Abstract

In this paper, the focal shift issues of squared metasurface lenses are investigated. Axial intensity distribution formula of the squared planar lens model is obtained by utilizing traditional diffraction theories combining with the Fresnel approximation method. Fresnel integral and Cornu spiral are adopted to obtain the relations between the relative focal shift and Fresnel number, which can be used to predict the shift for different Fresnel numbers. In the far infrared region (at 10.6μm), a group of C-shaped nanoantennas are designed to cover the phase shift from 0 to 2π and simulations also performed by using finite-difference time-domain (FDTD) method. Several lenses are arranged by those resonators, and simulation results of focusing performance are in good agreement with the theoretical prediction. It’s expected that this work will provide a better solution for the design of lens in the infrared integrated optical systems.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Study of focal shift effect in planar GaN high contrast grating lenses

Shumin He, Zhenhai Wang, Qifa Liu, and Wei Wang
Opt. Express 23(23) 29360-29368 (2015)

Metasurfaces based dual wavelength diffractive lenses

Omri Eisenbach, Ori Avayu, Ran Ditcovski, and Tal Ellenbogen
Opt. Express 23(4) 3928-3936 (2015)

An ultrathin terahertz lens with axial long focal depth based on metasurfaces

Xiao-Yan Jiang, Jia-Sheng Ye, Jing-Wen He, Xin-Ke Wang, Dan Hu, Sheng-Fei Feng, Qiang Kan, and Yan Zhang
Opt. Express 21(24) 30030-30038 (2013)

References

  • View by:
  • |
  • |
  • |

  1. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  2. P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
    [Crossref]
  3. X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
    [Crossref]
  4. L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. W. Cheah, C. W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
    [Crossref]
  5. Q. Wang, X. Zhang, Y. Xu, J. Gu, Y. Li, Z. Tian, R. Singh, S. Zhang, J. Han, and W. Zhang, “Broadband metasurface holograms: toward complete phase and amplitude engineering,” Sci. Rep. 6, 32867 (2016).
    [Crossref] [PubMed]
  6. J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
    [Crossref] [PubMed]
  7. L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2, e70 (2013).
    [Crossref]
  8. F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
    [Crossref] [PubMed]
  9. X. Li, S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, “Flat metasurfaces to focus electromagnetic waves in reflection geometry,” Opt. Lett. 37(23), 4940–4942 (2012).
    [Crossref] [PubMed]
  10. D. Hu, X. Wang, S. Feng, J. Ye, W. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1(2), 186–191 (2013).
    [Crossref]
  11. X. Y. Jiang, J. S. Ye, J. W. He, X. K. Wang, D. Hu, S. F. Feng, Q. Kan, and Y. Zhang, “An ultrathin terahertz lens with axial long focal depth based on metasurfaces,” Opt. Express 21(24), 30030–30038 (2013).
    [Crossref] [PubMed]
  12. X. Chen, Y. Zhang, L. Huang, and S. Zhang, “Ultrathin metasurface laser beam shaper,” Adv. Opt. Mater. 2(10), 978–982 (2014).
    [Crossref]
  13. Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A broadband metasurface-based terahertz flat-lens array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
    [Crossref]
  14. J. He, J. Ye, X. Wang, Q. Kan, and Y. Zhang, “A broadband terahertz ultrathin multi-focus lens,” Sci. Rep. 6, 28800 (2016).
    [Crossref] [PubMed]
  15. D. Jia, Y. Tian, W. Ma, X. Gong, J. Yu, G. Zhao, and X. Yu, “Transmissive terahertz metalens with full phase control based on a dielectric metasurface,” Opt. Lett. 42(21), 4494–4497 (2017).
    [Crossref] [PubMed]
  16. Q. Yang, J. Gu, D. Wang, X. Zhang, Z. Tian, C. Ouyang, R. Singh, J. Han, and W. Zhang, “Efficient flat metasurface lens for terahertz imaging,” Opt. Express 22(21), 25931–25939 (2014).
    [Crossref] [PubMed]
  17. L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A Tunable Dispersion-Free Terahertz Metadevice with Pancharatnam-Berry-Phase-Enabled Modulation and Polarization Control,” Adv. Mater. 27(42), 6630–6636 (2015).
    [Crossref] [PubMed]
  18. Y. Li and E. Wolf, “Focal shifts in diffracted converging spherical waves,” Opt. Commun. 39(4), 211–215 (1981).
    [Crossref]
  19. Y. Li, “Dependence of the focal shift on Fresnel number and f number,” J. Opt. Soc. Am. 72(6), 770–774 (1982).
    [Crossref]
  20. Y. Li and H. Platzer, “An experimental investigation of diffraction patterns in low-Fresnel-number focusing systems,” Opt. Acta (Lond.) 30(11), 1621–1643 (1983).
    [Crossref]
  21. Y. Li and E. Wolf, “Three-dimensional intensity distribution near the focus in systems of different Fresnel numbers,” J. Opt. Soc. Am. A 1(8), 801–808 (1984).
    [Crossref]
  22. Y. Yu and H. Zappe, “Effect of lens size on the focusing performance of plasmonic lenses and suggestions for the design,” Opt. Express 19(10), 9434–9444 (2011).
    [Crossref] [PubMed]
  23. Y. Yu and H. Zappe, “Theory and implementation of focal shift of plasmonic lenses,” Opt. Lett. 37(9), 1592–1594 (2012).
    [Crossref] [PubMed]
  24. Y. Gao, J. Liu, X. Zhang, Y. Wang, Y. Song, S. Liu, and Y. Zhang, “Analysis of focal-shift effect in planar metallic nanoslit lenses,” Opt. Express 20(2), 1320–1329 (2012).
    [Crossref] [PubMed]
  25. M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge, 1999).
  26. E. Jahnke and F. Emde, Tables of Functions with Formulae and Curves, 4th ed. (Dover, 1945).
  27. L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
    [Crossref] [PubMed]

