Abstract

Achieving strong absorption of low-energy photons is one of the key issues to demonstrate quantum dot solar cells working in the intermediate band regime at practical concentration factors and operating temperatures. Guided-mode resonance effects may enable large enhancement of quantum dot intraband optical transitions. We propose quantum dot thin-film cells designed to have significant field waveguiding in the quantum dot stack region and patterned at the rear-side with a sub-wavelength diffraction grating. Remarkable increase of the optical path length at mid-infrared wavelengths is shown owing to guided-mode resonances. Design guidelines are presented for energy and strength of the second-photon absorption for III-V quantum dots, such as InAs/GaAs and GaSb/GaAs, whose intraband and intersubband transitions roughly extends over the 2 − 8 µm range. The proposed design can also be applied to quantum dot infrared detectors. Angle-selectivity is discussed in view of applications in concentrator photovoltaic systems and infrared imaging systems.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Theory of plasmonic quantum-dot-based intermediate band solar cells

Sina Foroutan and Hamed Baghban
Appl. Opt. 55(13) 3405-3412 (2016)

GaAsSb spacer effect in quasi-type-II InAs coupled-QDs for intraband absorption enhancement

David Jui-Yang Feng, Yen-Ju Lin, Yun-Cheng Ku, Han-Yun Jhang, Tzy-Rong Lin, and Mao-Kuen Kuo
Opt. Mater. Express 7(4) 1351-1364 (2017)

Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings

Yun-Chih Lee, Chian-Fu Huang, Jenq-Yang Chang, and Mount-Learn Wu
Opt. Express 16(11) 7969-7975 (2008)

References

  • View by:
  • |
  • |
  • |

  1. A. Luque and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78, 5014–5017 (1997).
    [Crossref]
  2. A. Luque and A. Marti, “The intermediate band solar cell: progress toward the realization of an attractive concept,” Adv. Mater. 22, 160–174 (2010).
    [Crossref] [PubMed]
  3. Y. Okada, N. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. Phillips, D. Farrell, K. Yoshida, and et al.., “Intermediate band solar cells: Recent progress and future directions,” Appl. Phys. Rev. 2, 021302 (2015).
    [Crossref]
  4. A. Mellor, A. Luque, I. Tobías, and A. Martí, “The feasibility of high-efficiency inas/gaas quantum dot intermediate band solar cells,” Sol. Energy Mater Sol. Cells 130, 225–233 (2014).
    [Crossref]
  5. S. Turner, S. Mokkapati, G. Jolley, L. Fu, H. H. Tan, and C. Jagadish, “Periodic dielectric structures for light-trapping in ingaas/gaas quantum well solar cells,” Opt. Express 21, A324–A335 (2013).
    [Crossref] [PubMed]
  6. A. Musu, F. Cappelluti, T. Aho, V. Polojärvi, T. K. Niemi, and M. Guina, “Nanostructures for light management in thin-film gaas quantum dot solar cells,” in “Solid-State Lighting,” (Optical Society of America, 2016), pp. JW4A45.
  7. B. L. Smith, M. A. Slocum, Z. S. Bittner, Y. Dai, G. T. Nelson, S. D. Hellstroem, R. Tatavarti, and S. M. Hubbard, “Inverted growth evaluation for epitaxial lift off (elo) quantum dot solar cell and enhanced absorption by back surface texturing,” in “Photovoltaic Specialists Conference (PVSC), 2016 IEEE 43rd,” (IEEE, 2016), pp. 1276–1281.
  8. H. Feng Lu, S. Mokkapati, L. Fu, G. Jolley, H. Hoe Tan, and C. Jagadish, “Plasmonic quantum dot solar cells for enhanced infrared response,” Appl. Phys. Lett. 100, 103505 (2012).
    [Crossref]
  9. F. Cappelluti, D. Kim, M. van Eerden, A. Cédola, T. Aho, G. Bissels, F. Elsehrawy, J. Wu, H. Liu, and P. Mulder, “Light-trapping enhanced thin-film iii-v quantum dot solar cells fabricated by epitaxial lift-off,” Sol. Energy Mater Sol. Cells (in press) (2018).
    [Crossref]
  10. A. Mellor, I. Tobías, A. Martí, and A. Luque, “A numerical study of bi-periodic binary diffraction gratings for solar cell applications,” Sol. Energy Mater Sol. Cells 95, 3527–3535 (2011).
    [Crossref]
  11. S. Wang, M. Moharam, R. Magnusson, and J. Bagby, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” JOSA A 7, 1470–1474 (1990).
    [Crossref]
  12. Y.-C. Lee, C.-F. Huang, J.-Y. Chang, and M.-L. Wu, “Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings,” Opt. Express 16, 7969–7975 (2008).
    [Crossref] [PubMed]
  13. T. Khaleque and R. Magnusson, “Light management through guided-mode resonances in thin-film silicon solar cells,” J Nanophotonics 8, 083995 (2014).
    [Crossref]
  14. C.-C. Wang and S.-D. Lin, “Resonant cavity-enhanced quantum-dot infrared photodetectors with sub-wavelength grating mirror,” J. Appl. Phys. 113, 213108 (2013).
    [Crossref]
  15. J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. Kontio, A. Turtiainen, T. Niemi, and et al.., “Nanostructured broadband antireflection coatings on alinp fabricated by nanoimprint lithography,” Sol. Energy Mater Sol. Cells 94, 1845–1848 (2010).
    [Crossref]
  16. E. E. Perl, W. E. McMahon, J. E. Bowers, and D. J. Friedman, “Design of antireflective nanostructures and optical coatings for next-generation multijunction photovoltaic devices,” Opt. Express 22, A1243–A1256 (2014).
    [Crossref] [PubMed]
  17. Y. Harada, T. Maeda, and T. Kita, “Intraband carrier dynamics in inas/gaas quantum dots stimulated by bound-to-continuum excitation,” J. Appl. Phys. 113, 223511 (2013).
    [Crossref]
  18. E. D. Palik, Handbook of Optical Constants of Solids, vol. 3 (Academic press, 1998).
  19. M. V. C. Synopsys Inc., “Rsoft Diffractmod User Guide,” v2016.09 (2016).

