Abstract

The adiabaticity criterion of the thermally-guided very-large-mode-area (TG VLMA) fiber is presented based on the mode-coupling theory firstly, to the best of our knowledge. The requirement for the adiabatic propagation of fundamental mode is discussed systematically. It is revealed that the pump absorption plays the most important role and the adiabaticity criterion can be met as long as it is small enough. Then, the effects of the configuration parameters of TG VLMA fiber on the up-limitation of pump absorption for the adiabaticity criterion are investigated. It is found that for the straight TG VLMA fiber, reducing the initial refraction index and inner-cladding diameter and utilizing the bi-directional pumping scheme are beneficial to the adiabatic propagation of fundamental mode. The bent TG VLMA fiber is also studied. It is found that the bent fiber is much more difficult to meet the adiabaticity criterion than the straight one. The results show that even with the 100-cm bend radius, the pump absorption should be smaller than 1 dB/m to meet the adiabaticity criterion. It is suggested that enlarging the core-to-cladding ratio can be helpful for loosening the adiabaticity criterion of bent TG VLMA fiber. These pertinent results can provide significant guidance for understanding and designing the TG VLMA fiber and pertinent lasers and amplifiers.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Thermal-induced transverse-mode evolution in thermally guiding index-antiguided-core fiber

Lingchao Kong, Jianqiu Cao, Shaofeng Guo, Zongfu Jiang, and Qisheng Lu
Appl. Opt. 55(5) 1183-1189 (2016)

All-solid very large mode area ytterbium-doped silica microstructured fiber based on accurate control on cladding index

Huifeng Wei, Kangkang Chen, Yucheng Yang, and Jinyan Li
Opt. Express 24(8) 8978-8987 (2016)

Thermally induced mode loss evolution in the coiled ytterbium doped large mode area fiber

