quality using line-scan spatially offset Raman spectroscopy technique,” Food Control 75, 246–254 (2017).
[Crossref]

Christesen, S. D.

N. D. Kline, A. Tripathi, R. Mirsafavi, I. Pardoe, M. Moskovits, C. Meinhart, J. A. Guicheteau, S. D. Christesen, and A. W. Fountain, “Optimization of Surface-Enhanced Raman Spectroscopy Conditions for Implementation into a Microfluidic Device for Drug Detection,” Anal. Chem. 88(21), 10513–10522 (2016).
[Crossref] [PubMed]

Cialla-May, D.

A. I. Radu, M. Kuellmer, B. Giese, U. Huebner, K. Weber, D. Cialla-May, and J. Popp, “Surface-Enhanced Raman Spectroscopy (SERS) in food analytics: Detection of vitamins B2 and B12 in cereals,” Talanta 160, 289–297 (2016).
[Crossref] [PubMed]

Cinque, G.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Clupek, M.

M. Člupek, P. Matějka, and K. Volka, “Noise reduction in Raman spectra: Finite impulse response filtration versus Savitzky–Golay smoothing,” J. Raman Spectrosc. 38(9), 1174–1179 (2007).
[Crossref]

Consonni, V.

D. Ballabio and V. Consonni, “Classification tools in chemistry. Part 1: linear models. PLS-DA,” Anal. Methods-UK 5(16), 3790–3798 (2013).

Correa, D. N.

M. R. Almeida, D. N. Correa, W. F. C. Rocha, F. J. O. Scafi, and R. J. Poppi, “Discrimination between authentic and counterfeit banknotes using Raman spectroscopy and PLS-DA with uncertainty estimation,” Microchem. J. 109, 170–177 (2013).
[Crossref]

Curtis, K.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Davies, M. C.

A. L. Hook, D. J. Scurr, J. C. Burley, R. Langer, D. G. Anderson, M. C. Davies, and M. R. Alexander, “Analysis and prediction of defects in UV photo-initiated polymer microarrays,” J. Mater. Chem. B Mater. Biol. Med. 1(7), 1035–1043 (2013).
[Crossref] [PubMed]

De Wolf, S.

M. Ledinský, P. Löper, B. Niesen, J. Holovský, S. J. Moon, J. H. Yum, S. De Wolf, A. Fejfar, and C. Ballif, “Raman spectroscopy of organic–inorganic halide perovskites,” J. Phys. Chem. Lett. 6(3), 401–406 (2015).
[Crossref] [PubMed]

Desroches, J.

M. Jermyn, J. Mercier, K. Aubertin, J. Desroches, K. Urmey, J. Karamchandiani, E. Marple, M. C. Guiot, F. Leblond, and K. Petrecca, “Highly Accurate Detection of Cancer In Situ with Intraoperative, Label-Free, Multimodal Optical Spectroscopy,” Cancer Res. 77(14), 3942–3950 (2017).
[Crossref] [PubMed]

Dhakal, S.

J. Qin, M. S. Kim, K. Chao, W. F. Schmidt, S. Dhakal, B. K. Cho, Y. Peng, and M. Huang, “Subsurface inspection of food safety and quality using line-scan spatially offset Raman spectroscopy technique,” Food Control 75, 246–254 (2017).
[Crossref]

Ding, L. X.

Z. M. Zhang, S. Chen, Y. Z. Liang, Z. X. Liu, Q. M. Zhang, L. X. Ding, F. Ye, and H. Zhou, “An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy,” J. Raman Spectrosc. 41(6), 659–669 (2010).
[Crossref]

Ding, S. Y.

S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, and Z. Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1(6), 16021 (2016).
[Crossref]

Dorney, J.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Doty, K. C.

K. C. Doty and I. K. Lednev, “Differentiation of human blood from animal blood using Raman spectroscopy: A survey of forensically relevant species,” Forensic Sci. Int. 282, 204–210 (2018).
[Crossref] [PubMed]

Ehrentreich, F.

F. Ehrentreich and L. Sümmchen, “Spike removal and denoising of Raman spectra by wavelet transform methods,” Anal. Chem. 73(17), 4364–4373 (2001).
[Crossref] [PubMed]

Eliasson, C.

C. Eliasson, N. A. Macleod, and P. Matousek, “Noninvasive detection of concealed liquid explosives using Raman spectroscopy,” Anal. Chem. 79(21), 8185–8189 (2007).
[Crossref] [PubMed]

Ernsting, N. P.

J. Von Frese, S. A. Kovalenko, and N. P. Ernsting, “Interactive curve resolution by using latent projections in polar coordinates,” J. Chemometr. 21(1–2), 2–9 (2007).
[Crossref]

Esmonde-White, K.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Fan, W.

J. Bin, F. Ai, W. Fan, J. Zhou, and Z. Zhang, “Rapid Determination of Unsaturated Fatty Acids in Vegetable Oil by Raman Spectroscopy and Chemometrics,” Anal. Lett. 49(6), 831–842 (2016).
[Crossref]

Fejfar, A.

M. Ledinský, P. Löper, B. Niesen, J. Holovský, S. J. Moon, J. H. Yum, S. De Wolf, A. Fejfar, and C. Ballif, “Raman spectroscopy of organic–inorganic halide perovskites,” J. Phys. Chem. Lett. 6(3), 401–406 (2015).
[Crossref] [PubMed]

Fidelis, C. H. V.

M. R. Almeida, C. H. V. Fidelis, L. E. S. Barata, and R. J. Poppi, “Classification of Amazonian rosewood essential oil by Raman spectroscopy and PLS-DA with reliability estimation,” Talanta 117, 305–311 (2013).
[Crossref] [PubMed]

Foist, R. B.

Fountain, A. W.

N. D. Kline, A. Tripathi, R. Mirsafavi, I. Pardoe, M. Moskovits, C. Meinhart, J. A. Guicheteau, S. D. Christesen, and A. W. Fountain, “Optimization of Surface-Enhanced Raman Spectroscopy Conditions for Implementation into a Microfluidic Device for Drug Detection,” Anal. Chem. 88(21), 10513–10522 (2016).
[Crossref] [PubMed]

Fullwood, N. J.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Gao, J.

H. Bian, P. Wang, J. Wang, H. Yin, Y. Tian, P. Bai, X. Wu, N. Wang, Y. Tang, and J. Gao, “Discrimination of human and nonhuman blood using Raman spectroscopy with self-reference algorithm,” J. Biomed. Opt. 22(9), 1–7 (2017).
[Crossref] [PubMed]

Gardner, B.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Giese, B.

A. I. Radu, M. Kuellmer, B. Giese, U. Huebner, K. Weber, D. Cialla-May, and J. Popp, “Surface-Enhanced Raman Spectroscopy (SERS) in food analytics: Detection of vitamins B2 and B12 in cereals,” Talanta 160, 289–297 (2016).
[Crossref] [PubMed]

Grant, E. R.

D. Chen, Z. Chen, and E. R. Grant, “Adaptive multiscale regression for reliable Raman quantitative analysis,” Analyst (Lond.) 137(1), 237–244 (2012).
[Crossref] [PubMed]

Griesser, U. J.

K. Kachrimanis, D. E. Braun, and U. J. Griesser, “Quantitative analysis of paracetamol polymorphs in powder mixtures by FT-Raman spectroscopy and PLS regression,” J. Pharm. Biomed. Anal. 43(2), 407–412 (2007).
[Crossref] [PubMed]

Guicheteau, J. A.

N. D. Kline, A. Tripathi, R. Mirsafavi, I. Pardoe, M. Moskovits, C. Meinhart, J. A. Guicheteau, S. D. Christesen, and A. W. Fountain, “Optimization of Surface-Enhanced Raman Spectroscopy Conditions for Implementation into a Microfluidic Device for Drug Detection,” Anal. Chem. 88(21), 10513–10522 (2016).
[Crossref] [PubMed]

Guiot, M. C.