2017 (1)

2016 (2)

Q. Wang, X. Zhang, Y. Xu, J. Gu, Y. Li, Z. Tian, R. Singh, S. Zhang, J. Han, and W. Zhang, “Broadband metasurface holograms: toward complete phase and amplitude engineering,” Sci. Rep. 6, 32867 (2016).
[Crossref] [PubMed]

J. He, J. Ye, X. Wang, Q. Kan, and Y. Zhang, “A broadband terahertz ultrathin multi-focus lens,” Sci. Rep. 6, 28800 (2016).
[Crossref] [PubMed]

2015 (2)

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A broadband metasurface-based terahertz flat-lens array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A Tunable Dispersion-Free Terahertz Metadevice with Pancharatnam-Berry-Phase-Enabled Modulation and Polarization Control,” Adv. Mater. 27(42), 6630–6636 (2015).
[Crossref] [PubMed]

2014 (3)

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

X. Chen, Y. Zhang, L. Huang, and S. Zhang, “Ultrathin metasurface laser beam shaper,” Adv. Opt. Mater. 2(10), 978–982 (2014).
[Crossref]

Q. Yang, J. Gu, D. Wang, X. Zhang, Z. Tian, C. Ouyang, R. Singh, J. Han, and W. Zhang, “Efficient flat metasurface lens for terahertz imaging,” Opt. Express 22(21), 25931–25939 (2014).
[Crossref] [PubMed]

2013 (6)

X. Y. Jiang, J. S. Ye, J. W. He, X. K. Wang, D. Hu, S. F. Feng, Q. Kan, and Y. Zhang, “An ultrathin terahertz lens with axial long focal depth based on metasurfaces,” Opt. Express 21(24), 30030–30038 (2013).
[Crossref] [PubMed]

D. Hu, X. Wang, S. Feng, J. Ye, W. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1(2), 186–191 (2013).
[Crossref]

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2, e70 (2013).
[Crossref]

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. W. Cheah, C. W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

2012 (5)

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
[Crossref]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

Y. Gao, J. Liu, X. Zhang, Y. Wang, Y. Song, S. Liu, and Y. Zhang, “Analysis of focal-shift effect in planar metallic nanoslit lenses,” Opt. Express 20(2), 1320–1329 (2012).
[Crossref] [PubMed]

Y. Yu and H. Zappe, “Theory and implementation of focal shift of plasmonic lenses,” Opt. Lett. 37(9), 1592–1594 (2012).
[Crossref] [PubMed]

X. Li, S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, “Flat metasurfaces to focus electromagnetic waves in reflection geometry,” Opt. Lett. 37(23), 4940–4942 (2012).
[Crossref] [PubMed]