Lingchao Kong, Jinyong Leng, Pu Zhou, and Zongfu Jiang
Opt. Express 25(19) 23437-23450 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Nilsson and D. N. Payne, “High-power fiber lasers,” Science 332(6032), 921–922 (2011).
    [Crossref] [PubMed]
  2. C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
    [Crossref]
  3. J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
    [Crossref]
  4. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
    [Crossref] [PubMed]
  5. J. Cao, S. Guo, X. Xu, J. Chen, and Q. Lu, “Investigation on power scalability of diffraction-limited Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 373–383 (2014).
    [Crossref]
  6. D. Jain, Y. Jung, P. Barua, S. Alam, and J. K. Sahu, “Demonstration of ultra-low NA rare-earth doped step index fiber for applications in high power fiber lasers,” Opt. Express 23(6), 7407–7415 (2015).
    [Crossref] [PubMed]
  7. F. Kong, T. Hawkins, M. Jones, J. Parsons, M. Kalichevsky-Dong, C. Dunn, and L. Dong, “Ytterbium-doped 30/400 LMA Fibers with a recorded-low ~NA of 0.028,” in CLEO: Science and Innovations, OSA Technical Digest Series (CD) (Optical Society of America, 2016), paper SM2Q–2.
  8. J. P. Koplow, D. A. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25(7), 442–444 (2000).
    [Crossref] [PubMed]
  9. J. Li, J. Wang, and F. Jing, “Improvement of coiling mode to suppress higher-order-modes by considering mode coupling for large-mode-area fiber laser,” J. Electromagn. Waves Appl. 24(8–9), 1113–1124 (2010).
    [Crossref]
  10. A. E. Siegman, Y. Chen, V. Sudesh, M. C. Richardson, M. Bass, P. Foy, W. Hawkins, and J. Ballato, “Confined propagation and near single-mode laser oscillation in a gain-guided, index antiguided optical fiber,” Appl. Phys. Lett. 89(25), 251101 (2006).
    [Crossref]
  11. Y. Chen, T. McComb, V. Sudesh, M. Richardson, and M. Bass, “Very large-core, single-mode, gain-guided, index-antiguided fiber lasers,” Opt. Lett. 32(17), 2505–2507 (2007).
    [Crossref] [PubMed]
  12. C. H. Liu, G. Chang, N. Litchinitser, D. Guertin, N. Jacobsen, and K. Tankala, “Chirally Coupled Core Fibers at 1550-nm and 1064-nm for Effectively Single-Mode Core Size Scaling,” in CLEO: Lasers and Electro-Optics, OSA Technical Digest Series (CD) (Optical Society of America, 2007) paper 1–2.
  13. H. W. Chen, T. Sosnowski, C. H. Liu, L. J. Chen, J. R. Birge, A. Galvanauskas, F. X. Kärtner, and G. Chang, “Chirally-coupled-core Yb-fiber laser delivering 80-fs pulses with diffraction-limited beam quality warranted by a high-dispersion mirror based compressor,” Opt. Express 18(24), 24699–24705 (2010).
    [Crossref] [PubMed]
  14. L. Dong, J. Li, and X. Peng, “Bend-resistant fundamental mode operation in ytterbium-doped leakage channel fibers with effective areas up to 3160 µm2,” Opt. Express 14(24), 11512–11519 (2006).
    [Crossref] [PubMed]
  15. W. S. Wong, X. Peng, J. M. McLaughlin, and L. Dong, “Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers,” Opt. Lett. 30(21), 2855–2857 (2005).
    [Crossref] [PubMed]
  16. F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power large-pitch fiber amplifier with robust single-mode operation,” Opt. Lett. 36(5), 689–691 (2011).
    [Crossref] [PubMed]
  17. J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), e8 (2012).
    [Crossref]
  18. D. Brown and H. J. Hoffman, “Thermal, stress, and Thermo-Optic effects in high average power double-clad Silica fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 37(2), 207–217 (2001).
    [Crossref]
  19. F. Jansen, F. Stutzki, H. J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express 20(4), 3997–4008 (2012).
    [Crossref] [PubMed]
  20. L. Dong, “Thermal lensing in optical fibers,” Opt. Express 24(17), 19841–19852 (2016).
    [Crossref] [PubMed]
  21. A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
    [Crossref] [PubMed]
  22. B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express 20(10), 11407–11422 (2012).
    [Crossref] [PubMed]
  23. F. Jansen, F. Stutzki, H.-J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “High-power thermally guiding index-antiguiding-core fibers,” Opt. Lett. 38(4), 510–512 (2013).
    [Crossref] [PubMed]
  24. L. Kong, J. Cao, S. Guo, Z. Jiang, and Q. Lu, “Thermal-induced transverse-mode evolution in thermally guiding index-antiguided-core fiber,” Appl. Opt. 55(5), 1183–1189 (2016).
    [Crossref] [PubMed]
  25. J. Q. Cao, W. B. Liu, J. B. Chen, and Q. S. Lu, “Modeling the single-mode thermally guiding very-large-mode-area Yb-doped fiber amplifier,” Wuli Xuebao 66(6), 64201 (2017).
  26. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices Part 1: Adiabaticity criteria,” IEEE Proceedings J. 138(5), 343–354 (1991).
    [Crossref]
  27. R. T. Schermer, “Mode scalability in bent optical fibers,” Opt. Express 15(24), 15674–15701 (2007).
    [Crossref] [PubMed]

2017 (1)

J. Q. Cao, W. B. Liu, J. B. Chen, and Q. S. Lu, “Modeling the single-mode thermally guiding very-large-mode-area Yb-doped fiber amplifier,” Wuli Xuebao 66(6), 64201 (2017).

2016 (2)

2015 (1)

2014 (1)

J. Cao, S. Guo, X. Xu, J. Chen, and Q. Lu, “Investigation on power scalability of diffraction-limited Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 373–383 (2014).
[Crossref]

2013 (2)

2012 (3)

2011 (3)

2010 (2)

2008 (1)

2007 (3)

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
[Crossref]

Y. Chen, T. McComb, V. Sudesh, M. Richardson, and M. Bass, “Very large-core, single-mode, gain-guided, index-antiguided fiber lasers,” Opt. Lett. 32(17), 2505–2507 (2007).
[Crossref] [PubMed]

R. T. Schermer, “Mode scalability in bent optical fibers,” Opt. Express 15(24), 15674–15701 (2007).
[Crossref] [PubMed]

2006 (2)