M. Jermyn, J. Mercier, K. Aubertin, J. Desroches, K. Urmey, J. Karamchandiani, E. Marple, M. C. Guiot, F. Leblond, and K. Petrecca, “Highly Accurate Detection of Cancer In Situ with Intraoperative, Label-Free, Multimodal Optical Spectroscopy,” Cancer Res. 77(14), 3942–3950 (2017).
[Crossref] [PubMed]

Guo, S.

S. Guo, T. Bocklitz, and J. Popp, “Optimization of Raman-spectrum baseline correction in biological application,” Analyst (Lond.) 141(8), 2396–2404 (2016).
[Crossref] [PubMed]

Harada, Y.

S. Ohira, H. Tanaka, Y. Harada, T. Minamikawa, Y. Kumamoto, S. Matoba, H. Yaku, and T. Takamatsu, “Label-free detection of myocardial ischaemia in the perfused rat heart by spontaneous Raman spectroscopy,” Sci. Rep. 7, 42401 (2017).
[Crossref] [PubMed]

Hodges, C. M.

C. M. Hodges and J. Akhavan, “The use of Fourier transform Raman spectroscopy in the forensic identification of illicit drugs and explosives,” Spectrochim. Acta A 46(2), 303–307 (1990).
[Crossref]

Holovský, J.

M. Ledinský, P. Löper, B. Niesen, J. Holovský, S. J. Moon, J. H. Yum, S. De Wolf, A. Fejfar, and C. Ballif, “Raman spectroscopy of organic–inorganic halide perovskites,” J. Phys. Chem. Lett. 6(3), 401–406 (2015).
[Crossref] [PubMed]

Hook, A. L.

A. L. Hook, D. J. Scurr, J. C. Burley, R. Langer, D. G. Anderson, M. C. Davies, and M. R. Alexander, “Analysis and prediction of defects in UV photo-initiated polymer microarrays,” J. Mater. Chem. B Mater. Biol. Med. 1(7), 1035–1043 (2013).
[Crossref] [PubMed]

Huang, M.

J. Qin, M. S. Kim, K. Chao, W. F. Schmidt, S. Dhakal, B. K. Cho, Y. Peng, and M. Huang, “Subsurface inspection of food safety and quality using line-scan spatially offset Raman spectroscopy technique,” Food Control 75, 246–254 (2017).
[Crossref]

Huang, Y. F.

Y. F. Huang, P. J. Kooyman, and M. T. M. Koper, “Intermediate stages of electrochemical oxidation of single-crystalline platinum revealed by in situ Raman spectroscopy,” Nat. Commun. 7, 12440 (2016).
[Crossref] [PubMed]

Huebner, U.

A. I. Radu, M. Kuellmer, B. Giese, U. Huebner, K. Weber, D. Cialla-May, and J. Popp, “Surface-Enhanced Raman Spectroscopy (SERS) in food analytics: Detection of vitamins B2 and B12 in cereals,” Talanta 160, 289–297 (2016).
[Crossref] [PubMed]

Ivanov, A.

Izake, E. L.

E. L. Izake, “Forensic and homeland security applications of modern portable Raman spectroscopy,” Forensic Sci. Int. 202(1-3), 1–8 (2010).
[Crossref] [PubMed]

Jermyn, M.

M. Jermyn, J. Mercier, K. Aubertin, J. Desroches, K. Urmey, J. Karamchandiani, E. Marple, M. C. Guiot, F. Leblond, and K. Petrecca, “Highly Accurate Detection of Cancer In Situ with Intraoperative, Label-Free, Multimodal Optical Spectroscopy,” Cancer Res. 77(14), 3942–3950 (2017).
[Crossref] [PubMed]

Kachrimanis, K.

K. Kachrimanis, D. E. Braun, and U. J. Griesser, “Quantitative analysis of paracetamol polymorphs in powder mixtures by FT-Raman spectroscopy and PLS regression,” J. Pharm. Biomed. Anal. 43(2), 407–412 (2007).
[Crossref] [PubMed]

Karamchandiani, J.

M. Jermyn, J. Mercier, K. Aubertin, J. Desroches, K. Urmey, J. Karamchandiani, E. Marple, M. C. Guiot, F. Leblond, and K. Petrecca, “Highly Accurate Detection of Cancer In Situ with Intraoperative, Label-Free, Multimodal Optical Spectroscopy,” Cancer Res. 77(14), 3942–3950 (2017).
[Crossref] [PubMed]

Kim, M. S.

J. Qin, M. S. Kim, K. Chao, W. F. Schmidt, S. Dhakal, B. K. Cho, Y. Peng, and M. Huang, “Subsurface inspection of food safety and quality using line-scan spatially offset Raman spectroscopy technique,” Food Control 75, 246–254 (2017).
[Crossref]

Kline, N. D.

N. D. Kline, A. Tripathi, R. Mirsafavi, I. Pardoe, M. Moskovits, C. Meinhart, J. A. Guicheteau, S. D. Christesen, and A. W. Fountain, “Optimization of Surface-Enhanced Raman Spectroscopy Conditions for Implementation into a Microfluidic Device for Drug Detection,” Anal. Chem. 88(21), 10513–10522 (2016).
[Crossref] [PubMed]

Kooyman, P. J.

Y. F. Huang, P. J. Kooyman, and M. T. M. Koper, “Intermediate stages of electrochemical oxidation of single-crystalline platinum revealed by in situ Raman spectroscopy,” Nat. Commun. 7, 12440 (2016).
[Crossref] [PubMed]

Koper, M. T. M.

Y. F. Huang, P. J. Kooyman, and M. T. M. Koper, “Intermediate stages of electrochemical oxidation of single-crystalline platinum revealed by in situ Raman spectroscopy,” Nat. Commun. 7, 12440 (2016).
[Crossref] [PubMed]

Kovalenko, S. A.

J. Von Frese, S. A. Kovalenko, and N. P. Ernsting, “Interactive curve resolution by using latent projections in polar coordinates,” J. Chemometr. 21(1–2), 2–9 (2007).
[Crossref]

Kuellmer, M.

A. I. Radu, M. Kuellmer, B. Giese, U. Huebner, K. Weber, D. Cialla-May, and J. Popp, “Surface-Enhanced Raman Spectroscopy (SERS) in food analytics: Detection of vitamins B2 and B12 in cereals,” Talanta 160, 289–297 (2016).
[Crossref] [PubMed]

Kumamoto, Y.

S. Ohira, H. Tanaka, Y. Harada, T. Minamikawa, Y. Kumamoto, S. Matoba, H. Yaku, and T. Takamatsu, “Label-free detection of myocardial ischaemia in the perfused rat heart by spontaneous Raman spectroscopy,” Sci. Rep. 7, 42401 (2017).
[Crossref] [PubMed]

Langer, R.

A. L. Hook, D. J. Scurr, J. C. Burley, R. Langer, D. G. Anderson, M. C. Davies, and M. R. Alexander, “Analysis and prediction of defects in UV photo-initiated polymer microarrays,” J. Mater. Chem. B Mater. Biol. Med. 1(7), 1035–1043 (2013).
[Crossref] [PubMed]

Lawson, L. S.

C. Tondepu, R. Toth, C. V. Navin, L. S. Lawson, and J. D. Rodriguez, “Screening of unapproved drugs using portable Raman spectroscopy,” Anal. Chim. Acta 973, 75–81 (2017).
[Crossref] [PubMed]

Leblond, F.