2015 (1)

Y. Okada, N. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. Phillips, D. Farrell, K. Yoshida, and et al.., “Intermediate band solar cells: Recent progress and future directions,” Appl. Phys. Rev. 2, 021302 (2015).
[Crossref]

2014 (3)

A. Mellor, A. Luque, I. Tobías, and A. Martí, “The feasibility of high-efficiency inas/gaas quantum dot intermediate band solar cells,” Sol. Energy Mater Sol. Cells 130, 225–233 (2014).
[Crossref]

T. Khaleque and R. Magnusson, “Light management through guided-mode resonances in thin-film silicon solar cells,” J Nanophotonics 8, 083995 (2014).
[Crossref]

E. E. Perl, W. E. McMahon, J. E. Bowers, and D. J. Friedman, “Design of antireflective nanostructures and optical coatings for next-generation multijunction photovoltaic devices,” Opt. Express 22, A1243–A1256 (2014).
[Crossref] [PubMed]

2013 (3)

S. Turner, S. Mokkapati, G. Jolley, L. Fu, H. H. Tan, and C. Jagadish, “Periodic dielectric structures for light-trapping in ingaas/gaas quantum well solar cells,” Opt. Express 21, A324–A335 (2013).
[Crossref] [PubMed]

Y. Harada, T. Maeda, and T. Kita, “Intraband carrier dynamics in inas/gaas quantum dots stimulated by bound-to-continuum excitation,” J. Appl. Phys. 113, 223511 (2013).
[Crossref]

C.-C. Wang and S.-D. Lin, “Resonant cavity-enhanced quantum-dot infrared photodetectors with sub-wavelength grating mirror,” J. Appl. Phys. 113, 213108 (2013).
[Crossref]

2012 (1)

H. Feng Lu, S. Mokkapati, L. Fu, G. Jolley, H. Hoe Tan, and C. Jagadish, “Plasmonic quantum dot solar cells for enhanced infrared response,” Appl. Phys. Lett. 100, 103505 (2012).
[Crossref]