L. Dong, J. Li, and X. Peng, “Bend-resistant fundamental mode operation in ytterbium-doped leakage channel fibers with effective areas up to 3160 µm2,” Opt. Express 14(24), 11512–11519 (2006).
[Crossref] [PubMed]

A. E. Siegman, Y. Chen, V. Sudesh, M. C. Richardson, M. Bass, P. Foy, W. Hawkins, and J. Ballato, “Confined propagation and near single-mode laser oscillation in a gain-guided, index antiguided optical fiber,” Appl. Phys. Lett. 89(25), 251101 (2006).
[Crossref]

2005 (1)

2001 (1)

D. Brown and H. J. Hoffman, “Thermal, stress, and Thermo-Optic effects in high average power double-clad Silica fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 37(2), 207–217 (2001).
[Crossref]

2000 (1)

Alam, S.

Ballato, J.

A. E. Siegman, Y. Chen, V. Sudesh, M. C. Richardson, M. Bass, P. Foy, W. Hawkins, and J. Ballato, “Confined propagation and near single-mode laser oscillation in a gain-guided, index antiguided optical fiber,” Appl. Phys. Lett. 89(25), 251101 (2006).
[Crossref]

Barty, C. P. J.

Barua, P.

Bass, M.

Y. Chen, T. McComb, V. Sudesh, M. Richardson, and M. Bass, “Very large-core, single-mode, gain-guided, index-antiguided fiber lasers,” Opt. Lett. 32(17), 2505–2507 (2007).
[Crossref] [PubMed]

A. E. Siegman, Y. Chen, V. Sudesh, M. C. Richardson, M. Bass, P. Foy, W. Hawkins, and J. Ballato, “Confined propagation and near single-mode laser oscillation in a gain-guided, index antiguided optical fiber,” Appl. Phys. Lett. 89(25), 251101 (2006).
[Crossref]

Beach, R. J.

Birge, J. R.

Brown, D.

D. Brown and H. J. Hoffman, “Thermal, stress, and Thermo-Optic effects in high average power double-clad Silica fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 37(2), 207–217 (2001).
[Crossref]

Cao, J.

L. Kong, J. Cao, S. Guo, Z. Jiang, and Q. Lu, “Thermal-induced transverse-mode evolution in thermally guiding index-antiguided-core fiber,” Appl. Opt. 55(5), 1183–1189 (2016).
[Crossref] [PubMed]

J. Cao, S. Guo, X. Xu, J. Chen, and Q. Lu, “Investigation on power scalability of diffraction-limited Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 373–383 (2014).
[Crossref]

Cao, J. Q.

J. Q. Cao, W. B. Liu, J. B. Chen, and Q. S. Lu, “Modeling the single-mode thermally guiding very-large-mode-area Yb-doped fiber amplifier,” Wuli Xuebao 66(6), 64201 (2017).

Chang, G.

Chen, H. W.

Chen, J.

J. Cao, S. Guo, X. Xu, J. Chen, and Q. Lu, “Investigation on power scalability of diffraction-limited Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 373–383 (2014).
[Crossref]

Chen, J. B.

J. Q. Cao, W. B. Liu, J. B. Chen, and Q. S. Lu, “Modeling the single-mode thermally guiding very-large-mode-area Yb-doped fiber amplifier,” Wuli Xuebao 66(6), 64201 (2017).

Chen, L. J.

Chen, Y.

Y. Chen, T. McComb, V. Sudesh, M. Richardson, and M. Bass, “Very large-core, single-mode, gain-guided, index-antiguided fiber lasers,” Opt. Lett. 32(17), 2505–2507 (2007).
[Crossref] [PubMed]

A. E. Siegman, Y. Chen, V. Sudesh, M. C. Richardson, M. Bass, P. Foy, W. Hawkins, and J. Ballato, “Confined propagation and near single-mode laser oscillation in a gain-guided, index antiguided optical fiber,” Appl. Phys. Lett. 89(25), 251101 (2006).
[Crossref]

Dajani, I.

Dawson, J. W.

Dong, L.

Eberhardt, R.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
[Crossref]

Eidam, T.

Foy, P.