M. Jermyn, J. Mercier, K. Aubertin, J. Desroches, K. Urmey, J. Karamchandiani, E. Marple, M. C. Guiot, F. Leblond, and K. Petrecca, “Highly Accurate Detection of Cancer In Situ with Intraoperative, Label-Free, Multimodal Optical Spectroscopy,” Cancer Res. 77(14), 3942–3950 (2017).
[Crossref] [PubMed]

Ledinský, M.

M. Ledinský, P. Löper, B. Niesen, J. Holovský, S. J. Moon, J. H. Yum, S. De Wolf, A. Fejfar, and C. Ballif, “Raman spectroscopy of organic–inorganic halide perovskites,” J. Phys. Chem. Lett. 6(3), 401–406 (2015).
[Crossref] [PubMed]

Lednev, I. K.

K. C. Doty and I. K. Lednev, “Differentiation of human blood from animal blood using Raman spectroscopy: A survey of forensically relevant species,” Forensic Sci. Int. 282, 204–210 (2018).
[Crossref] [PubMed]

A. Sikirzhytskaya, V. Sikirzhytski, and I. K. Lednev, “Raman spectroscopy coupled with advanced statistics for differentiating menstrual and peripheral blood,” J. Biophotonics 7(1-2), 59–67 (2014).
[Crossref] [PubMed]

V. Sikirzhytski, A. Sikirzhytskaya, and I. K. Lednev, “Multidimensional Raman spectroscopic signatures as a tool for forensic identification of body fluid traces: a review,” Appl. Spectrosc. 65(11), 1223–1232 (2011).
[Crossref] [PubMed]

Li, J. F.

S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, and Z. Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1(6), 16021 (2016).
[Crossref]

Liang, Y. Z.

Z. M. Zhang, X. Tong, Y. Peng, P. Ma, M. J. Zhang, H. M. Lu, X. Q. Chen, and Y. Z. Liang, “Multiscale peak detection in wavelet space,” Analyst (Lond.) 140(23), 7955–7964 (2015).
[Crossref] [PubMed]

Z. M. Zhang, S. Chen, Y. Z. Liang, Z. X. Liu, Q. M. Zhang, L. X. Ding, F. Ye, and H. Zhou, “An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy,” J. Raman Spectrosc. 41(6), 659–669 (2010).
[Crossref]

Z. M. Zhang, S. Chen, and Y. Z. Liang, “Baseline correction using adaptive iteratively reweighted penalized least squares,” Analyst (Lond.) 135(5), 1138–1146 (2010).
[Crossref] [PubMed]

Lieber, C. A.

Liu, C.

Liu, Z. X.

Z. M. Zhang, S. Chen, Y. Z. Liang, Z. X. Liu, Q. M. Zhang, L. X. Ding, F. Ye, and H. Zhou, “An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy,” J. Raman Spectrosc. 41(6), 659–669 (2010).
[Crossref]

Löper, P.

M. Ledinský, P. Löper, B. Niesen, J. Holovský, S. J. Moon, J. H. Yum, S. De Wolf, A. Fejfar, and C. Ballif, “Raman spectroscopy of organic–inorganic halide perovskites,” J. Phys. Chem. Lett. 6(3), 401–406 (2015).
[Crossref] [PubMed]

Lu, H. M.

Z. M. Zhang, X. Tong, Y. Peng, P. Ma, M. J. Zhang, H. M. Lu, X. Q. Chen, and Y. Z. Liang, “Multiscale peak detection in wavelet space,” Analyst (Lond.) 140(23), 7955–7964 (2015).
[Crossref] [PubMed]

Lui, H.

H. Lui, J. Zhao, D. McLean, and H. Zeng, “Real-time Raman spectroscopy for in vivo skin cancer diagnosis,” Cancer Res. 72(10), 2491–2500 (2012).
[Crossref] [PubMed]

J. Zhao, H. Lui, D. I. McLean, and H. Zeng, “Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy,” Appl. Spectrosc. 61(11), 1225–1232 (2007).
[Crossref] [PubMed]

Ma, P.

Z. M. Zhang, X. Tong, Y. Peng, P. Ma, M. J. Zhang, H. M. Lu, X. Q. Chen, and Y. Z. Liang, “Multiscale peak detection in wavelet space,” Analyst (Lond.) 140(23), 7955–7964 (2015).
[Crossref] [PubMed]

Macleod, N. A.

C. Eliasson, N. A. Macleod, and P. Matousek, “Noninvasive detection of concealed liquid explosives using Raman spectroscopy,” Anal. Chem. 79(21), 8185–8189 (2007).
[Crossref] [PubMed]

Mahadevan-Jansen, A.

Marple, E.

M. Jermyn, J. Mercier, K. Aubertin, J. Desroches, K. Urmey, J. Karamchandiani, E. Marple, M. C. Guiot, F. Leblond, and K. Petrecca, “Highly Accurate Detection of Cancer In Situ with Intraoperative, Label-Free, Multimodal Optical Spectroscopy,” Cancer Res. 77(14), 3942–3950 (2017).
[Crossref] [PubMed]

Martin, F. L.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Martin-Hirsch, P. L.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Matejka, P.

M. Člupek, P. Matějka, and K. Volka, “Noise reduction in Raman spectra: Finite impulse response filtration versus Savitzky–Golay smoothing,” J. Raman Spectrosc. 38(9), 1174–1179 (2007).
[Crossref]

Mathies, R. A.

Matoba, S.

S. Ohira, H. Tanaka, Y. Harada, T. Minamikawa, Y. Kumamoto, S. Matoba, H. Yaku, and T. Takamatsu, “Label-free detection of myocardial ischaemia in the perfused rat heart by spontaneous Raman spectroscopy,” Sci. Rep. 7, 42401 (2017).
[Crossref] [PubMed]

Matousek, P.

C. Eliasson, N. A. Macleod, and P. Matousek, “Noninvasive detection of concealed liquid explosives using Raman spectroscopy,” Anal. Chem. 79(21), 8185–8189 (2007).
[Crossref] [PubMed]

McAinsh, M. R.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

McCain, S. T.

McLean, D.

H. Lui, J. Zhao, D. McLean, and H. Zeng, “Real-time Raman spectroscopy for in vivo skin cancer diagnosis,” Cancer Res. 72(10), 2491–2500 (2012).
[Crossref] [PubMed]

McLean, D. I.

Meinhart, C.

N. D. Kline, A. Tripathi, R. Mirsafavi, I. Pardoe, M. Moskovits, C. Meinhart, J. A. Guicheteau, S. D. Christesen, and A. W. Fountain, “Optimization of Surface-Enhanced Raman Spectroscopy Conditions for Implementation into a Microfluidic Device for Drug Detection,” Anal. Chem. 88(21), 10513–10522 (2016).
[Crossref] [PubMed]

Mercier, J.

M. Jermyn, J. Mercier, K. Aubertin, J. Desroches, K. Urmey, J. Karamchandiani, E. Marple, M. C. Guiot, F. Leblond, and K. Petrecca, “Highly Accurate Detection of Cancer In Situ with Intraoperative, Label-Free, Multimodal Optical Spectroscopy,” Cancer Res. 77(14), 3942–3950 (2017).
[Crossref] [PubMed]

Minamikawa, T.

S. Ohira, H. Tanaka, Y. Harada, T. Minamikawa, Y. Kumamoto, S. Matoba, H. Yaku, and T. Takamatsu, “Label-free detection of myocardial ischaemia in the perfused rat heart by spontaneous Raman spectroscopy,” Sci. Rep. 7, 42401 (2017).
[Crossref] [PubMed]

Mirsafavi, R.

N. D. Kline, A. Tripathi, R. Mirsafavi, I. Pardoe, M. Moskovits, C. Meinhart, J. A. Guicheteau, S. D. Christesen, and A. W. Fountain, “Optimization of Surface-Enhanced Raman Spectroscopy Conditions for Implementation into a Microfluidic Device for Drug Detection,” Anal. Chem. 88(21), 10513–10522 (2016).
[Crossref] [PubMed]

Momenpour Tehran Monfared, A.

