Abstract

Non-uniform surface relief diffraction gratings were laser-inscribed on azobenzene molecular glass thin films using a modified Lloyd’s mirror interferometer. The azobenzene films were exposed to an adjustable interference pattern produced by the recombination of collimated and spherically divergent laser wave fronts. The localized pitch, grating vector orientation and depth of the resulting non-uniform gratings were measured using an atomic force microscope and a theoretical model was analytically developed to explain the experimental results. The fabricated gratings exhibited a chirping or pitch variation along the imposed X-axis as well as an angular change in the grating vector orientation along the imposed Y-axis. Studies were conducted on various non-uniform grating configurations having central pitches of 500 nm, 1000 nm, 1500 nm and 2000 nm.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Laser-induced controllable chirped-pitch circular surface-relief diffraction gratings on AZO glass

James Leibold and Ribal Georges Sabat
Photon. Res. 3(4) 158-163 (2015)

Surface plasmon bandwidth increase using chirped-pitch linear diffraction gratings

Erin Bailey and Ribal Georges Sabat
Opt. Express 25(6) 6904-6913 (2017)

Diffraction efficiency increase by corona discharge in photoinduced surface-relief gratings on an azo polymer film

Katsuhiro Munakata, Kenji Harada, Hitoshi Anji, Masahide Itoh, Toyohiko Yatagai, and Shinsuke Umegaki
Opt. Lett. 26(1) 4-6 (2001)