A. E. Siegman, Y. Chen, V. Sudesh, M. C. Richardson, M. Bass, P. Foy, W. Hawkins, and J. Ballato, “Confined propagation and near single-mode laser oscillation in a gain-guided, index antiguided optical fiber,” Appl. Phys. Lett. 89(25), 251101 (2006).
[Crossref]

Galvanauskas, A.

Goldberg, L.

Guo, S.

L. Kong, J. Cao, S. Guo, Z. Jiang, and Q. Lu, “Thermal-induced transverse-mode evolution in thermally guiding index-antiguided-core fiber,” Appl. Opt. 55(5), 1183–1189 (2016).
[Crossref] [PubMed]

J. Cao, S. Guo, X. Xu, J. Chen, and Q. Lu, “Investigation on power scalability of diffraction-limited Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 373–383 (2014).
[Crossref]

Hawkins, W.

A. E. Siegman, Y. Chen, V. Sudesh, M. C. Richardson, M. Bass, P. Foy, W. Hawkins, and J. Ballato, “Confined propagation and near single-mode laser oscillation in a gain-guided, index antiguided optical fiber,” Appl. Phys. Lett. 89(25), 251101 (2006).
[Crossref]

Heebner, J. E.

Hoffman, H. J.

D. Brown and H. J. Hoffman, “Thermal, stress, and Thermo-Optic effects in high average power double-clad Silica fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 37(2), 207–217 (2001).
[Crossref]

Jain, D.

Jansen, F.

Jauregui, C.

Jiang, Z.

Jing, F.

J. Li, J. Wang, and F. Jing, “Improvement of coiling mode to suppress higher-order-modes by considering mode coupling for large-mode-area fiber laser,” J. Electromagn. Waves Appl. 24(8–9), 1113–1124 (2010).
[Crossref]

Jung, Y.

Kärtner, F. X.

Kliner, D. A.

Klingebiel, S.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
[Crossref]

Kong, L.

Koplow, J. P.

Li, J.

J. Li, J. Wang, and F. Jing, “Improvement of coiling mode to suppress higher-order-modes by considering mode coupling for large-mode-area fiber laser,” J. Electromagn. Waves Appl. 24(8–9), 1113–1124 (2010).
[Crossref]

L. Dong, J. Li, and X. Peng, “Bend-resistant fundamental mode operation in ytterbium-doped leakage channel fibers with effective areas up to 3160 µm2,” Opt. Express 14(24), 11512–11519 (2006).
[Crossref] [PubMed]

Liem, A.

Limpert, J.

F. Jansen, F. Stutzki, H.-J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “High-power thermally guiding index-antiguiding-core fibers,” Opt. Lett. 38(4), 510–512 (2013).
[Crossref] [PubMed]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), e8 (2012).
[Crossref]

F. Jansen, F. Stutzki, H. J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express 20(4), 3997–4008 (2012).
[Crossref] [PubMed]

F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power large-pitch fiber amplifier with robust single-mode operation,” Opt. Lett. 36(5), 689–691 (2011).
[Crossref] [PubMed]

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
[Crossref]

Liu, C. H.

Liu, W. B.

J. Q. Cao, W. B. Liu, J. B. Chen, and Q. S. Lu, “Modeling the single-mode thermally guiding very-large-mode-area Yb-doped fiber amplifier,” Wuli Xuebao 66(6), 64201 (2017).

Lu, Q.

L. Kong, J. Cao, S. Guo, Z. Jiang, and Q. Lu, “Thermal-induced transverse-mode evolution in thermally guiding index-antiguided-core fiber,” Appl. Opt. 55(5), 1183–1189 (2016).
[Crossref] [PubMed]

J. Cao, S. Guo, X. Xu, J. Chen, and Q. Lu, “Investigation on power scalability of diffraction-limited Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 373–383 (2014).
[Crossref]

Lu, Q. S.

J. Q. Cao, W. B. Liu, J. B. Chen, and Q. S. Lu, “Modeling the single-mode thermally guiding very-large-mode-area Yb-doped fiber amplifier,” Wuli Xuebao 66(6), 64201 (2017).

McComb, T.

McLaughlin, J. M.

Messerly, M. J.

Nilsson, J.