A. Momenpour Tehran Monfared and H. Anis, “An improved partial least-squares regression method for Raman spectroscopy,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 185, 98–103 (2017).
[Crossref] [PubMed]

Moon, S. J.

M. Ledinský, P. Löper, B. Niesen, J. Holovský, S. J. Moon, J. H. Yum, S. De Wolf, A. Fejfar, and C. Ballif, “Raman spectroscopy of organic–inorganic halide perovskites,” J. Phys. Chem. Lett. 6(3), 401–406 (2015).
[Crossref] [PubMed]

Moskovits, M.

N. D. Kline, A. Tripathi, R. Mirsafavi, I. Pardoe, M. Moskovits, C. Meinhart, J. A. Guicheteau, S. D. Christesen, and A. W. Fountain, “Optimization of Surface-Enhanced Raman Spectroscopy Conditions for Implementation into a Microfluidic Device for Drug Detection,” Anal. Chem. 88(21), 10513–10522 (2016).
[Crossref] [PubMed]

Navin, C. V.

C. Tondepu, R. Toth, C. V. Navin, L. S. Lawson, and J. D. Rodriguez, “Screening of unapproved drugs using portable Raman spectroscopy,” Anal. Chim. Acta 973, 75–81 (2017).
[Crossref] [PubMed]

Niesen, B.

M. Ledinský, P. Löper, B. Niesen, J. Holovský, S. J. Moon, J. H. Yum, S. De Wolf, A. Fejfar, and C. Ballif, “Raman spectroscopy of organic–inorganic halide perovskites,” J. Phys. Chem. Lett. 6(3), 401–406 (2015).
[Crossref] [PubMed]

Ohira, S.

S. Ohira, H. Tanaka, Y. Harada, T. Minamikawa, Y. Kumamoto, S. Matoba, H. Yaku, and T. Takamatsu, “Label-free detection of myocardial ischaemia in the perfused rat heart by spontaneous Raman spectroscopy,” Sci. Rep. 7, 42401 (2017).
[Crossref] [PubMed]

Panneerselvam, R.

S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, and Z. Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1(6), 16021 (2016).
[Crossref]

Pardoe, I.

N. D. Kline, A. Tripathi, R. Mirsafavi, I. Pardoe, M. Moskovits, C. Meinhart, J. A. Guicheteau, S. D. Christesen, and A. W. Fountain, “Optimization of Surface-Enhanced Raman Spectroscopy Conditions for Implementation into a Microfluidic Device for Drug Detection,” Anal. Chem. 88(21), 10513–10522 (2016).
[Crossref] [PubMed]

Peng, Y.

J. Qin, M. S. Kim, K. Chao, W. F. Schmidt, S. Dhakal, B. K. Cho, Y. Peng, and M. Huang, “Subsurface inspection of food safety and quality using line-scan spatially offset Raman spectroscopy technique,” Food Control 75, 246–254 (2017).
[Crossref]

Z. M. Zhang, X. Tong, Y. Peng, P. Ma, M. J. Zhang, H. M. Lu, X. Q. Chen, and Y. Z. Liang, “Multiscale peak detection in wavelet space,” Analyst (Lond.) 140(23), 7955–7964 (2015).
[Crossref] [PubMed]

Petrecca, K.

M. Jermyn, J. Mercier, K. Aubertin, J. Desroches, K. Urmey, J. Karamchandiani, E. Marple, M. C. Guiot, F. Leblond, and K. Petrecca, “Highly Accurate Detection of Cancer In Situ with Intraoperative, Label-Free, Multimodal Optical Spectroscopy,” Cancer Res. 77(14), 3942–3950 (2017).
[Crossref] [PubMed]

Popp, J.

A. I. Radu, M. Kuellmer, B. Giese, U. Huebner, K. Weber, D. Cialla-May, and J. Popp, “Surface-Enhanced Raman Spectroscopy (SERS) in food analytics: Detection of vitamins B2 and B12 in cereals,” Talanta 160, 289–297 (2016).
[Crossref] [PubMed]

S. Guo, T. Bocklitz, and J. Popp, “Optimization of Raman-spectrum baseline correction in biological application,” Analyst (Lond.) 141(8), 2396–2404 (2016).
[Crossref] [PubMed]

Poppi, R. J.

M. R. Almeida, D. N. Correa, W. F. C. Rocha, F. J. O. Scafi, and R. J. Poppi, “Discrimination between authentic and counterfeit banknotes using Raman spectroscopy and PLS-DA with uncertainty estimation,” Microchem. J. 109, 170–177 (2013).
[Crossref]

M. R. Almeida, C. H. V. Fidelis, L. E. S. Barata, and R. J. Poppi, “Classification of Amazonian rosewood essential oil by Raman spectroscopy and PLS-DA with reliability estimation,” Talanta 117, 305–311 (2013).
[Crossref] [PubMed]

Puppels, G. J.

R. Wolthuis, G. C. H. Tjiang, G. J. Puppels, and T. C. B. Schut, “Estimating the influence of experimental parameters on the prediction error of PLS calibration models based on Raman spectra,” J. Raman Spectrosc. 37(1–3), 447–466 (2006).
[Crossref]

Qin, J.

J. Qin, M. S. Kim, K. Chao, W. F. Schmidt, S. Dhakal, B. K. Cho, Y. Peng, and M. Huang, “Subsurface inspection of food safety and quality using line-scan spatially offset Raman spectroscopy technique,” Food Control 75, 246–254 (2017).
[Crossref]

Radu, A. I.

A. I. Radu, M. Kuellmer, B. Giese, U. Huebner, K. Weber, D. Cialla-May, and J. Popp, “Surface-Enhanced Raman Spectroscopy (SERS) in food analytics: Detection of vitamins B2 and B12 in cereals,” Talanta 160, 289–297 (2016).
[Crossref] [PubMed]

Ralph, S. A.

Ramos, P. M.

P. M. Ramos and I. Ruisanchez, “Noise and background removal in Raman spectra of ancient pigments using wavelet transform,” J. Raman Spectrosc. 36(9), 848–856 (2005).
[Crossref]

Rauch, W.

Ren, B.

S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, and Z. Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1(6), 16021 (2016).
[Crossref]

Rocha, W. F. C.

M. R. Almeida, D. N. Correa, W. F. C. Rocha, F. J. O. Scafi, and R. J. Poppi, “Discrimination between authentic and counterfeit banknotes using Raman spectroscopy and PLS-DA with uncertainty estimation,” Microchem. J. 109, 170–177 (2013).
[Crossref]

Rodriguez, J. D.

C. Tondepu, R. Toth, C. V. Navin, L. S. Lawson, and J. D. Rodriguez, “Screening of unapproved drugs using portable Raman spectroscopy,” Anal. Chim. Acta 973, 75–81 (2017).
[Crossref] [PubMed]

Ruisanchez, I.

P. M. Ramos and I. Ruisanchez, “Noise and background removal in Raman spectra of ancient pigments using wavelet transform,” J. Raman Spectrosc. 36(9), 848–856 (2005).
[Crossref]

Scafi, F. J. O.

M. R. Almeida, D. N. Correa, W. F. C. Rocha, F. J. O. Scafi, and R. J. Poppi, “Discrimination between authentic and counterfeit banknotes using Raman spectroscopy and PLS-DA with uncertainty estimation,” Microchem. J. 109, 170–177 (2013).
[Crossref]

Schmidt, W. F.

J. Qin, M. S. Kim, K. Chao, W. F. Schmidt, S. Dhakal, B. K. Cho, Y. Peng, and M. Huang, “Subsurface inspection of food safety and quality using line-scan spatially offset Raman spectroscopy technique,” Food Control 75, 246–254 (2017).
[Crossref]

Schulze, H. G.