References

  • View by:
  • |
  • |
  • |

  1. C. Palmer and E. Loewen, Diffraction Grating Handbook, 6th ed. (Newport Corporation, 2005).
  2. D. Nevejans, E. Neefs, E. Van Ransbeeck, S. Berkenbosch, R. Clairquin, L. De Vos, W. Moelans, S. Glorieux, A. Baeke, O. Korablev, I. Vinogradov, Y. Kalinnikov, B. Bach, J.-P. Dubois, and E. Villard, “Compact high-resolution spaceborne echelle grating spectrometer with acousto-optical tunable filter based order sorting for the infrared domain from 2.2 to 4.3 µm,” Appl. Opt. 45(21), 5191–5206 (2006).
    [Crossref] [PubMed]
  3. T. O. Sharpee, H. Sugihara, A. V. Kurgansky, S. P. Rebrik, M. P. Stryker, and K. D. Miller, “Adaptive filtering enhances information transmission in visual cortex,” Nature 439(7079), 936–942 (2006).
    [Crossref] [PubMed]
  4. J. F. de Boer, C. E. Saxer, and J. S. Nelson, “Stable carrier generation and phase-resolved digital data processing in optical coherence tomography,” Appl. Opt. 40(31), 5787–5790 (2001).
    [Crossref] [PubMed]
  5. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  6. C. J. Kramer, R. Cited, and P. E. K. Corbin, "Optical Scanner Using Plane Linear Diffraction Gratings on a Rotating Spinner (Patent)," (1981).
  7. F. Ouellette, “Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides,” Opt. Lett. 12(10), 847–849 (1987).
    [Crossref] [PubMed]
  8. J. Paterson, A. Natansohn, P. Rochon, C. L. Callender, and L. Robitaille, “Optically inscribed surface relief diffraction gratings on azobenzene- containing polymers for coupling light into slab waveguides,” Appl. Phys. Lett. 69(22), 3318–3320 (1996).
    [Crossref]
  9. K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids 239(1–3), 91–95 (1998).
    [Crossref]
  10. T. K. Gaylord and M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73(5), 894–937 (1985).
    [Crossref]
  11. M. G. Moharam, T. K. Gaylord, D. A. Pommet, and E. B. Grann, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12(5), 1077 (1995).
    [Crossref]
  12. J. M. Miller, "Surface Relief Difraction Grating (Patent)," (2011).
  13. C. J. Kramer, "Novel Surface-Relief Diffraction Grating (Patent)," (2003).
  14. J. Sun, X. Luo, W. Chang, J. M. Ritchie, J. Chien, and A. Lee, “Fabrication of periodic nanostructures by single-point diamond turning with focused ion beam built tool tips,” J. Micromech. Microeng. 22, 115014 (2012).
  15. W. H. Yeh, J. Kleingartner, and A. C. Hillier, “Wavelength Tunable Surface Plasmon Resonance-Enhanced Optical Transmission Through a Chirped Diffraction Grating,” Anal. Chem. 82(12), 4988–4993 (2010).
    [Crossref] [PubMed]
  16. Y. K. Kim, A. J. Danner, J. J. Raftery, and K. D. Choquette, “Focused ion beam nanopatterning for optoelectronic device fabrication,” IEEE J. Sel. Top. Quantum Electron. 11(6), 1292–1298 (2005).
    [Crossref]
  17. N. C. R. Holme, L. Nikolova, S. Hvilsted, P. H. Rasmussen, R. H. Berg, and P. S. Ramanujam, “Optically Induced Surface Relief Phenomena in Azobenzene Polymers,” Appl. Phys. Lett. 74(4), 519–521 (1999).
    [Crossref]
  18. A. A. Tseng, K. Chen, C. D. Chen, and K. J. Ma, “Electron beam lithography in nanoscale fabrication: Recent development,” IEEE Trans. Electron. Packag. Manuf. 26(2), 141–149 (2003).
    [Crossref]
  19. J. Kumar, L. Li, X. L. Jiang, D.-Y. Kim, T. S. Lee, and S. Tripathy, “Gradient Force: The Mechanism for Surface Relief Grating Formation in Azobenzene Functionalized Polymers,” Appl. Phys. Lett. 72(17), 2096–2098 (1998).
    [Crossref]
  20. R. J. Stockermans and P. Rochon, “Experimental demonstration of photonic bandgaps in azopolymer resonant waveguide grating systems,” J. Opt. Soc. Am. A 24(8), 2457–2463 (2007).
    [Crossref] [PubMed]
  21. Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chong, “Fabrication of nanostructures with laser interference lithography,” J. Alloys Compd. 449(1–2), 261–264 (2008).
    [Crossref]
  22. J. Leibold, P. Snell, O. Lebel, and R. G. Sabat, “Design and fabrication of constant-pitch circular surface-relief diffraction gratings on disperse red 1 glass,” Opt. Lett. 39(12), 3445–3448 (2014).
    [Crossref] [PubMed]
  23. J. Leibold and R. G. Sabat, “Laser-induced controllable chirped-pitch circular surface-relief diffraction gratings on AZO glass,” Photon. Res. 3(4), 158–163 (2015).
    [Crossref]
  24. R. G. Sabat, “Superimposed surface-relief diffraction grating holographic lenses on azo-polymer films,” Opt. Express 21(7), 8711–8723 (2013).
    [Crossref] [PubMed]
  25. E. Bailey and R. G. Sabat, “Surface plasmon bandwidth increase using chirped-pitch linear diffraction gratings,” Opt. Express 25(6), 6904–6913 (2017).
    [Crossref] [PubMed]
  26. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface Plasmon Subwavelength Optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  27. R. Kirby, R. G. Sabat, J.-M. Nunzi, and O. Lebel, “Disperse and disordered: a mexylaminotriazine-substituted azobenzene derivative with superior glass and surface relief grating formation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(5), 841–847 (2014).
    [Crossref]
  28. N. S. Yadavalli and S. Santer, “In-situ atomic force microscopy study of the mechanism of surface relief grating formation in photosensitive polymer films,” J. Appl. Phys. 113(22), 224304 (2013).
    [Crossref]

2017 (1)

2015 (1)

2014 (2)

J. Leibold, P. Snell, O. Lebel, and R. G. Sabat, “Design and fabrication of constant-pitch circular surface-relief diffraction gratings on disperse red 1 glass,” Opt. Lett. 39(12), 3445–3448 (2014).
[Crossref] [PubMed]

R. Kirby, R. G. Sabat, J.-M. Nunzi, and O. Lebel, “Disperse and disordered: a mexylaminotriazine-substituted azobenzene derivative with superior glass and surface relief grating formation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(5), 841–847 (2014).
[Crossref]

2013 (2)

N. S. Yadavalli and S. Santer, “In-situ atomic force microscopy study of the mechanism of surface relief grating formation in photosensitive polymer films,” J. Appl. Phys. 113(22), 224304 (2013).
[Crossref]

R. G. Sabat, “Superimposed surface-relief diffraction grating holographic lenses on azo-polymer films,” Opt. Express 21(7), 8711–8723 (2013).
[Crossref] [PubMed]

2012 (1)

J. Sun, X. Luo, W. Chang, J. M. Ritchie, J. Chien, and A. Lee, “Fabrication of periodic nanostructures by single-point diamond turning with focused ion beam built tool tips,” J. Micromech. Microeng. 22, 115014 (2012).