J. Nilsson and D. N. Payne, “High-power fiber lasers,” Science 332(6032), 921–922 (2011).
[Crossref] [PubMed]

Otto, H. J.

Otto, H.-J.

F. Jansen, F. Stutzki, H.-J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “High-power thermally guiding index-antiguiding-core fibers,” Opt. Lett. 38(4), 510–512 (2013).
[Crossref] [PubMed]

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), e8 (2012).
[Crossref]

Pax, P. H.

Payne, D. N.

J. Nilsson and D. N. Payne, “High-power fiber lasers,” Science 332(6032), 921–922 (2011).
[Crossref] [PubMed]

Peng, X.

Peschel, T.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
[Crossref]

Richardson, M.

Richardson, M. C.

A. E. Siegman, Y. Chen, V. Sudesh, M. C. Richardson, M. Bass, P. Foy, W. Hawkins, and J. Ballato, “Confined propagation and near single-mode laser oscillation in a gain-guided, index antiguided optical fiber,” Appl. Phys. Lett. 89(25), 251101 (2006).
[Crossref]

Robin, C.

Röser, F.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
[Crossref]

Sahu, J. K.

Schermer, R. T.

Schreiber, T.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
[Crossref]

Shverdin, M. Y.

Siders, C. W.

Siegman, A. E.

A. E. Siegman, Y. Chen, V. Sudesh, M. C. Richardson, M. Bass, P. Foy, W. Hawkins, and J. Ballato, “Confined propagation and near single-mode laser oscillation in a gain-guided, index antiguided optical fiber,” Appl. Phys. Lett. 89(25), 251101 (2006).
[Crossref]

Smith, A. V.

Smith, J. J.

Sosnowski, T.

Sridharan, A. K.

Stappaerts, E. A.

Steinmetz, A.

Stutzki, F.

Sudesh, V.

Y. Chen, T. McComb, V. Sudesh, M. Richardson, and M. Bass, “Very large-core, single-mode, gain-guided, index-antiguided fiber lasers,” Opt. Lett. 32(17), 2505–2507 (2007).
[Crossref] [PubMed]

A. E. Siegman, Y. Chen, V. Sudesh, M. C. Richardson, M. Bass, P. Foy, W. Hawkins, and J. Ballato, “Confined propagation and near single-mode laser oscillation in a gain-guided, index antiguided optical fiber,” Appl. Phys. Lett. 89(25), 251101 (2006).
[Crossref]

Tünnermann, A.

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

F. Jansen, F. Stutzki, H.-J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “High-power thermally guiding index-antiguiding-core fibers,” Opt. Lett. 38(4), 510–512 (2013).
[Crossref] [PubMed]

F. Jansen, F. Stutzki, H. J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express 20(4), 3997–4008 (2012).
[Crossref] [PubMed]

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), e8 (2012).
[Crossref]

F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power large-pitch fiber amplifier with robust single-mode operation,” Opt. Lett. 36(5), 689–691 (2011).
[Crossref] [PubMed]

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
[Crossref]

Wang, J.

J. Li, J. Wang, and F. Jing, “Improvement of coiling mode to suppress higher-order-modes by considering mode coupling for large-mode-area fiber laser,” J. Electromagn. Waves Appl. 24(8–9), 1113–1124 (2010).
[Crossref]

Ward, B.

Wirth, C.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
[Crossref]

Wong, W. S.

Xu, X.

J. Cao, S. Guo, X. Xu, J. Chen, and Q. Lu, “Investigation on power scalability of diffraction-limited Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 373–383 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. E. Siegman, Y. Chen, V. Sudesh, M. C. Richardson, M. Bass, P. Foy, W. Hawkins, and J. Ballato, “Confined propagation and near single-mode laser oscillation in a gain-guided, index antiguided optical fiber,” Appl. Phys. Lett. 89(25), 251101 (2006).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
[Crossref]

J. Cao, S. Guo, X. Xu, J. Chen, and Q. Lu, “Investigation on power scalability of diffraction-limited Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 373–383 (2014).
[Crossref]

D. Brown and H. J. Hoffman, “Thermal, stress, and Thermo-Optic effects in high average power double-clad Silica fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 37(2), 207–217 (2001).
[Crossref]