2011 (1)

A. Mellor, I. Tobías, A. Martí, and A. Luque, “A numerical study of bi-periodic binary diffraction gratings for solar cell applications,” Sol. Energy Mater Sol. Cells 95, 3527–3535 (2011).
[Crossref]

2010 (2)

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. Kontio, A. Turtiainen, T. Niemi, and et al.., “Nanostructured broadband antireflection coatings on alinp fabricated by nanoimprint lithography,” Sol. Energy Mater Sol. Cells 94, 1845–1848 (2010).
[Crossref]

A. Luque and A. Marti, “The intermediate band solar cell: progress toward the realization of an attractive concept,” Adv. Mater. 22, 160–174 (2010).
[Crossref] [PubMed]

2008 (1)

1997 (1)

A. Luque and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78, 5014–5017 (1997).
[Crossref]

1990 (1)

S. Wang, M. Moharam, R. Magnusson, and J. Bagby, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” JOSA A 7, 1470–1474 (1990).
[Crossref]

Aho, A.

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. Kontio, A. Turtiainen, T. Niemi, and et al.., “Nanostructured broadband antireflection coatings on alinp fabricated by nanoimprint lithography,” Sol. Energy Mater Sol. Cells 94, 1845–1848 (2010).
[Crossref]

Aho, T.

A. Musu, F. Cappelluti, T. Aho, V. Polojärvi, T. K. Niemi, and M. Guina, “Nanostructures for light management in thin-film gaas quantum dot solar cells,” in “Solid-State Lighting,” (Optical Society of America, 2016), pp. JW4A45.

F. Cappelluti, D. Kim, M. van Eerden, A. Cédola, T. Aho, G. Bissels, F. Elsehrawy, J. Wu, H. Liu, and P. Mulder, “Light-trapping enhanced thin-film iii-v quantum dot solar cells fabricated by epitaxial lift-off,” Sol. Energy Mater Sol. Cells (in press) (2018).
[Crossref]

Bagby, J.

S. Wang, M. Moharam, R. Magnusson, and J. Bagby, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” JOSA A 7, 1470–1474 (1990).
[Crossref]

Bissels, G.

F. Cappelluti, D. Kim, M. van Eerden, A. Cédola, T. Aho, G. Bissels, F. Elsehrawy, J. Wu, H. Liu, and P. Mulder, “Light-trapping enhanced thin-film iii-v quantum dot solar cells fabricated by epitaxial lift-off,” Sol. Energy Mater Sol. Cells (in press) (2018).
[Crossref]

Bittner, Z. S.

B. L. Smith, M. A. Slocum, Z. S. Bittner, Y. Dai, G. T. Nelson, S. D. Hellstroem, R. Tatavarti, and S. M. Hubbard, “Inverted growth evaluation for epitaxial lift off (elo) quantum dot solar cell and enhanced absorption by back surface texturing,” in “Photovoltaic Specialists Conference (PVSC), 2016 IEEE 43rd,” (IEEE, 2016), pp. 1276–1281.

Bowers, J. E.

Cappelluti, F.

F. Cappelluti, D. Kim, M. van Eerden, A. Cédola, T. Aho, G. Bissels, F. Elsehrawy, J. Wu, H. Liu, and P. Mulder, “Light-trapping enhanced thin-film iii-v quantum dot solar cells fabricated by epitaxial lift-off,” Sol. Energy Mater Sol. Cells (in press) (2018).
[Crossref]

A. Musu, F. Cappelluti, T. Aho, V. Polojärvi, T. K. Niemi, and M. Guina, “Nanostructures for light management in thin-film gaas quantum dot solar cells,” in “Solid-State Lighting,” (Optical Society of America, 2016), pp. JW4A45.

Cédola, A.

F. Cappelluti, D. Kim, M. van Eerden, A. Cédola, T. Aho, G. Bissels, F. Elsehrawy, J. Wu, H. Liu, and P. Mulder, “Light-trapping enhanced thin-film iii-v quantum dot solar cells fabricated by epitaxial lift-off,” Sol. Energy Mater Sol. Cells (in press) (2018).
[Crossref]

Chang, J.-Y.