2010 (2)

W. H. Yeh, J. Kleingartner, and A. C. Hillier, “Wavelength Tunable Surface Plasmon Resonance-Enhanced Optical Transmission Through a Chirped Diffraction Grating,” Anal. Chem. 82(12), 4988–4993 (2010).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

2008 (1)

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chong, “Fabrication of nanostructures with laser interference lithography,” J. Alloys Compd. 449(1–2), 261–264 (2008).
[Crossref]

2007 (1)

2006 (2)

2005 (1)

Y. K. Kim, A. J. Danner, J. J. Raftery, and K. D. Choquette, “Focused ion beam nanopatterning for optoelectronic device fabrication,” IEEE J. Sel. Top. Quantum Electron. 11(6), 1292–1298 (2005).
[Crossref]

2003 (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface Plasmon Subwavelength Optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

A. A. Tseng, K. Chen, C. D. Chen, and K. J. Ma, “Electron beam lithography in nanoscale fabrication: Recent development,” IEEE Trans. Electron. Packag. Manuf. 26(2), 141–149 (2003).
[Crossref]

2001 (1)

1999 (1)

N. C. R. Holme, L. Nikolova, S. Hvilsted, P. H. Rasmussen, R. H. Berg, and P. S. Ramanujam, “Optically Induced Surface Relief Phenomena in Azobenzene Polymers,” Appl. Phys. Lett. 74(4), 519–521 (1999).
[Crossref]

1998 (2)

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids 239(1–3), 91–95 (1998).
[Crossref]

J. Kumar, L. Li, X. L. Jiang, D.-Y. Kim, T. S. Lee, and S. Tripathy, “Gradient Force: The Mechanism for Surface Relief Grating Formation in Azobenzene Functionalized Polymers,” Appl. Phys. Lett. 72(17), 2096–2098 (1998).
[Crossref]

1996 (1)

J. Paterson, A. Natansohn, P. Rochon, C. L. Callender, and L. Robitaille, “Optically inscribed surface relief diffraction gratings on azobenzene- containing polymers for coupling light into slab waveguides,” Appl. Phys. Lett. 69(22), 3318–3320 (1996).
[Crossref]

1995 (1)

1987 (1)

1985 (1)

T. K. Gaylord and M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73(5), 894–937 (1985).
[Crossref]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Bach, B.

Baeke, A.

Bailey, E.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface Plasmon Subwavelength Optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Berg, R. H.

N. C. R. Holme, L. Nikolova, S. Hvilsted, P. H. Rasmussen, R. H. Berg, and P. S. Ramanujam, “Optically Induced Surface Relief Phenomena in Azobenzene Polymers,” Appl. Phys. Lett. 74(4), 519–521 (1999).
[Crossref]

Berkenbosch, S.

Callender, C. L.

J. Paterson, A. Natansohn, P. Rochon, C. L. Callender, and L. Robitaille, “Optically inscribed surface relief diffraction gratings on azobenzene- containing polymers for coupling light into slab waveguides,” Appl. Phys. Lett. 69(22), 3318–3320 (1996).
[Crossref]

Chang, W.

J. Sun, X. Luo, W. Chang, J. M. Ritchie, J. Chien, and A. Lee, “Fabrication of periodic nanostructures by single-point diamond turning with focused ion beam built tool tips,” J. Micromech. Microeng. 22, 115014 (2012).

Chen, C. D.

A. A. Tseng, K. Chen, C. D. Chen, and K. J. Ma, “Electron beam lithography in nanoscale fabrication: Recent development,” IEEE Trans. Electron. Packag. Manuf. 26(2), 141–149 (2003).
[Crossref]

Chen, G. X.

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chong, “Fabrication of nanostructures with laser interference lithography,” J. Alloys Compd. 449(1–2), 261–264 (2008).
[Crossref]

Chen, K.