2011 (2)

Y. Yu and H. Zappe, “Effect of lens size on the focusing performance of plasmonic lenses and suggestions for the design,” Opt. Express 19(10), 9434–9444 (2011).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

1984 (1)

1983 (1)

Y. Li and H. Platzer, “An experimental investigation of diffraction patterns in low-Fresnel-number focusing systems,” Opt. Acta (Lond.) 30(11), 1621–1643 (1983).
[Crossref]

1982 (1)

1981 (1)

Y. Li and E. Wolf, “Focal shifts in diffracted converging spherical waves,” Opt. Commun. 39(4), 211–215 (1981).
[Crossref]

Aieta, F.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
[Crossref]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Antoniou, N.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Bai, B.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2, e70 (2013).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. W. Cheah, C. W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Blanchard, R.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
[Crossref]

Cai, B.

Capasso, F.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
[Crossref]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Cheah, K. W.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. W. Cheah, C. W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Chen, S.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. W. Cheah, C. W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Chen, X.

X. Chen, Y. Zhang, L. Huang, and S. Zhang, “Ultrathin metasurface laser beam shaper,” Adv. Opt. Mater. 2(10), 978–982 (2014).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. W. Cheah, C. W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2, e70 (2013).
[Crossref]

Cong, L.

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A Tunable Dispersion-Free Terahertz Metadevice with Pancharatnam-Berry-Phase-Enabled Modulation and Polarization Control,” Adv. Mater. 27(42), 6630–6636 (2015).
[Crossref] [PubMed]

Cui, T. J.

Feng, S.

D. Hu, X. Wang, S. Feng, J. Ye, W. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1(2), 186–191 (2013).
[Crossref]

Feng, S. F.

Gaburro, Z.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gao, Y.

Genevet, P.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
[Crossref]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gong, X.

Gu, J.

Q. Wang, X. Zhang, Y. Xu, J. Gu, Y. Li, Z. Tian, R. Singh, S. Zhang, J. Han, and W. Zhang, “Broadband metasurface holograms: toward complete phase and amplitude engineering,” Sci. Rep. 6, 32867 (2016).
[Crossref] [PubMed]

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A broadband metasurface-based terahertz flat-lens array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

Q. Yang, J. Gu, D. Wang, X. Zhang, Z. Tian, C. Ouyang, R. Singh, J. Han, and W. Zhang, “Efficient flat metasurface lens for terahertz imaging,” Opt. Express 22(21), 25931–25939 (2014).
[Crossref] [PubMed]

Han, J.

Q. Wang, X. Zhang, Y. Xu, J. Gu, Y. Li, Z. Tian, R. Singh, S. Zhang, J. Han, and W. Zhang, “Broadband metasurface holograms: toward complete phase and amplitude engineering,” Sci. Rep. 6, 32867 (2016).
[Crossref] [PubMed]

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A broadband metasurface-based terahertz flat-lens array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A Tunable Dispersion-Free Terahertz Metadevice with Pancharatnam-Berry-Phase-Enabled Modulation and Polarization Control,” Adv. Mater. 27(42), 6630–6636 (2015).
[Crossref] [PubMed]

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Q. Yang, J. Gu, D. Wang, X. Zhang, Z. Tian, C. Ouyang, R. Singh, J. Han, and W. Zhang, “Efficient flat metasurface lens for terahertz imaging,” Opt. Express 22(21), 25931–25939 (2014).
[Crossref] [PubMed]

He, J.

J. He, J. Ye, X. Wang, Q. Kan, and Y. Zhang, “A broadband terahertz ultrathin multi-focus lens,” Sci. Rep. 6, 28800 (2016).
[Crossref] [PubMed]

He, J. W.

He, Q.

Hu, D.

Huang, L.

X. Chen, Y. Zhang, L. Huang, and S. Zhang, “Ultrathin metasurface laser beam shaper,” Adv. Opt. Mater. 2(10), 978–982 (2014).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. W. Cheah, C. W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2, e70 (2013).
[Crossref]

Jia, D.

Jiang, X. Y.

Jin, G.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. W. Cheah, C. W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2, e70 (2013).
[Crossref]

Kan, Q.