Schut, T. C. B.

R. Wolthuis, G. C. H. Tjiang, G. J. Puppels, and T. C. B. Schut, “Estimating the influence of experimental parameters on the prediction error of PLS calibration models based on Raman spectra,” J. Raman Spectrosc. 37(1–3), 447–466 (2006).
[Crossref]

Scurr, D. J.

A. L. Hook, D. J. Scurr, J. C. Burley, R. Langer, D. G. Anderson, M. C. Davies, and M. R. Alexander, “Analysis and prediction of defects in UV photo-initiated polymer microarrays,” J. Mater. Chem. B Mater. Biol. Med. 1(7), 1035–1043 (2013).
[Crossref] [PubMed]

Seashols, S. J.

S. Boyd, M. F. Bertino, and S. J. Seashols, “Raman spectroscopy of blood samples for forensic applications,” Forensic Sci. Int. 208(1-3), 124–128 (2011).
[Crossref] [PubMed]

Shi, W.

X. Zhang, Q. H. Tan, J. B. Wu, W. Shi, and P. H. Tan, “Review on the Raman spectroscopy of different types of layered materials,” Nanoscale 8(12), 6435–6450 (2016).
[Crossref] [PubMed]

Shreve, A. P.

Sikirzhytskaya, A.

A. Sikirzhytskaya, V. Sikirzhytski, and I. K. Lednev, “Raman spectroscopy coupled with advanced statistics for differentiating menstrual and peripheral blood,” J. Biophotonics 7(1-2), 59–67 (2014).
[Crossref] [PubMed]

V. Sikirzhytski, A. Sikirzhytskaya, and I. K. Lednev, “Multidimensional Raman spectroscopic signatures as a tool for forensic identification of body fluid traces: a review,” Appl. Spectrosc. 65(11), 1223–1232 (2011).
[Crossref] [PubMed]

Sikirzhytski, V.

A. Sikirzhytskaya, V. Sikirzhytski, and I. K. Lednev, “Raman spectroscopy coupled with advanced statistics for differentiating menstrual and peripheral blood,” J. Biophotonics 7(1-2), 59–67 (2014).
[Crossref] [PubMed]

V. Sikirzhytski, A. Sikirzhytskaya, and I. K. Lednev, “Multidimensional Raman spectroscopic signatures as a tool for forensic identification of body fluid traces: a review,” Appl. Spectrosc. 65(11), 1223–1232 (2011).
[Crossref] [PubMed]

Stone, N.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Sümmchen, L.

F. Ehrentreich and L. Sümmchen, “Spike removal and denoising of Raman spectra by wavelet transform methods,” Anal. Chem. 73(17), 4364–4373 (2001).
[Crossref] [PubMed]

Takamatsu, T.

S. Ohira, H. Tanaka, Y. Harada, T. Minamikawa, Y. Kumamoto, S. Matoba, H. Yaku, and T. Takamatsu, “Label-free detection of myocardial ischaemia in the perfused rat heart by spontaneous Raman spectroscopy,” Sci. Rep. 7, 42401 (2017).
[Crossref] [PubMed]

Tan, P. H.

X. Zhang, Q. H. Tan, J. B. Wu, W. Shi, and P. H. Tan, “Review on the Raman spectroscopy of different types of layered materials,” Nanoscale 8(12), 6435–6450 (2016).
[Crossref] [PubMed]

Tan, Q. H.

X. Zhang, Q. H. Tan, J. B. Wu, W. Shi, and P. H. Tan, “Review on the Raman spectroscopy of different types of layered materials,” Nanoscale 8(12), 6435–6450 (2016).
[Crossref] [PubMed]

Tanaka, H.

S. Ohira, H. Tanaka, Y. Harada, T. Minamikawa, Y. Kumamoto, S. Matoba, H. Yaku, and T. Takamatsu, “Label-free detection of myocardial ischaemia in the perfused rat heart by spontaneous Raman spectroscopy,” Sci. Rep. 7, 42401 (2017).
[Crossref] [PubMed]

Tang, Y.

H. Bian, P. Wang, J. Wang, H. Yin, Y. Tian, P. Bai, X. Wu, N. Wang, Y. Tang, and J. Gao, “Discrimination of human and nonhuman blood using Raman spectroscopy with self-reference algorithm,” J. Biomed. Opt. 22(9), 1–7 (2017).
[Crossref] [PubMed]

Tian, Y.

H. Bian, P. Wang, J. Wang, H. Yin, Y. Tian, P. Bai, X. Wu, N. Wang, Y. Tang, and J. Gao, “Discrimination of human and nonhuman blood using Raman spectroscopy with self-reference algorithm,” J. Biomed. Opt. 22(9), 1–7 (2017).
[Crossref] [PubMed]

Tian, Z. Q.

S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, and Z. Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1(6), 16021 (2016).
[Crossref]

Tjiang, G. C. H.

R. Wolthuis, G. C. H. Tjiang, G. J. Puppels, and T. C. B. Schut, “Estimating the influence of experimental parameters on the prediction error of PLS calibration models based on Raman spectra,” J. Raman Spectrosc. 37(1–3), 447–466 (2006).
[Crossref]

Tondepu, C.

C. Tondepu, R. Toth, C. V. Navin, L. S. Lawson, and J. D. Rodriguez, “Screening of unapproved drugs using portable Raman spectroscopy,” Anal. Chim. Acta 973, 75–81 (2017).
[Crossref] [PubMed]

Tong, X.

Z. M. Zhang, X. Tong, Y. Peng, P. Ma, M. J. Zhang, H. M. Lu, X. Q. Chen, and Y. Z. Liang, “Multiscale peak detection in wavelet space,” Analyst (Lond.) 140(23), 7955–7964 (2015).
[Crossref] [PubMed]

Toth, R.

C. Tondepu, R. Toth, C. V. Navin, L. S. Lawson, and J. D. Rodriguez, “Screening of unapproved drugs using portable Raman spectroscopy,” Anal. Chim. Acta 973, 75–81 (2017).
[Crossref] [PubMed]

Tripathi, A.

N. D. Kline, A. Tripathi, R. Mirsafavi, I. Pardoe, M. Moskovits, C. Meinhart, J. A. Guicheteau, S. D. Christesen, and A. W. Fountain, “Optimization of Surface-Enhanced Raman Spectroscopy Conditions for Implementation into a Microfluidic Device for Drug Detection,” Anal. Chem. 88(21), 10513–10522 (2016).
[Crossref] [PubMed]

Turner, R. F. B.

Urmey, K.

M. Jermyn, J. Mercier, K. Aubertin, J. Desroches, K. Urmey, J. Karamchandiani, E. Marple, M. C. Guiot, F. Leblond, and K. Petrecca, “Highly Accurate Detection of Cancer In Situ with Intraoperative, Label-Free, Multimodal Optical Spectroscopy,” Cancer Res. 77(14), 3942–3950 (2017).
[Crossref] [PubMed]

Volka, K.

M. Člupek, P. Matějka, and K. Volka, “Noise reduction in Raman spectra: Finite impulse response filtration versus Savitzky–Golay smoothing,” J. Raman Spectrosc. 38(9), 1174–1179 (2007).
[Crossref]

Von Frese, J.

J. Von Frese, S. A. Kovalenko, and N. P. Ernsting, “Interactive curve resolution by using latent projections in polar coordinates,” J. Chemometr. 21(1–2), 2–9 (2007).
[Crossref]

Walsh, M. J.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Wang, J.