A. A. Tseng, K. Chen, C. D. Chen, and K. J. Ma, “Electron beam lithography in nanoscale fabrication: Recent development,” IEEE Trans. Electron. Packag. Manuf. 26(2), 141–149 (2003).
[Crossref]

Chien, J.

J. Sun, X. Luo, W. Chang, J. M. Ritchie, J. Chien, and A. Lee, “Fabrication of periodic nanostructures by single-point diamond turning with focused ion beam built tool tips,” J. Micromech. Microeng. 22, 115014 (2012).

Chong, T. C.

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chong, “Fabrication of nanostructures with laser interference lithography,” J. Alloys Compd. 449(1–2), 261–264 (2008).
[Crossref]

Choquette, K. D.

Y. K. Kim, A. J. Danner, J. J. Raftery, and K. D. Choquette, “Focused ion beam nanopatterning for optoelectronic device fabrication,” IEEE J. Sel. Top. Quantum Electron. 11(6), 1292–1298 (2005).
[Crossref]

Clairquin, R.

Danner, A. J.

Y. K. Kim, A. J. Danner, J. J. Raftery, and K. D. Choquette, “Focused ion beam nanopatterning for optoelectronic device fabrication,” IEEE J. Sel. Top. Quantum Electron. 11(6), 1292–1298 (2005).
[Crossref]

de Boer, J. F.

De Vos, L.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface Plasmon Subwavelength Optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Dubois, J.-P.

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface Plasmon Subwavelength Optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Gaylord, T. K.

Glorieux, S.

Grann, E. B.

Hillier, A. C.

W. H. Yeh, J. Kleingartner, and A. C. Hillier, “Wavelength Tunable Surface Plasmon Resonance-Enhanced Optical Transmission Through a Chirped Diffraction Grating,” Anal. Chem. 82(12), 4988–4993 (2010).
[Crossref] [PubMed]

Hirao, K.

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids 239(1–3), 91–95 (1998).
[Crossref]

Holme, N. C. R.

N. C. R. Holme, L. Nikolova, S. Hvilsted, P. H. Rasmussen, R. H. Berg, and P. S. Ramanujam, “Optically Induced Surface Relief Phenomena in Azobenzene Polymers,” Appl. Phys. Lett. 74(4), 519–521 (1999).
[Crossref]

Hong, M. H.

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chong, “Fabrication of nanostructures with laser interference lithography,” J. Alloys Compd. 449(1–2), 261–264 (2008).
[Crossref]

Hvilsted, S.

N. C. R. Holme, L. Nikolova, S. Hvilsted, P. H. Rasmussen, R. H. Berg, and P. S. Ramanujam, “Optically Induced Surface Relief Phenomena in Azobenzene Polymers,” Appl. Phys. Lett. 74(4), 519–521 (1999).
[Crossref]

Jiang, X. L.

J. Kumar, L. Li, X. L. Jiang, D.-Y. Kim, T. S. Lee, and S. Tripathy, “Gradient Force: The Mechanism for Surface Relief Grating Formation in Azobenzene Functionalized Polymers,” Appl. Phys. Lett. 72(17), 2096–2098 (1998).
[Crossref]

Kalinnikov, Y.

Kim, D.-Y.

J. Kumar, L. Li, X. L. Jiang, D.-Y. Kim, T. S. Lee, and S. Tripathy, “Gradient Force: The Mechanism for Surface Relief Grating Formation in Azobenzene Functionalized Polymers,” Appl. Phys. Lett. 72(17), 2096–2098 (1998).
[Crossref]

Kim, Y. K.

Y. K. Kim, A. J. Danner, J. J. Raftery, and K. D. Choquette, “Focused ion beam nanopatterning for optoelectronic device fabrication,” IEEE J. Sel. Top. Quantum Electron. 11(6), 1292–1298 (2005).
[Crossref]

Kirby, R.

R. Kirby, R. G. Sabat, J.-M. Nunzi, and O. Lebel, “Disperse and disordered: a mexylaminotriazine-substituted azobenzene derivative with superior glass and surface relief grating formation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(5), 841–847 (2014).
[Crossref]

Kleingartner, J.