J. He, J. Ye, X. Wang, Q. Kan, and Y. Zhang, “A broadband terahertz ultrathin multi-focus lens,” Sci. Rep. 6, 28800 (2016).
[Crossref] [PubMed]

X. Y. Jiang, J. S. Ye, J. W. He, X. K. Wang, D. Hu, S. F. Feng, Q. Kan, and Y. Zhang, “An ultrathin terahertz lens with axial long focal depth based on metasurfaces,” Opt. Express 21(24), 30030–30038 (2013).
[Crossref] [PubMed]

D. Hu, X. Wang, S. Feng, J. Ye, W. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1(2), 186–191 (2013).
[Crossref]

Kats, M. A.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
[Crossref]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Kenney, M.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Kildishev, A. V.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

Klar, P. J.

D. Hu, X. Wang, S. Feng, J. Ye, W. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1(2), 186–191 (2013).
[Crossref]

Li, J.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. W. Cheah, C. W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Li, X.

Li, Y.

Q. Wang, X. Zhang, Y. Xu, J. Gu, Y. Li, Z. Tian, R. Singh, S. Zhang, J. Han, and W. Zhang, “Broadband metasurface holograms: toward complete phase and amplitude engineering,” Sci. Rep. 6, 32867 (2016).
[Crossref] [PubMed]

Y. Li and E. Wolf, “Three-dimensional intensity distribution near the focus in systems of different Fresnel numbers,” J. Opt. Soc. Am. A 1(8), 801–808 (1984).
[Crossref]

Y. Li and H. Platzer, “An experimental investigation of diffraction patterns in low-Fresnel-number focusing systems,” Opt. Acta (Lond.) 30(11), 1621–1643 (1983).
[Crossref]

Y. Li, “Dependence of the focal shift on Fresnel number and f number,” J. Opt. Soc. Am. 72(6), 770–774 (1982).
[Crossref]

Y. Li and E. Wolf, “Focal shifts in diffracted converging spherical waves,” Opt. Commun. 39(4), 211–215 (1981).
[Crossref]

Lin, J.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
[Crossref]

Liu, J.

Liu, L.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Liu, S.

Ma, W.

Mueller, J. P. B.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Mühlenbernd, H.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. W. Cheah, C. W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Ni, X.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

Ouyang, C.

Q. Yang, J. Gu, D. Wang, X. Zhang, Z. Tian, C. Ouyang, R. Singh, J. Han, and W. Zhang, “Efficient flat metasurface lens for terahertz imaging,” Opt. Express 22(21), 25931–25939 (2014).
[Crossref] [PubMed]

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Platzer, H.

Y. Li and H. Platzer, “An experimental investigation of diffraction patterns in low-Fresnel-number focusing systems,” Opt. Acta (Lond.) 30(11), 1621–1643 (1983).
[Crossref]

Qiu, C. W.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. W. Cheah, C. W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Scully, M. O.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
[Crossref]

Shalaev, V. M.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

Shi, Y.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Singh, R.

Q. Wang, X. Zhang, Y. Xu, J. Gu, Y. Li, Z. Tian, R. Singh, S. Zhang, J. Han, and W. Zhang, “Broadband metasurface holograms: toward complete phase and amplitude engineering,” Sci. Rep. 6, 32867 (2016).
[Crossref] [PubMed]

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A Tunable Dispersion-Free Terahertz Metadevice with Pancharatnam-Berry-Phase-Enabled Modulation and Polarization Control,” Adv. Mater. 27(42), 6630–6636 (2015).
[Crossref] [PubMed]

Q. Yang, J. Gu, D. Wang, X. Zhang, Z. Tian, C. Ouyang, R. Singh, J. Han, and W. Zhang, “Efficient flat metasurface lens for terahertz imaging,” Opt. Express 22(21), 25931–25939 (2014).
[Crossref] [PubMed]

Song, Y.

Su, X.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Sun, W.

D. Hu, X. Wang, S. Feng, J. Ye, W. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1(2), 186–191 (2013).
[Crossref]

Tan, Q.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2, e70 (2013).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. W. Cheah, C. W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Tetienne, J. P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Tian, Y.

Tian, Z.