J. Electromagn. Waves Appl. (1)

J. Li, J. Wang, and F. Jing, “Improvement of coiling mode to suppress higher-order-modes by considering mode coupling for large-mode-area fiber laser,” J. Electromagn. Waves Appl. 24(8–9), 1113–1124 (2010).
[Crossref]

Light Sci. Appl. (1)

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), e8 (2012).
[Crossref]

Nat. Photonics (1)

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Opt. Express (9)

R. T. Schermer, “Mode scalability in bent optical fibers,” Opt. Express 15(24), 15674–15701 (2007).
[Crossref] [PubMed]

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
[Crossref] [PubMed]

H. W. Chen, T. Sosnowski, C. H. Liu, L. J. Chen, J. R. Birge, A. Galvanauskas, F. X. Kärtner, and G. Chang, “Chirally-coupled-core Yb-fiber laser delivering 80-fs pulses with diffraction-limited beam quality warranted by a high-dispersion mirror based compressor,” Opt. Express 18(24), 24699–24705 (2010).
[Crossref] [PubMed]

L. Dong, “Thermal lensing in optical fibers,” Opt. Express 24(17), 19841–19852 (2016).
[Crossref] [PubMed]

L. Dong, J. Li, and X. Peng, “Bend-resistant fundamental mode operation in ytterbium-doped leakage channel fibers with effective areas up to 3160 µm2,” Opt. Express 14(24), 11512–11519 (2006).
[Crossref] [PubMed]

A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
[Crossref] [PubMed]

F. Jansen, F. Stutzki, H. J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express 20(4), 3997–4008 (2012).
[Crossref] [PubMed]

B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express 20(10), 11407–11422 (2012).
[Crossref] [PubMed]

D. Jain, Y. Jung, P. Barua, S. Alam, and J. K. Sahu, “Demonstration of ultra-low NA rare-earth doped step index fiber for applications in high power fiber lasers,” Opt. Express 23(6), 7407–7415 (2015).
[Crossref] [PubMed]

Opt. Lett. (5)

Science (1)

J. Nilsson and D. N. Payne, “High-power fiber lasers,” Science 332(6032), 921–922 (2011).
[Crossref] [PubMed]

Wuli Xuebao (1)

J. Q. Cao, W. B. Liu, J. B. Chen, and Q. S. Lu, “Modeling the single-mode thermally guiding very-large-mode-area Yb-doped fiber amplifier,” Wuli Xuebao 66(6), 64201 (2017).

Other (3)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices Part 1: Adiabaticity criteria,” IEEE Proceedings J. 138(5), 343–354 (1991).
[Crossref]

F. Kong, T. Hawkins, M. Jones, J. Parsons, M. Kalichevsky-Dong, C. Dunn, and L. Dong, “Ytterbium-doped 30/400 LMA Fibers with a recorded-low ~NA of 0.028,” in CLEO: Science and Innovations, OSA Technical Digest Series (CD) (Optical Society of America, 2016), paper SM2Q–2.