W. H. Yeh, J. Kleingartner, and A. C. Hillier, “Wavelength Tunable Surface Plasmon Resonance-Enhanced Optical Transmission Through a Chirped Diffraction Grating,” Anal. Chem. 82(12), 4988–4993 (2010).
[Crossref] [PubMed]

Korablev, O.

Kumar, J.

J. Kumar, L. Li, X. L. Jiang, D.-Y. Kim, T. S. Lee, and S. Tripathy, “Gradient Force: The Mechanism for Surface Relief Grating Formation in Azobenzene Functionalized Polymers,” Appl. Phys. Lett. 72(17), 2096–2098 (1998).
[Crossref]

Kurgansky, A. V.

T. O. Sharpee, H. Sugihara, A. V. Kurgansky, S. P. Rebrik, M. P. Stryker, and K. D. Miller, “Adaptive filtering enhances information transmission in visual cortex,” Nature 439(7079), 936–942 (2006).
[Crossref] [PubMed]

Lebel, O.

R. Kirby, R. G. Sabat, J.-M. Nunzi, and O. Lebel, “Disperse and disordered: a mexylaminotriazine-substituted azobenzene derivative with superior glass and surface relief grating formation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(5), 841–847 (2014).
[Crossref]

J. Leibold, P. Snell, O. Lebel, and R. G. Sabat, “Design and fabrication of constant-pitch circular surface-relief diffraction gratings on disperse red 1 glass,” Opt. Lett. 39(12), 3445–3448 (2014).
[Crossref] [PubMed]

Lee, A.

J. Sun, X. Luo, W. Chang, J. M. Ritchie, J. Chien, and A. Lee, “Fabrication of periodic nanostructures by single-point diamond turning with focused ion beam built tool tips,” J. Micromech. Microeng. 22, 115014 (2012).

Lee, T. S.

J. Kumar, L. Li, X. L. Jiang, D.-Y. Kim, T. S. Lee, and S. Tripathy, “Gradient Force: The Mechanism for Surface Relief Grating Formation in Azobenzene Functionalized Polymers,” Appl. Phys. Lett. 72(17), 2096–2098 (1998).
[Crossref]

Leibold, J.

Li, L.

J. Kumar, L. Li, X. L. Jiang, D.-Y. Kim, T. S. Lee, and S. Tripathy, “Gradient Force: The Mechanism for Surface Relief Grating Formation in Azobenzene Functionalized Polymers,” Appl. Phys. Lett. 72(17), 2096–2098 (1998).
[Crossref]

Luo, X.

J. Sun, X. Luo, W. Chang, J. M. Ritchie, J. Chien, and A. Lee, “Fabrication of periodic nanostructures by single-point diamond turning with focused ion beam built tool tips,” J. Micromech. Microeng. 22, 115014 (2012).

Ma, K. J.

A. A. Tseng, K. Chen, C. D. Chen, and K. J. Ma, “Electron beam lithography in nanoscale fabrication: Recent development,” IEEE Trans. Electron. Packag. Manuf. 26(2), 141–149 (2003).
[Crossref]

Miller, K. D.

T. O. Sharpee, H. Sugihara, A. V. Kurgansky, S. P. Rebrik, M. P. Stryker, and K. D. Miller, “Adaptive filtering enhances information transmission in visual cortex,” Nature 439(7079), 936–942 (2006).
[Crossref] [PubMed]

Miura, K.

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids 239(1–3), 91–95 (1998).
[Crossref]

Moelans, W.

Moharam, M. G.

Natansohn, A.

J. Paterson, A. Natansohn, P. Rochon, C. L. Callender, and L. Robitaille, “Optically inscribed surface relief diffraction gratings on azobenzene- containing polymers for coupling light into slab waveguides,” Appl. Phys. Lett. 69(22), 3318–3320 (1996).
[Crossref]

Neefs, E.

Nelson, J. S.

Nevejans, D.

Nikolova, L.

N. C. R. Holme, L. Nikolova, S. Hvilsted, P. H. Rasmussen, R. H. Berg, and P. S. Ramanujam, “Optically Induced Surface Relief Phenomena in Azobenzene Polymers,” Appl. Phys. Lett. 74(4), 519–521 (1999).
[Crossref]

Nunzi, J.-M.