H. Bian, P. Wang, J. Wang, H. Yin, Y. Tian, P. Bai, X. Wu, N. Wang, Y. Tang, and J. Gao, “Discrimination of human and nonhuman blood using Raman spectroscopy with self-reference algorithm,” J. Biomed. Opt. 22(9), 1–7 (2017).
[Crossref] [PubMed]

Wang, N.

H. Bian, P. Wang, J. Wang, H. Yin, Y. Tian, P. Bai, X. Wu, N. Wang, Y. Tang, and J. Gao, “Discrimination of human and nonhuman blood using Raman spectroscopy with self-reference algorithm,” J. Biomed. Opt. 22(9), 1–7 (2017).
[Crossref] [PubMed]

Wang, P.

H. Bian, P. Wang, J. Wang, H. Yin, Y. Tian, P. Bai, X. Wu, N. Wang, Y. Tang, and J. Gao, “Discrimination of human and nonhuman blood using Raman spectroscopy with self-reference algorithm,” J. Biomed. Opt. 22(9), 1–7 (2017).
[Crossref] [PubMed]

Weber, K.

A. I. Radu, M. Kuellmer, B. Giese, U. Huebner, K. Weber, D. Cialla-May, and J. Popp, “Surface-Enhanced Raman Spectroscopy (SERS) in food analytics: Detection of vitamins B2 and B12 in cereals,” Talanta 160, 289–297 (2016).
[Crossref] [PubMed]

Willett, R. M.

Wolthuis, R.

R. Wolthuis, G. C. H. Tjiang, G. J. Puppels, and T. C. B. Schut, “Estimating the influence of experimental parameters on the prediction error of PLS calibration models based on Raman spectra,” J. Raman Spectrosc. 37(1–3), 447–466 (2006).
[Crossref]

Wu, D. Y.

S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, and Z. Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1(6), 16021 (2016).
[Crossref]

Wu, J. B.

X. Zhang, Q. H. Tan, J. B. Wu, W. Shi, and P. H. Tan, “Review on the Raman spectroscopy of different types of layered materials,” Nanoscale 8(12), 6435–6450 (2016).
[Crossref] [PubMed]

Wu, X.

H. Bian, P. Wang, J. Wang, H. Yin, Y. Tian, P. Bai, X. Wu, N. Wang, Y. Tang, and J. Gao, “Discrimination of human and nonhuman blood using Raman spectroscopy with self-reference algorithm,” J. Biomed. Opt. 22(9), 1–7 (2017).
[Crossref] [PubMed]

Yaku, H.

S. Ohira, H. Tanaka, Y. Harada, T. Minamikawa, Y. Kumamoto, S. Matoba, H. Yaku, and T. Takamatsu, “Label-free detection of myocardial ischaemia in the perfused rat heart by spontaneous Raman spectroscopy,” Sci. Rep. 7, 42401 (2017).
[Crossref] [PubMed]

Ye, F.

Z. M. Zhang, S. Chen, Y. Z. Liang, Z. X. Liu, Q. M. Zhang, L. X. Ding, F. Ye, and H. Zhou, “An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy,” J. Raman Spectrosc. 41(6), 659–669 (2010).
[Crossref]

Yi, J.

S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, and Z. Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1(6), 16021 (2016).
[Crossref]

Yin, H.

H. Bian, P. Wang, J. Wang, H. Yin, Y. Tian, P. Bai, X. Wu, N. Wang, Y. Tang, and J. Gao, “Discrimination of human and nonhuman blood using Raman spectroscopy with self-reference algorithm,” J. Biomed. Opt. 22(9), 1–7 (2017).
[Crossref] [PubMed]

Yum, J. H.

M. Ledinský, P. Löper, B. Niesen, J. Holovský, S. J. Moon, J. H. Yum, S. De Wolf, A. Fejfar, and C. Ballif, “Raman spectroscopy of organic–inorganic halide perovskites,” J. Phys. Chem. Lett. 6(3), 401–406 (2015).
[Crossref] [PubMed]

Zeng, H.

H. Lui, J. Zhao, D. McLean, and H. Zeng, “Real-time Raman spectroscopy for in vivo skin cancer diagnosis,” Cancer Res. 72(10), 2491–2500 (2012).
[Crossref] [PubMed]

J. Zhao, H. Lui, D. I. McLean, and H. Zeng, “Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy,” Appl. Spectrosc. 61(11), 1225–1232 (2007).
[Crossref] [PubMed]

Zhang, M. J.

Z. M. Zhang, X. Tong, Y. Peng, P. Ma, M. J. Zhang, H. M. Lu, X. Q. Chen, and Y. Z. Liang, “Multiscale peak detection in wavelet space,” Analyst (Lond.) 140(23), 7955–7964 (2015).
[Crossref] [PubMed]

Zhang, Q. M.

Z. M. Zhang, S. Chen, Y. Z. Liang, Z. X. Liu, Q. M. Zhang, L. X. Ding, F. Ye, and H. Zhou, “An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy,” J. Raman Spectrosc. 41(6), 659–669 (2010).
[Crossref]

Zhang, X.

X. Zhang, Q. H. Tan, J. B. Wu, W. Shi, and P. H. Tan, “Review on the Raman spectroscopy of different types of layered materials,” Nanoscale 8(12), 6435–6450 (2016).
[Crossref] [PubMed]

Zhang, Z.

J. Bin, F. Ai, W. Fan, J. Zhou, and Z. Zhang, “Rapid Determination of Unsaturated Fatty Acids in Vegetable Oil by Raman Spectroscopy and Chemometrics,” Anal. Lett. 49(6), 831–842 (2016).
[Crossref]

Zhang, Z. M.

Z. M. Zhang, X. Tong, Y. Peng, P. Ma, M. J. Zhang, H. M. Lu, X. Q. Chen, and Y. Z. Liang, “Multiscale peak detection in wavelet space,” Analyst (Lond.) 140(23), 7955–7964 (2015).
[Crossref] [PubMed]

Z. M. Zhang, S. Chen, Y. Z. Liang, Z. X. Liu, Q. M. Zhang, L. X. Ding, F. Ye, and H. Zhou, “An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy,” J. Raman Spectrosc. 41(6), 659–669 (2010).
[Crossref]

Z. M. Zhang, S. Chen, and Y. Z. Liang, “Baseline correction using adaptive iteratively reweighted penalized least squares,” Analyst (Lond.) 135(5), 1138–1146 (2010).
[Crossref] [PubMed]

Zhao, J.

H. Lui, J. Zhao, D. McLean, and H. Zeng, “Real-time Raman spectroscopy for in vivo skin cancer diagnosis,” Cancer Res. 72(10), 2491–2500 (2012).
[Crossref] [PubMed]

J. Zhao, H. Lui, D. I. McLean, and H. Zeng, “Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy,” Appl. Spectrosc. 61(11), 1225–1232 (2007).
[Crossref] [PubMed]

Zhou, H.

Z. M. Zhang, S. Chen, Y. Z. Liang, Z. X. Liu, Q. M. Zhang, L. X. Ding, F. Ye, and H. Zhou, “An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy,” J. Raman Spectrosc. 41(6), 659–669 (2010).
[Crossref]

Zhou, J.