Q. Wang, X. Zhang, Y. Xu, J. Gu, Y. Li, Z. Tian, R. Singh, S. Zhang, J. Han, and W. Zhang, “Broadband metasurface holograms: toward complete phase and amplitude engineering,” Sci. Rep. 6, 32867 (2016).
[Crossref] [PubMed]

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A broadband metasurface-based terahertz flat-lens array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

Q. Yang, J. Gu, D. Wang, X. Zhang, Z. Tian, C. Ouyang, R. Singh, J. Han, and W. Zhang, “Efficient flat metasurface lens for terahertz imaging,” Opt. Express 22(21), 25931–25939 (2014).
[Crossref] [PubMed]

Wang, D.

Wang, Q.

Q. Wang, X. Zhang, Y. Xu, J. Gu, Y. Li, Z. Tian, R. Singh, S. Zhang, J. Han, and W. Zhang, “Broadband metasurface holograms: toward complete phase and amplitude engineering,” Sci. Rep. 6, 32867 (2016).
[Crossref] [PubMed]

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A broadband metasurface-based terahertz flat-lens array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Wang, X.

J. He, J. Ye, X. Wang, Q. Kan, and Y. Zhang, “A broadband terahertz ultrathin multi-focus lens,” Sci. Rep. 6, 28800 (2016).
[Crossref] [PubMed]

D. Hu, X. Wang, S. Feng, J. Ye, W. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1(2), 186–191 (2013).
[Crossref]

Wang, X. K.

Wang, Y.

Wolf, E.

Xiao, S.

Xu, N.

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A Tunable Dispersion-Free Terahertz Metadevice with Pancharatnam-Berry-Phase-Enabled Modulation and Polarization Control,” Adv. Mater. 27(42), 6630–6636 (2015).
[Crossref] [PubMed]

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Xu, Y.

Q. Wang, X. Zhang, Y. Xu, J. Gu, Y. Li, Z. Tian, R. Singh, S. Zhang, J. Han, and W. Zhang, “Broadband metasurface holograms: toward complete phase and amplitude engineering,” Sci. Rep. 6, 32867 (2016).
[Crossref] [PubMed]

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A broadband metasurface-based terahertz flat-lens array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

Yang, Q.

Ye, J.

J. He, J. Ye, X. Wang, Q. Kan, and Y. Zhang, “A broadband terahertz ultrathin multi-focus lens,” Sci. Rep. 6, 28800 (2016).
[Crossref] [PubMed]

D. Hu, X. Wang, S. Feng, J. Ye, W. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1(2), 186–191 (2013).
[Crossref]

Ye, J. S.

Yu, J.

Yu, N.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Yu, X.

Yu, Y.

Yuan, G.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Yuan, X. C.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Yue, W.

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A broadband metasurface-based terahertz flat-lens array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

Zappe, H.

Zentgraf, T.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. W. Cheah, C. W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2, e70 (2013).
[Crossref]

Zhang, H.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. W. Cheah, C. W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Zhang, S.

Q. Wang, X. Zhang, Y. Xu, J. Gu, Y. Li, Z. Tian, R. Singh, S. Zhang, J. Han, and W. Zhang, “Broadband metasurface holograms: toward complete phase and amplitude engineering,” Sci. Rep. 6, 32867 (2016).
[Crossref] [PubMed]

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A broadband metasurface-based terahertz flat-lens array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

X. Chen, Y. Zhang, L. Huang, and S. Zhang, “Ultrathin metasurface laser beam shaper,” Adv. Opt. Mater. 2(10), 978–982 (2014).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. W. Cheah, C. W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2, e70 (2013).
[Crossref]

Zhang, W.

Q. Wang, X. Zhang, Y. Xu, J. Gu, Y. Li, Z. Tian, R. Singh, S. Zhang, J. Han, and W. Zhang, “Broadband metasurface holograms: toward complete phase and amplitude engineering,” Sci. Rep. 6, 32867 (2016).
[Crossref] [PubMed]

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A broadband metasurface-based terahertz flat-lens array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A Tunable Dispersion-Free Terahertz Metadevice with Pancharatnam-Berry-Phase-Enabled Modulation and Polarization Control,” Adv. Mater. 27(42), 6630–6636 (2015).
[Crossref] [PubMed]

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Q. Yang, J. Gu, D. Wang, X. Zhang, Z. Tian, C. Ouyang, R. Singh, J. Han, and W. Zhang, “Efficient flat metasurface lens for terahertz imaging,” Opt. Express 22(21), 25931–25939 (2014).
[Crossref] [PubMed]

Zhang, X.