R. Kirby, R. G. Sabat, J.-M. Nunzi, and O. Lebel, “Disperse and disordered: a mexylaminotriazine-substituted azobenzene derivative with superior glass and surface relief grating formation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(5), 841–847 (2014).
[Crossref]

Ouellette, F.

Paterson, J.

J. Paterson, A. Natansohn, P. Rochon, C. L. Callender, and L. Robitaille, “Optically inscribed surface relief diffraction gratings on azobenzene- containing polymers for coupling light into slab waveguides,” Appl. Phys. Lett. 69(22), 3318–3320 (1996).
[Crossref]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Pommet, D. A.

Raftery, J. J.

Y. K. Kim, A. J. Danner, J. J. Raftery, and K. D. Choquette, “Focused ion beam nanopatterning for optoelectronic device fabrication,” IEEE J. Sel. Top. Quantum Electron. 11(6), 1292–1298 (2005).
[Crossref]

Ramanujam, P. S.

N. C. R. Holme, L. Nikolova, S. Hvilsted, P. H. Rasmussen, R. H. Berg, and P. S. Ramanujam, “Optically Induced Surface Relief Phenomena in Azobenzene Polymers,” Appl. Phys. Lett. 74(4), 519–521 (1999).
[Crossref]

Rasmussen, P. H.

N. C. R. Holme, L. Nikolova, S. Hvilsted, P. H. Rasmussen, R. H. Berg, and P. S. Ramanujam, “Optically Induced Surface Relief Phenomena in Azobenzene Polymers,” Appl. Phys. Lett. 74(4), 519–521 (1999).
[Crossref]

Rebrik, S. P.

T. O. Sharpee, H. Sugihara, A. V. Kurgansky, S. P. Rebrik, M. P. Stryker, and K. D. Miller, “Adaptive filtering enhances information transmission in visual cortex,” Nature 439(7079), 936–942 (2006).
[Crossref] [PubMed]

Ritchie, J. M.

J. Sun, X. Luo, W. Chang, J. M. Ritchie, J. Chien, and A. Lee, “Fabrication of periodic nanostructures by single-point diamond turning with focused ion beam built tool tips,” J. Micromech. Microeng. 22, 115014 (2012).

Robitaille, L.

J. Paterson, A. Natansohn, P. Rochon, C. L. Callender, and L. Robitaille, “Optically inscribed surface relief diffraction gratings on azobenzene- containing polymers for coupling light into slab waveguides,” Appl. Phys. Lett. 69(22), 3318–3320 (1996).
[Crossref]

Rochon, P.

R. J. Stockermans and P. Rochon, “Experimental demonstration of photonic bandgaps in azopolymer resonant waveguide grating systems,” J. Opt. Soc. Am. A 24(8), 2457–2463 (2007).
[Crossref] [PubMed]

J. Paterson, A. Natansohn, P. Rochon, C. L. Callender, and L. Robitaille, “Optically inscribed surface relief diffraction gratings on azobenzene- containing polymers for coupling light into slab waveguides,” Appl. Phys. Lett. 69(22), 3318–3320 (1996).
[Crossref]

Sabat, R. G.

Santer, S.

N. S. Yadavalli and S. Santer, “In-situ atomic force microscopy study of the mechanism of surface relief grating formation in photosensitive polymer films,” J. Appl. Phys. 113(22), 224304 (2013).
[Crossref]

Saxer, C. E.

Sharpee, T. O.

T. O. Sharpee, H. Sugihara, A. V. Kurgansky, S. P. Rebrik, M. P. Stryker, and K. D. Miller, “Adaptive filtering enhances information transmission in visual cortex,” Nature 439(7079), 936–942 (2006).
[Crossref] [PubMed]

Shi, L. P.

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chong, “Fabrication of nanostructures with laser interference lithography,” J. Alloys Compd. 449(1–2), 261–264 (2008).
[Crossref]

Snell, P.

Stockermans, R. J.

Stryker, M. P.

T. O. Sharpee, H. Sugihara, A. V. Kurgansky, S. P. Rebrik, M. P. Stryker, and K. D. Miller, “Adaptive filtering enhances information transmission in visual cortex,” Nature 439(7079), 936–942 (2006).
[Crossref] [PubMed]

Sugihara, H.