J. Bin, F. Ai, W. Fan, J. Zhou, and Z. Zhang, “Rapid Determination of Unsaturated Fatty Acids in Vegetable Oil by Raman Spectroscopy and Chemometrics,” Anal. Lett. 49(6), 831–842 (2016).
[Crossref]

Anal. Chem. (3)

N. D. Kline, A. Tripathi, R. Mirsafavi, I. Pardoe, M. Moskovits, C. Meinhart, J. A. Guicheteau, S. D. Christesen, and A. W. Fountain, “Optimization of Surface-Enhanced Raman Spectroscopy Conditions for Implementation into a Microfluidic Device for Drug Detection,” Anal. Chem. 88(21), 10513–10522 (2016).
[Crossref] [PubMed]

C. Eliasson, N. A. Macleod, and P. Matousek, “Noninvasive detection of concealed liquid explosives using Raman spectroscopy,” Anal. Chem. 79(21), 8185–8189 (2007).
[Crossref] [PubMed]

F. Ehrentreich and L. Sümmchen, “Spike removal and denoising of Raman spectra by wavelet transform methods,” Anal. Chem. 73(17), 4364–4373 (2001).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

C. Tondepu, R. Toth, C. V. Navin, L. S. Lawson, and J. D. Rodriguez, “Screening of unapproved drugs using portable Raman spectroscopy,” Anal. Chim. Acta 973, 75–81 (2017).
[Crossref] [PubMed]

Anal. Lett. (1)

J. Bin, F. Ai, W. Fan, J. Zhou, and Z. Zhang, “Rapid Determination of Unsaturated Fatty Acids in Vegetable Oil by Raman Spectroscopy and Chemometrics,” Anal. Lett. 49(6), 831–842 (2016).
[Crossref]

Anal. Methods-UK (1)

D. Ballabio and V. Consonni, “Classification tools in chemistry. Part 1: linear models. PLS-DA,” Anal. Methods-UK 5(16), 3790–3798 (2013).

Analyst (Lond.) (4)

Z. M. Zhang, S. Chen, and Y. Z. Liang, “Baseline correction using adaptive iteratively reweighted penalized least squares,” Analyst (Lond.) 135(5), 1138–1146 (2010).
[Crossref] [PubMed]

S. Guo, T. Bocklitz, and J. Popp, “Optimization of Raman-spectrum baseline correction in biological application,” Analyst (Lond.) 141(8), 2396–2404 (2016).
[Crossref] [PubMed]

D. Chen, Z. Chen, and E. R. Grant, “Adaptive multiscale regression for reliable Raman quantitative analysis,” Analyst (Lond.) 137(1), 237–244 (2012).
[Crossref] [PubMed]

Z. M. Zhang, X. Tong, Y. Peng, P. Ma, M. J. Zhang, H. M. Lu, X. Q. Chen, and Y. Z. Liang, “Multiscale peak detection in wavelet space,” Analyst (Lond.) 140(23), 7955–7964 (2015).
[Crossref] [PubMed]

Appl. Spectrosc. (8)

C. A. Lieber and A. Mahadevan-Jansen, “Automated method for subtraction of fluorescence from biological Raman spectra,” Appl. Spectrosc. 57(11), 1363–1367 (2003).
[Crossref] [PubMed]

U. P. Agarwal and S. A. Ralph, “FT-Raman spectroscopy of wood: identifying contributions of lignin and carbohydrate polymers in the spectrum of black spruce (Picea mariana),” Appl. Spectrosc. 51(11), 1648–1655 (1997).
[Crossref]

H. Bettermann and W. Rauch, “Quantitative determination of resonant Raman signals using signal accumulation, adapted Fourier filtering, and band-shape analysis,” Appl. Spectrosc. 44(9), 1534–1537 (1990).
[Crossref]

A. P. Shreve, N. J. Cherepy, and R. A. Mathies, “Effective rejection of fluorescence interference in Raman spectroscopy using a shifted excitation difference technique,” Appl. Spectrosc. 46(4), 707–711 (1992).
[Crossref]

J. Zhao, H. Lui, D. I. McLean, and H. Zeng, “Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy,” Appl. Spectrosc. 61(11), 1225–1232 (2007).
[Crossref] [PubMed]

H. G. Schulze, R. B. Foist, A. Ivanov, and R. F. B. Turner, “Fully automated high-performance signal-to-noise ratio enhancement based on an iterative three-point zero-order Savitzky-Golay filter,” Appl. Spectrosc. 62(10), 1160–1166 (2008).
[Crossref] [PubMed]

V. Sikirzhytski, A. Sikirzhytskaya, and I. K. Lednev, “Multidimensional Raman spectroscopic signatures as a tool for forensic identification of body fluid traces: a review,” Appl. Spectrosc. 65(11), 1223–1232 (2011).
[Crossref] [PubMed]

C. Liu and R. W. Berg, “Determining the spectral resolution of a charge-coupled device (CCD) Raman instrument,” Appl. Spectrosc. 66(9), 1034–1043 (2012).
[Crossref]

Cancer Res. (2)

M. Jermyn, J. Mercier, K. Aubertin, J. Desroches, K. Urmey, J. Karamchandiani, E. Marple, M. C. Guiot, F. Leblond, and K. Petrecca, “Highly Accurate Detection of Cancer In Situ with Intraoperative, Label-Free, Multimodal Optical Spectroscopy,” Cancer Res. 77(14), 3942–3950 (2017).
[Crossref] [PubMed]

H. Lui, J. Zhao, D. McLean, and H. Zeng, “Real-time Raman spectroscopy for in vivo skin cancer diagnosis,” Cancer Res. 72(10), 2491–2500 (2012).
[Crossref] [PubMed]

Food Control (1)

J. Qin, M. S. Kim, K. Chao, W. F. Schmidt, S. Dhakal, B. K. Cho, Y. Peng, and M. Huang, “Subsurface inspection of food safety and quality using line-scan spatially offset Raman spectroscopy technique,” Food Control 75, 246–254 (2017).
[Crossref]

Forensic Sci. Int. (3)

K. C. Doty and I. K. Lednev, “Differentiation of human blood from animal blood using Raman spectroscopy: A survey of forensically relevant species,” Forensic Sci. Int. 282, 204–210 (2018).
[Crossref] [PubMed]

E. L. Izake, “Forensic and homeland security applications of modern portable Raman spectroscopy,” Forensic Sci. Int. 202(1-3), 1–8 (2010).
[Crossref] [PubMed]

S. Boyd, M. F. Bertino, and S. J. Seashols, “Raman spectroscopy of blood samples for forensic applications,” Forensic Sci. Int. 208(1-3), 124–128 (2011).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

H. Bian, P. Wang, J. Wang, H. Yin, Y. Tian, P. Bai, X. Wu, N. Wang, Y. Tang, and J. Gao, “Discrimination of human and nonhuman blood using Raman spectroscopy with self-reference algorithm,” J. Biomed. Opt. 22(9), 1–7 (2017).
[Crossref] [PubMed]

J. Biophotonics (1)

A. Sikirzhytskaya, V. Sikirzhytski, and I. K. Lednev, “Raman spectroscopy coupled with advanced statistics for differentiating menstrual and peripheral blood,” J. Biophotonics 7(1-2), 59–67 (2014).
[Crossref] [PubMed]

J. Chemometr. (1)

J. Von Frese, S. A. Kovalenko, and N. P. Ernsting, “Interactive curve resolution by using latent projections in polar coordinates,” J. Chemometr. 21(1–2), 2–9 (2007).
[Crossref]

J. Mater. Chem. B Mater. Biol. Med. (1)

A. L. Hook, D. J. Scurr, J. C. Burley, R. Langer, D. G. Anderson, M. C. Davies, and M. R. Alexander, “Analysis and prediction of defects in UV photo-initiated polymer microarrays,” J. Mater. Chem. B Mater. Biol. Med. 1(7), 1035–1043 (2013).
[Crossref] [PubMed]

J. Pharm. Biomed. Anal. (1)

K. Kachrimanis, D. E. Braun, and U. J. Griesser, “Quantitative analysis of paracetamol polymorphs in powder mixtures by FT-Raman spectroscopy and PLS regression,” J. Pharm. Biomed. Anal. 43(2), 407–412 (2007).
[Crossref] [PubMed]

J. Phys. Chem. Lett. (1)

M. Ledinský, P. Löper, B. Niesen, J. Holovský, S. J. Moon, J. H. Yum, S. De Wolf, A. Fejfar, and C. Ballif, “Raman spectroscopy of organic–inorganic halide perovskites,” J. Phys. Chem. Lett. 6(3), 401–406 (2015).
[Crossref] [PubMed]