Dai, Y.

B. L. Smith, M. A. Slocum, Z. S. Bittner, Y. Dai, G. T. Nelson, S. D. Hellstroem, R. Tatavarti, and S. M. Hubbard, “Inverted growth evaluation for epitaxial lift off (elo) quantum dot solar cell and enhanced absorption by back surface texturing,” in “Photovoltaic Specialists Conference (PVSC), 2016 IEEE 43rd,” (IEEE, 2016), pp. 1276–1281.

Ekins-Daukes, N.

Y. Okada, N. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. Phillips, D. Farrell, K. Yoshida, and et al.., “Intermediate band solar cells: Recent progress and future directions,” Appl. Phys. Rev. 2, 021302 (2015).
[Crossref]

Elsehrawy, F.

F. Cappelluti, D. Kim, M. van Eerden, A. Cédola, T. Aho, G. Bissels, F. Elsehrawy, J. Wu, H. Liu, and P. Mulder, “Light-trapping enhanced thin-film iii-v quantum dot solar cells fabricated by epitaxial lift-off,” Sol. Energy Mater Sol. Cells (in press) (2018).
[Crossref]

Farrell, D.

Y. Okada, N. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. Phillips, D. Farrell, K. Yoshida, and et al.., “Intermediate band solar cells: Recent progress and future directions,” Appl. Phys. Rev. 2, 021302 (2015).
[Crossref]

Feng Lu, H.

H. Feng Lu, S. Mokkapati, L. Fu, G. Jolley, H. Hoe Tan, and C. Jagadish, “Plasmonic quantum dot solar cells for enhanced infrared response,” Appl. Phys. Lett. 100, 103505 (2012).
[Crossref]

Friedman, D. J.

Fu, L.

S. Turner, S. Mokkapati, G. Jolley, L. Fu, H. H. Tan, and C. Jagadish, “Periodic dielectric structures for light-trapping in ingaas/gaas quantum well solar cells,” Opt. Express 21, A324–A335 (2013).
[Crossref] [PubMed]

H. Feng Lu, S. Mokkapati, L. Fu, G. Jolley, H. Hoe Tan, and C. Jagadish, “Plasmonic quantum dot solar cells for enhanced infrared response,” Appl. Phys. Lett. 100, 103505 (2012).
[Crossref]

Guina, M.

A. Musu, F. Cappelluti, T. Aho, V. Polojärvi, T. K. Niemi, and M. Guina, “Nanostructures for light management in thin-film gaas quantum dot solar cells,” in “Solid-State Lighting,” (Optical Society of America, 2016), pp. JW4A45.

Harada, Y.

Y. Harada, T. Maeda, and T. Kita, “Intraband carrier dynamics in inas/gaas quantum dots stimulated by bound-to-continuum excitation,” J. Appl. Phys. 113, 223511 (2013).
[Crossref]

Hellstroem, S. D.

B. L. Smith, M. A. Slocum, Z. S. Bittner, Y. Dai, G. T. Nelson, S. D. Hellstroem, R. Tatavarti, and S. M. Hubbard, “Inverted growth evaluation for epitaxial lift off (elo) quantum dot solar cell and enhanced absorption by back surface texturing,” in “Photovoltaic Specialists Conference (PVSC), 2016 IEEE 43rd,” (IEEE, 2016), pp. 1276–1281.

Hess, O.

Y. Okada, N. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. Phillips, D. Farrell, K. Yoshida, and et al.., “Intermediate band solar cells: Recent progress and future directions,” Appl. Phys. Rev. 2, 021302 (2015).
[Crossref]

Hoe Tan, H.

H. Feng Lu, S. Mokkapati, L. Fu, G. Jolley, H. Hoe Tan, and C. Jagadish, “Plasmonic quantum dot solar cells for enhanced infrared response,” Appl. Phys. Lett. 100, 103505 (2012).
[Crossref]

Huang, C.-F.

Hubbard, S. M.