Q. Wang, X. Zhang, Y. Xu, J. Gu, Y. Li, Z. Tian, R. Singh, S. Zhang, J. Han, and W. Zhang, “Broadband metasurface holograms: toward complete phase and amplitude engineering,” Sci. Rep. 6, 32867 (2016).
[Crossref] [PubMed]

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A broadband metasurface-based terahertz flat-lens array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Q. Yang, J. Gu, D. Wang, X. Zhang, Z. Tian, C. Ouyang, R. Singh, J. Han, and W. Zhang, “Efficient flat metasurface lens for terahertz imaging,” Opt. Express 22(21), 25931–25939 (2014).
[Crossref] [PubMed]

Y. Gao, J. Liu, X. Zhang, Y. Wang, Y. Song, S. Liu, and Y. Zhang, “Analysis of focal-shift effect in planar metallic nanoslit lenses,” Opt. Express 20(2), 1320–1329 (2012).
[Crossref] [PubMed]

Zhang, Y.

J. He, J. Ye, X. Wang, Q. Kan, and Y. Zhang, “A broadband terahertz ultrathin multi-focus lens,” Sci. Rep. 6, 28800 (2016).
[Crossref] [PubMed]

X. Chen, Y. Zhang, L. Huang, and S. Zhang, “Ultrathin metasurface laser beam shaper,” Adv. Opt. Mater. 2(10), 978–982 (2014).
[Crossref]

X. Y. Jiang, J. S. Ye, J. W. He, X. K. Wang, D. Hu, S. F. Feng, Q. Kan, and Y. Zhang, “An ultrathin terahertz lens with axial long focal depth based on metasurfaces,” Opt. Express 21(24), 30030–30038 (2013).
[Crossref] [PubMed]

D. Hu, X. Wang, S. Feng, J. Ye, W. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1(2), 186–191 (2013).
[Crossref]

Y. Gao, J. Liu, X. Zhang, Y. Wang, Y. Song, S. Liu, and Y. Zhang, “Analysis of focal-shift effect in planar metallic nanoslit lenses,” Opt. Express 20(2), 1320–1329 (2012).
[Crossref] [PubMed]

Zhao, G.

Zhou, L.

Adv. Mater. (2)

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A Tunable Dispersion-Free Terahertz Metadevice with Pancharatnam-Berry-Phase-Enabled Modulation and Polarization Control,” Adv. Mater. 27(42), 6630–6636 (2015).
[Crossref] [PubMed]

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Adv. Opt. Mater. (3)

D. Hu, X. Wang, S. Feng, J. Ye, W. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1(2), 186–191 (2013).
[Crossref]

X. Chen, Y. Zhang, L. Huang, and S. Zhang, “Ultrathin metasurface laser beam shaper,” Adv. Opt. Mater. 2(10), 978–982 (2014).
[Crossref]

Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, “A broadband metasurface-based terahertz flat-lens array,” Adv. Opt. Mater. 3(6), 779–785 (2015).
[Crossref]

Appl. Phys. Lett. (1)

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Light Sci. Appl. (1)

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2, e70 (2013).
[Crossref]

Nano Lett. (1)

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

Nat. Commun. (2)

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. W. Cheah, C. W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Opt. Acta (Lond.) (1)

Y. Li and H. Platzer, “An experimental investigation of diffraction patterns in low-Fresnel-number focusing systems,” Opt. Acta (Lond.) 30(11), 1621–1643 (1983).
[Crossref]

Opt. Commun. (1)

Y. Li and E. Wolf, “Focal shifts in diffracted converging spherical waves,” Opt. Commun. 39(4), 211–215 (1981).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Sci. Rep. (2)

Q. Wang, X. Zhang, Y. Xu, J. Gu, Y. Li, Z. Tian, R. Singh, S. Zhang, J. Han, and W. Zhang, “Broadband metasurface holograms: toward complete phase and amplitude engineering,” Sci. Rep. 6, 32867 (2016).
[Crossref] [PubMed]

J. He, J. Ye, X. Wang, Q. Kan, and Y. Zhang, “A broadband terahertz ultrathin multi-focus lens,” Sci. Rep. 6, 28800 (2016).
[Crossref] [PubMed]

Science (2)

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Other (2)

M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge, 1999).