T. O. Sharpee, H. Sugihara, A. V. Kurgansky, S. P. Rebrik, M. P. Stryker, and K. D. Miller, “Adaptive filtering enhances information transmission in visual cortex,” Nature 439(7079), 936–942 (2006).
[Crossref] [PubMed]

Sun, J.

J. Sun, X. Luo, W. Chang, J. M. Ritchie, J. Chien, and A. Lee, “Fabrication of periodic nanostructures by single-point diamond turning with focused ion beam built tool tips,” J. Micromech. Microeng. 22, 115014 (2012).

Tan, H. L.

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chong, “Fabrication of nanostructures with laser interference lithography,” J. Alloys Compd. 449(1–2), 261–264 (2008).
[Crossref]

Tripathy, S.

J. Kumar, L. Li, X. L. Jiang, D.-Y. Kim, T. S. Lee, and S. Tripathy, “Gradient Force: The Mechanism for Surface Relief Grating Formation in Azobenzene Functionalized Polymers,” Appl. Phys. Lett. 72(17), 2096–2098 (1998).
[Crossref]

Tseng, A. A.

A. A. Tseng, K. Chen, C. D. Chen, and K. J. Ma, “Electron beam lithography in nanoscale fabrication: Recent development,” IEEE Trans. Electron. Packag. Manuf. 26(2), 141–149 (2003).
[Crossref]

Van Ransbeeck, E.

Villard, E.

Vinogradov, I.

Xie, Q.

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chong, “Fabrication of nanostructures with laser interference lithography,” J. Alloys Compd. 449(1–2), 261–264 (2008).
[Crossref]

Yadavalli, N. S.

N. S. Yadavalli and S. Santer, “In-situ atomic force microscopy study of the mechanism of surface relief grating formation in photosensitive polymer films,” J. Appl. Phys. 113(22), 224304 (2013).
[Crossref]

Yeh, W. H.

W. H. Yeh, J. Kleingartner, and A. C. Hillier, “Wavelength Tunable Surface Plasmon Resonance-Enhanced Optical Transmission Through a Chirped Diffraction Grating,” Anal. Chem. 82(12), 4988–4993 (2010).
[Crossref] [PubMed]

Anal. Chem. (1)

W. H. Yeh, J. Kleingartner, and A. C. Hillier, “Wavelength Tunable Surface Plasmon Resonance-Enhanced Optical Transmission Through a Chirped Diffraction Grating,” Anal. Chem. 82(12), 4988–4993 (2010).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

J. Paterson, A. Natansohn, P. Rochon, C. L. Callender, and L. Robitaille, “Optically inscribed surface relief diffraction gratings on azobenzene- containing polymers for coupling light into slab waveguides,” Appl. Phys. Lett. 69(22), 3318–3320 (1996).
[Crossref]

N. C. R. Holme, L. Nikolova, S. Hvilsted, P. H. Rasmussen, R. H. Berg, and P. S. Ramanujam, “Optically Induced Surface Relief Phenomena in Azobenzene Polymers,” Appl. Phys. Lett. 74(4), 519–521 (1999).
[Crossref]

J. Kumar, L. Li, X. L. Jiang, D.-Y. Kim, T. S. Lee, and S. Tripathy, “Gradient Force: The Mechanism for Surface Relief Grating Formation in Azobenzene Functionalized Polymers,” Appl. Phys. Lett. 72(17), 2096–2098 (1998).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. K. Kim, A. J. Danner, J. J. Raftery, and K. D. Choquette, “Focused ion beam nanopatterning for optoelectronic device fabrication,” IEEE J. Sel. Top. Quantum Electron. 11(6), 1292–1298 (2005).
[Crossref]

IEEE Trans. Electron. Packag. Manuf. (1)

A. A. Tseng, K. Chen, C. D. Chen, and K. J. Ma, “Electron beam lithography in nanoscale fabrication: Recent development,” IEEE Trans. Electron. Packag. Manuf. 26(2), 141–149 (2003).
[Crossref]

J. Alloys Compd. (1)

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chong, “Fabrication of nanostructures with laser interference lithography,” J. Alloys Compd. 449(1–2), 261–264 (2008).
[Crossref]