C. H. Liu, G. Chang, N. Litchinitser, D. Guertin, N. Jacobsen, and K. Tankala, “Chirally Coupled Core Fibers at 1550-nm and 1064-nm for Effectively Single-Mode Core Size Scaling,” in CLEO: Lasers and Electro-Optics, OSA Technical Digest Series (CD) (Optical Society of America, 2007) paper 1–2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Plots of the coefficient C'12 (a), beat length zb (b), filling factor (c) and value of (C'12 zb)−1 (d) via the thermal load Q corresponding to the 0 (blue), 10−5(pink), 5 × 10−5 (green) and 10−4 (red)-Δn0. The inset in (b) gives the zoom-in plots of (b). In (c), the solid lines mark the values of LP01 modes and the dashed lines mark the values of LP02 modes. The intensity of mode fields corresponding to various thermal loads Q is given in (e).
Fig. 2
Fig. 2 The variation of local minimum value of (C'12 zb)−1 (a) and the pertinent Qmin value (b) via Δn0
Fig. 3
Fig. 3 Diagrams of typical radial effective refractive index and optical fields of LP01 and LP11o/e modes in three evolution stages (a) stage 1, Q = 3W/m; (b) stage 2, Q = 15W/m; (c) stage 3, Q = 40W/m. The pink dashed lines show the effective refractive index of LP01 mode and the white dashed lines show the boundary of fiber core.
Fig. 4
Fig. 4 The variations of the thermal load boundaries between three stages S1, S2, and S3 of LP01 (a) and LP11o/e (b & c) modes via Δn0
Fig. 5
Fig. 5 The value of (C'01 zb)−1 corresponding to the coupling of LP01 and LP11o (a)-(c) and LP11e (d)-(f) with 60 (red line), 80 (blue line), and 100-cm (green line) bend radius corresponding to 0 (a, d); 5 × 10−5 (b, e) and 10−4 (c, f) Δn0. The local minimum values of (C'01 zb)−1 in (d)-(f) are 1.35, 1.02 and 0.09 m−1, the pertinent Qmin are 10, 14 and 17W/m corresponding to 0, 5 × 10−5 and 10−4 -Δn0 with 60cm-bend radius R.
Fig. 6
Fig. 6 The value of (C'12 zb)−1 (a-c) and filling factor (d-f) with 40 (yellow line), 60 (green line) and 80-um (pink line) core diameter corresponding to 0 (a, d); 5 × 10−5 (b, e) and 10−4 (c, f)-Δn0. and pertinent filling factor.
Fig. 7
Fig. 7 The value of (C'12 zb)−1(a-c) and filling factor (d-f) with 130 (blue line), 170 (green line) and 250-um (red line) core diameter corresponding to 0 (a, d); 5 × 10−5 (b, e) and 10−4 (c, f)-Δn0. The local minimum value of (C'01 zb)−1 in (a)-(c) are 11, 5, and 4 m−1, pertinent Qmin are 2, 5 and 7 W/m corresponding to 250μm cladding diameter.
Fig. 8
Fig. 8 The value of (C'01 zb)−1 with 40 (yellow line), 60 (green line) and 80-um (pink line) core diameter corresponding to 60cm (a), 80cm (b), 100-cm (c) bend radius R. The local minimum value of (C'01 zb)−1 in (a)-(c) are 1.5, 5 and 3 m−1, the pertinent Qmin are 10, 11 and 13W/m respectively, corresponding to 40um core diameter.
Fig. 9
Fig. 9 The value of (C'01 zb)−1 with 100 (blue line), 130 (green line) and 170-um (red line) cladding diameter corresponding to 60 (a), 80 (b), 100-cm (c) bend radius R. The local minimum values of (C'01 zb)−1 in (a)-(c) are 1, 2 and 3 m−1, the pertinent Qmin are 14, 11 and 10 W/m respectively, corresponding to 170um cladding diameter.

Tables (2)

Tables Icon

Table 1 Parameters of the TG VLMA fiber.

Tables Icon

Table 2 The evolution boundaries of each mode in the four regions.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

| C jm z b |1
| C jm |= 1 2 k 2 β j β m 1 | β j β m | A | n 2 z | ψ j ψ m dA A ψ j 2 dA A ψ m 2 dA
n 2 z = ( n 0 +Δn ) 2 z 2 n 0 Δn z = 2 n 0 Δn Q Q z
Q( z )=Δ P p ( z )×( 1 λ p / λ s ) α p [ P p0 + e α p z + P p0 e α p ( Lz ) ]( 1 λ p / λ s )
| C jm |= k 2 β j β m 1 | β j β m | α p | P p0 + e α p z P p0 e α p ( Lz ) | [ P p0 + e α p z + P p0 e α p ( Lz ) ] A n 0 Δn ψ j ψ m dA A ψ j 2 dA A ψ m 2 dA Γ p C jm
Γ p = α p | P p0 + e α p z P p0 e α p ( Lz ) | [ P p0 + e α p z + P p0 e α p ( Lz ) ]
C jm = k 2 β j β m 1 | β j β m | A n 0 Δn ψ j ψ m dA A ψ j 2 dA A ψ m 2 dA
Γ p α p
| C jm | α p C jm
α p ( C jm z b ) -1
n 2 z 2 n 0 ( 1+ x 1.27R ) Δn z

Metrics