B. L. Smith, M. A. Slocum, Z. S. Bittner, Y. Dai, G. T. Nelson, S. D. Hellstroem, R. Tatavarti, and S. M. Hubbard, “Inverted growth evaluation for epitaxial lift off (elo) quantum dot solar cell and enhanced absorption by back surface texturing,” in “Photovoltaic Specialists Conference (PVSC), 2016 IEEE 43rd,” (IEEE, 2016), pp. 1276–1281.

Jagadish, C.

S. Turner, S. Mokkapati, G. Jolley, L. Fu, H. H. Tan, and C. Jagadish, “Periodic dielectric structures for light-trapping in ingaas/gaas quantum well solar cells,” Opt. Express 21, A324–A335 (2013).
[Crossref] [PubMed]

H. Feng Lu, S. Mokkapati, L. Fu, G. Jolley, H. Hoe Tan, and C. Jagadish, “Plasmonic quantum dot solar cells for enhanced infrared response,” Appl. Phys. Lett. 100, 103505 (2012).
[Crossref]

Jolley, G.

S. Turner, S. Mokkapati, G. Jolley, L. Fu, H. H. Tan, and C. Jagadish, “Periodic dielectric structures for light-trapping in ingaas/gaas quantum well solar cells,” Opt. Express 21, A324–A335 (2013).
[Crossref] [PubMed]

H. Feng Lu, S. Mokkapati, L. Fu, G. Jolley, H. Hoe Tan, and C. Jagadish, “Plasmonic quantum dot solar cells for enhanced infrared response,” Appl. Phys. Lett. 100, 103505 (2012).
[Crossref]

Khaleque, T.

T. Khaleque and R. Magnusson, “Light management through guided-mode resonances in thin-film silicon solar cells,” J Nanophotonics 8, 083995 (2014).
[Crossref]

Kim, D.

F. Cappelluti, D. Kim, M. van Eerden, A. Cédola, T. Aho, G. Bissels, F. Elsehrawy, J. Wu, H. Liu, and P. Mulder, “Light-trapping enhanced thin-film iii-v quantum dot solar cells fabricated by epitaxial lift-off,” Sol. Energy Mater Sol. Cells (in press) (2018).
[Crossref]

Kita, T.

Y. Okada, N. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. Phillips, D. Farrell, K. Yoshida, and et al.., “Intermediate band solar cells: Recent progress and future directions,” Appl. Phys. Rev. 2, 021302 (2015).
[Crossref]

Y. Harada, T. Maeda, and T. Kita, “Intraband carrier dynamics in inas/gaas quantum dots stimulated by bound-to-continuum excitation,” J. Appl. Phys. 113, 223511 (2013).
[Crossref]

Kontio, J.

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. Kontio, A. Turtiainen, T. Niemi, and et al.., “Nanostructured broadband antireflection coatings on alinp fabricated by nanoimprint lithography,” Sol. Energy Mater Sol. Cells 94, 1845–1848 (2010).
[Crossref]

Lee, Y.-C.

Lin, S.-D.

C.-C. Wang and S.-D. Lin, “Resonant cavity-enhanced quantum-dot infrared photodetectors with sub-wavelength grating mirror,” J. Appl. Phys. 113, 213108 (2013).
[Crossref]

Liu, H.

F. Cappelluti, D. Kim, M. van Eerden, A. Cédola, T. Aho, G. Bissels, F. Elsehrawy, J. Wu, H. Liu, and P. Mulder, “Light-trapping enhanced thin-film iii-v quantum dot solar cells fabricated by epitaxial lift-off,” Sol. Energy Mater Sol. Cells (in press) (2018).
[Crossref]

Luque, A.

A. Mellor, A. Luque, I. Tobías, and A. Martí, “The feasibility of high-efficiency inas/gaas quantum dot intermediate band solar cells,” Sol. Energy Mater Sol. Cells 130, 225–233 (2014).
[Crossref]

A. Mellor, I. Tobías, A. Martí, and A. Luque, “A numerical study of bi-periodic binary diffraction gratings for solar cell applications,” Sol. Energy Mater Sol. Cells 95, 3527–3535 (2011).
[Crossref]

A. Luque and A. Marti, “The intermediate band solar cell: progress toward the realization of an attractive concept,” Adv. Mater. 22, 160–174 (2010).
[Crossref] [PubMed]

A. Luque and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78, 5014–5017 (1997).
[Crossref]

Maeda, T.