E. Jahnke and F. Emde, Tables of Functions with Formulae and Curves, 4th ed. (Dover, 1945).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Schematic of squared planar lens based on metasurfaces.
Fig. 2
Fig. 2 (a) Diagram of Cornu spiral plotted via complex Simpson formula with posteriori error of 10−12. (b) Local amplification of the spiral, when w takes 1.21, point on the spiral reaches the longest distance to the origin.
Fig. 3
Fig. 3 Relations between relative focal shift p and Fresnel number N on squared planar lens.
Fig. 4
Fig. 4 (a) Schematic of the C-shaped resonator unit. (b) The phase shift and amplitude transmission of y-component scattered electric field of designed structures under x-polarized incidence at 28.3THz.
Fig. 5
Fig. 5 Simulation results of the y-polarized electric field distribution through the proposed deflector at (a) 27.8THz. (b) 28.3THz. (c) 28.8THz. With x-polarized normal incidence.
Fig. 6
Fig. 6 The simulation result of electric field intensity distribution in the y-polarization for squared metasurface lens with side length 2a = 120μm, λ = 10.6μm and preset focal length f = 100μm, with x-polarized normal incidence.
Fig. 7
Fig. 7 The simulation result of electric field intensity distribution in the y-polarization for squared metasurface lens with side length 2a = 120μm, λ = 10.6μm and preset focal length f = 200μm, with x-polarized normal incidence.
Fig. 8
Fig. 8 The simulation result of electric field intensity distribution in the y-polarization for squared metasurface lens with side length 2a = 120μm, λ = 10.6μm and preset focal length f = 300μm, with x-polarized normal incidence.
Fig. 9
Fig. 9 The simulation result of electric field intensity distribution in the y-polarization for squared metasurface lens with preset focal length f = 100μm, λ = 10.6μm and side length 2a = 100μm, with x-polarized normal incidence.
Fig. 10
Fig. 10 The simulation result of electric field intensity distribution in the y-polarization for squared metasurface lens with preset focal length f = 100μm, λ = 10.6μm and side length 2a = 140μm, with x-polarized normal incidence.
Fig. 11
Fig. 11 The simulation result of electric field intensity distribution in the y-polarization for squared metasurface lens with preset focal length f = 127.48μm, λ = 10.6μm and side length 2a = 120μm, with x-polarized normal incidence.
Fig. 12
Fig. 12 Simulation results of y-polarized electric field intensity distribution on respective focal plane at 28.3THz, as real focal length of (a) f ′ = 80μm. (b) f ′ = 136μm. (c) f ′ = 179μm. (d) f ′ = 75μm. (e) f ′ = 82.5μm. (f) f ′ = 98.5μm.
Fig. 13
Fig. 13 Schematic of the experimental demonstration. A grating tunable CO2 laser is able to generate the infrared light wave with a pure single frequency in a broadband range from 27.8 to 28.8THz.

Tables (1)

Tables Icon

Table 1 Focusing characteristics of squared planar lenses with different parameters

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

N= a 2 λf .
N s 1.2732N=1.2732 a 2 λf .
U(0,0,z)= exp[jkz] jλz a a a a U 0 (x,y,0) exp[jk x 2 + y 2 2z ]dxdy.
U 0 (x,y,0)=Aexp[jφ(x,y,0)] | x |<a,| y |<a.
φ(x,y,0)=k(f f 2 + x 2 + y 2 ).
φ(x,y,0)= k( x 2 + y 2 ) 2f .
U(0,0,z)= Aexp[jkz] jλz a a a a exp[jk( x 2 + y 2 2z fz f )]dxdy.
p= fz f .
I(0,0,z)= | U(0,0,z) | 2 = [ C 2 (w)+ S 2 (w)] 2 I 0 .
I 0 = 4 A 2 p 2 .
C(w)= 0 w cos( π 2 u 2 ) du S(w)= 0 w sin( π 2 v 2 ) dv.
w=a 2p λz .
w= 2Np 1p .
p= 1.4641 2N+1.4641 .
I(0,0,z)= | U(0,0,z) | 2 =4 A 2 [ C 2 (w)+ S 2 (w)] 2 I 0 .
w=a 2 λz .

Metrics