J. Appl. Phys. (1)

N. S. Yadavalli and S. Santer, “In-situ atomic force microscopy study of the mechanism of surface relief grating formation in photosensitive polymer films,” J. Appl. Phys. 113(22), 224304 (2013).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

R. Kirby, R. G. Sabat, J.-M. Nunzi, and O. Lebel, “Disperse and disordered: a mexylaminotriazine-substituted azobenzene derivative with superior glass and surface relief grating formation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(5), 841–847 (2014).
[Crossref]

J. Micromech. Microeng. (1)

J. Sun, X. Luo, W. Chang, J. M. Ritchie, J. Chien, and A. Lee, “Fabrication of periodic nanostructures by single-point diamond turning with focused ion beam built tool tips,” J. Micromech. Microeng. 22, 115014 (2012).

J. Non-Cryst. Solids (1)

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids 239(1–3), 91–95 (1998).
[Crossref]

J. Opt. Soc. Am. A (2)

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Nature (2)

T. O. Sharpee, H. Sugihara, A. V. Kurgansky, S. P. Rebrik, M. P. Stryker, and K. D. Miller, “Adaptive filtering enhances information transmission in visual cortex,” Nature 439(7079), 936–942 (2006).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface Plasmon Subwavelength Optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Photon. Res. (1)

Proc. IEEE (1)

T. K. Gaylord and M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73(5), 894–937 (1985).
[Crossref]

Other (4)

C. Palmer and E. Loewen, Diffraction Grating Handbook, 6th ed. (Newport Corporation, 2005).

C. J. Kramer, R. Cited, and P. E. K. Corbin, "Optical Scanner Using Plane Linear Diffraction Gratings on a Rotating Spinner (Patent)," (1981).

J. M. Miller, "Surface Relief Difraction Grating (Patent)," (2011).

C. J. Kramer, "Novel Surface-Relief Diffraction Grating (Patent)," (2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Top view of the laser and Lloyd’s mirror interferometer used for inscribing non-uniform SRGs. S: Sample. M: Mirror. L and LH: Lens and Lens Holder. VI: Variable Iris. QWP: Quarter Wave Plate. CL: Collimating Lens. SF: Spatial Filter.
Fig. 2
Fig. 2 a) Example of a non-uniform SRG at 1000 nm central pitch and 55 mm lens distance with reference scale, b) three-dimensional AFM image, and c) cross-sectional profile view of the same SRG.
Fig. 3
Fig. 3 The approximate overlay on the azobenzene sample surface upon recombination of the two interfering laser beams for the inscription of non-uniform SRGs at a distance of a) 35 mm, b) 45 mm, and c) 55 mm.
Fig. 4
Fig. 4 SRG pitch and vector measurements overlaid on a normalized grating modulation depth color map for a non-uniform SRG produced experimentally at a central pitch of a) 500 nm, b) 1000 nm, c) 1500 nm, and d) 2000 nm.
Fig. 5
Fig. 5 Simulated SRG pitch and vector representations overlaid on a normalized irradiance distribution for a non-uniform SRG produced from Eqs. (2) and (4) for central pitch values of a) 500 nm, b) 1000nm, c) 1500 nm, and d) 2000nm.
Fig. 6
Fig. 6 Simulated SRG pattern generated by the phase analysis of δ at a random position on the surface of a hypothetical grating having a central pitch Λ = 1500 nm.
Fig. 7
Fig. 7 SRG pitch and vector orientation measurements overlaid on a normalized grating modulation depth color map for a non-uniform SRG produced experimentally at a lens distance of a) 35 mm, b) 45 mm, and c) 55 mm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Λ= λ beam 2sin( θ ) ,
δ= 4πxsin( θ ) λ beam + 2π λ beam Δ,
Δ=xsin( θ )+ f 1 f+ ( fxsin( θ ) f 1 ) 2 + ( | x L 2 |cos( θ ) ) 2 + y 2 ,
I= I 1 + I 2 + I 12 ,
I 1 = 1 2 ε 0 c E 01 2 , I 2 = 1 2 ε 0 c E 02 2 , I 12 =2 I 1 I 2 cos( δ ),

Metrics