Y. Harada, T. Maeda, and T. Kita, “Intraband carrier dynamics in inas/gaas quantum dots stimulated by bound-to-continuum excitation,” J. Appl. Phys. 113, 223511 (2013).
[Crossref]

Magnusson, R.

T. Khaleque and R. Magnusson, “Light management through guided-mode resonances in thin-film silicon solar cells,” J Nanophotonics 8, 083995 (2014).
[Crossref]

S. Wang, M. Moharam, R. Magnusson, and J. Bagby, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” JOSA A 7, 1470–1474 (1990).
[Crossref]

Marti, A.

A. Luque and A. Marti, “The intermediate band solar cell: progress toward the realization of an attractive concept,” Adv. Mater. 22, 160–174 (2010).
[Crossref] [PubMed]

Martí, A.

A. Mellor, A. Luque, I. Tobías, and A. Martí, “The feasibility of high-efficiency inas/gaas quantum dot intermediate band solar cells,” Sol. Energy Mater Sol. Cells 130, 225–233 (2014).
[Crossref]

A. Mellor, I. Tobías, A. Martí, and A. Luque, “A numerical study of bi-periodic binary diffraction gratings for solar cell applications,” Sol. Energy Mater Sol. Cells 95, 3527–3535 (2011).
[Crossref]

A. Luque and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78, 5014–5017 (1997).
[Crossref]

McMahon, W. E.

Mellor, A.

A. Mellor, A. Luque, I. Tobías, and A. Martí, “The feasibility of high-efficiency inas/gaas quantum dot intermediate band solar cells,” Sol. Energy Mater Sol. Cells 130, 225–233 (2014).
[Crossref]

A. Mellor, I. Tobías, A. Martí, and A. Luque, “A numerical study of bi-periodic binary diffraction gratings for solar cell applications,” Sol. Energy Mater Sol. Cells 95, 3527–3535 (2011).
[Crossref]

Moharam, M.

S. Wang, M. Moharam, R. Magnusson, and J. Bagby, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” JOSA A 7, 1470–1474 (1990).
[Crossref]

Mokkapati, S.

S. Turner, S. Mokkapati, G. Jolley, L. Fu, H. H. Tan, and C. Jagadish, “Periodic dielectric structures for light-trapping in ingaas/gaas quantum well solar cells,” Opt. Express 21, A324–A335 (2013).
[Crossref] [PubMed]

H. Feng Lu, S. Mokkapati, L. Fu, G. Jolley, H. Hoe Tan, and C. Jagadish, “Plasmonic quantum dot solar cells for enhanced infrared response,” Appl. Phys. Lett. 100, 103505 (2012).
[Crossref]

Mulder, P.

F. Cappelluti, D. Kim, M. van Eerden, A. Cédola, T. Aho, G. Bissels, F. Elsehrawy, J. Wu, H. Liu, and P. Mulder, “Light-trapping enhanced thin-film iii-v quantum dot solar cells fabricated by epitaxial lift-off,” Sol. Energy Mater Sol. Cells (in press) (2018).
[Crossref]

Musu, A.

A. Musu, F. Cappelluti, T. Aho, V. Polojärvi, T. K. Niemi, and M. Guina, “Nanostructures for light management in thin-film gaas quantum dot solar cells,” in “Solid-State Lighting,” (Optical Society of America, 2016), pp. JW4A45.

Nelson, G. T.

B. L. Smith, M. A. Slocum, Z. S. Bittner, Y. Dai, G. T. Nelson, S. D. Hellstroem, R. Tatavarti, and S. M. Hubbard, “Inverted growth evaluation for epitaxial lift off (elo) quantum dot solar cell and enhanced absorption by back surface texturing,” in “Photovoltaic Specialists Conference (PVSC), 2016 IEEE 43rd,” (IEEE, 2016), pp. 1276–1281.