J. Raman Spectrosc. (4)

M. Člupek, P. Matějka, and K. Volka, “Noise reduction in Raman spectra: Finite impulse response filtration versus Savitzky–Golay smoothing,” J. Raman Spectrosc. 38(9), 1174–1179 (2007).
[Crossref]

P. M. Ramos and I. Ruisanchez, “Noise and background removal in Raman spectra of ancient pigments using wavelet transform,” J. Raman Spectrosc. 36(9), 848–856 (2005).
[Crossref]

Z. M. Zhang, S. Chen, Y. Z. Liang, Z. X. Liu, Q. M. Zhang, L. X. Ding, F. Ye, and H. Zhou, “An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy,” J. Raman Spectrosc. 41(6), 659–669 (2010).
[Crossref]

R. Wolthuis, G. C. H. Tjiang, G. J. Puppels, and T. C. B. Schut, “Estimating the influence of experimental parameters on the prediction error of PLS calibration models based on Raman spectra,” J. Raman Spectrosc. 37(1–3), 447–466 (2006).
[Crossref]

Microchem. J. (1)

M. R. Almeida, D. N. Correa, W. F. C. Rocha, F. J. O. Scafi, and R. J. Poppi, “Discrimination between authentic and counterfeit banknotes using Raman spectroscopy and PLS-DA with uncertainty estimation,” Microchem. J. 109, 170–177 (2013).
[Crossref]

Nanoscale (1)

X. Zhang, Q. H. Tan, J. B. Wu, W. Shi, and P. H. Tan, “Review on the Raman spectroscopy of different types of layered materials,” Nanoscale 8(12), 6435–6450 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

Y. F. Huang, P. J. Kooyman, and M. T. M. Koper, “Intermediate stages of electrochemical oxidation of single-crystalline platinum revealed by in situ Raman spectroscopy,” Nat. Commun. 7, 12440 (2016).
[Crossref] [PubMed]

Nat. Protoc. (1)

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Nat. Rev. Mater. (1)

S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, and Z. Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1(6), 16021 (2016).
[Crossref]

Opt. Express (1)

Sci. Rep. (1)

S. Ohira, H. Tanaka, Y. Harada, T. Minamikawa, Y. Kumamoto, S. Matoba, H. Yaku, and T. Takamatsu, “Label-free detection of myocardial ischaemia in the perfused rat heart by spontaneous Raman spectroscopy,” Sci. Rep. 7, 42401 (2017).
[Crossref] [PubMed]

Spectrochim. Acta A (1)

C. M. Hodges and J. Akhavan, “The use of Fourier transform Raman spectroscopy in the forensic identification of illicit drugs and explosives,” Spectrochim. Acta A 46(2), 303–307 (1990).
[Crossref]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

A. Momenpour Tehran Monfared and H. Anis, “An improved partial least-squares regression method for Raman spectroscopy,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 185, 98–103 (2017).
[Crossref] [PubMed]

Talanta (2)

M. R. Almeida, C. H. V. Fidelis, L. E. S. Barata, and R. J. Poppi, “Classification of Amazonian rosewood essential oil by Raman spectroscopy and PLS-DA with reliability estimation,” Talanta 117, 305–311 (2013).
[Crossref] [PubMed]

A. I. Radu, M. Kuellmer, B. Giese, U. Huebner, K. Weber, D. Cialla-May, and J. Popp, “Surface-Enhanced Raman Spectroscopy (SERS) in food analytics: Detection of vitamins B2 and B12 in cereals,” Talanta 160, 289–297 (2016).
[Crossref] [PubMed]

Other (1)

H. Wold, “Estimation of principal components and related methods by iterative least squares,” Multivariate Anal. 391–420 (1966).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Raman system and vacuum blood tube used in this experiment.
Fig. 2
Fig. 2 Predicted result obtained by PLS model.
Fig. 3
Fig. 3 Derivative values of the Raman spectra
Fig. 4
Fig. 4 Error obtained by theoretical equation and experiments
Fig. 5
Fig. 5 Shift of Raman shift versus initial Raman shift
Fig. 6
Fig. 6 Error obtained by revised theoretical equation and experiments

Tables (2)

Tables Icon

Table 1 The comparison of the predicted value when the Raman spectra have a shift of 0, 2.82, 6.36 and 9.18 cm−1

Tables Icon

Table 2 The compensated predicted value when the Raman spectra have a shift of 2.82, 6.36 and 9.18 cm−1

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

X=T P T +E
Y=U Q T +F
T=X W *
Y=T Q T +F=X W * Q T +F
Y=XBeta+F
I( k )=[ I( k 1 ) I( k 2 ) ... I( k n1 ) I( k n ) ]
y=[ 1 I( k 1 ) I( k 2 ) ... I( k n1 ) I( k n ) ] [ b 0 a( k 1 ) a( k 2 ) ... a( k n1 ) a( k n ) ] T
y= b 0 +a( k 1 )I( k 1 )+a( k 2 )I( k 2 )+...+a( k n )I( k n )
y( δk )= b 0 +a( k 1 )I( k 1 +δk )+a( k 2 )I( k 2 +δk )+...+a( k n )I( k n +δk )
Δy=y( δk )y=a( k 1 )( I( k 1 +δk )I( k 1 ) )+a( k 2 )( I( k 2 +δk )I( k 2 ) )+... +a( k n )( I( k n +δk )I( k n ) )
I( k )=I( k 0 )+ I ' ( k 0 )(k k 0 )+ I '' ( k 0 ) 2! (k k 0 ) 2 +...+ I n ( k 0 ) n! (k k 0 ) n + R n (k)
I( k 1 +δk )I( k 1 )= I ' ( k 1 )δk+ I '' ( k 1 ) 2! δ k 2 +...+ I n ( k 1 ) n! δ k n
Δy=( a( k 1 ) I ' ( k 1 )+a( k 2 ) I ' ( k 2 )+...+a( k n ) I ' ( k n ) )δk +( a( k 1 ) I '' ( k 1 ) 2! +a( k 2 ) I '' ( k 2 ) 2! +...+a( k n ) I '' ( k n ) 2! )δ k 2 +... +( a( k 1 ) I n ( k 1 ) n! +a( k 2 ) I n ( k 2 ) n! +...+a( k n ) I n ( k n ) n! )δ k n
Δy=0.00016*δ k 4 +0.0019*δ k 3 +0.0091*δ k 2 +0.034*δk
k= 1 λ excitation 1 λ
Δk=( 1 λ excitation 1 λ+Δλ )( 1 λ excitation 1 λ ) = 1 λ 1 λ+Δλ = Δλ λ( λ+Δλ ) Δλ λ 2
δ k n = λ 1 2 λ n 2 δ k 1
Δy=( a( k 1 ) I ' ( k 1 )+a( k 2 ) λ 1 2 λ 2 2 I ' ( k 2 )+...+a( k n ) λ 1 2 λ n 2 I ' ( k n ) )δk +( a( k 1 ) I '' ( k 1 ) 2! +a( k 2 ) ( λ 1 2 λ 2 2 ) 2 I '' ( k 2 ) 2! +...+a( k n ) ( λ 1 2 λ n 2 ) 2 I '' ( k n ) 2! )δ k 2 +... +( a( k 1 ) I n ( k 1 ) n! +a( k 2 ) ( λ 1 2 λ 2 2 ) n I n ( k 2 ) n! +...+a( k n ) ( λ 1 2 λ n 2 ) n I n ( k n ) n! )δ k n
Δy=0.00005*δ k 4 +0.0015*δ k 3 +0.0075*δ k 2 +0.034*δk

Metrics