Niemi, T.

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. Kontio, A. Turtiainen, T. Niemi, and et al.., “Nanostructured broadband antireflection coatings on alinp fabricated by nanoimprint lithography,” Sol. Energy Mater Sol. Cells 94, 1845–1848 (2010).
[Crossref]

Niemi, T. K.

A. Musu, F. Cappelluti, T. Aho, V. Polojärvi, T. K. Niemi, and M. Guina, “Nanostructures for light management in thin-film gaas quantum dot solar cells,” in “Solid-State Lighting,” (Optical Society of America, 2016), pp. JW4A45.

Okada, Y.

Y. Okada, N. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. Phillips, D. Farrell, K. Yoshida, and et al.., “Intermediate band solar cells: Recent progress and future directions,” Appl. Phys. Rev. 2, 021302 (2015).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids, vol. 3 (Academic press, 1998).

Perl, E. E.

Phillips, C.

Y. Okada, N. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. Phillips, D. Farrell, K. Yoshida, and et al.., “Intermediate band solar cells: Recent progress and future directions,” Appl. Phys. Rev. 2, 021302 (2015).
[Crossref]

Polojärvi, V.

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. Kontio, A. Turtiainen, T. Niemi, and et al.., “Nanostructured broadband antireflection coatings on alinp fabricated by nanoimprint lithography,” Sol. Energy Mater Sol. Cells 94, 1845–1848 (2010).
[Crossref]

A. Musu, F. Cappelluti, T. Aho, V. Polojärvi, T. K. Niemi, and M. Guina, “Nanostructures for light management in thin-film gaas quantum dot solar cells,” in “Solid-State Lighting,” (Optical Society of America, 2016), pp. JW4A45.

Pusch, A.

Y. Okada, N. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. Phillips, D. Farrell, K. Yoshida, and et al.., “Intermediate band solar cells: Recent progress and future directions,” Appl. Phys. Rev. 2, 021302 (2015).
[Crossref]

Salmi, J.

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. Kontio, A. Turtiainen, T. Niemi, and et al.., “Nanostructured broadband antireflection coatings on alinp fabricated by nanoimprint lithography,” Sol. Energy Mater Sol. Cells 94, 1845–1848 (2010).
[Crossref]

Schramm, A.

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. Kontio, A. Turtiainen, T. Niemi, and et al.., “Nanostructured broadband antireflection coatings on alinp fabricated by nanoimprint lithography,” Sol. Energy Mater Sol. Cells 94, 1845–1848 (2010).
[Crossref]

Slocum, M. A.

B. L. Smith, M. A. Slocum, Z. S. Bittner, Y. Dai, G. T. Nelson, S. D. Hellstroem, R. Tatavarti, and S. M. Hubbard, “Inverted growth evaluation for epitaxial lift off (elo) quantum dot solar cell and enhanced absorption by back surface texturing,” in “Photovoltaic Specialists Conference (PVSC), 2016 IEEE 43rd,” (IEEE, 2016), pp. 1276–1281.

Smith, B. L.

B. L. Smith, M. A. Slocum, Z. S. Bittner, Y. Dai, G. T. Nelson, S. D. Hellstroem, R. Tatavarti, and S. M. Hubbard, “Inverted growth evaluation for epitaxial lift off (elo) quantum dot solar cell and enhanced absorption by back surface texturing,” in “Photovoltaic Specialists Conference (PVSC), 2016 IEEE 43rd,” (IEEE, 2016), pp. 1276–1281.

Tamaki, R.

Y. Okada, N. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. Phillips, D. Farrell, K. Yoshida, and et al.., “Intermediate band solar cells: Recent progress and future directions,” Appl. Phys. Rev. 2, 021302 (2015).
[Crossref]

Tan, H. H.

Tatavarti, R.

B. L. Smith, M. A. Slocum, Z. S. Bittner, Y. Dai, G. T. Nelson, S. D. Hellstroem, R. Tatavarti, and S. M. Hubbard, “Inverted growth evaluation for epitaxial lift off (elo) quantum dot solar cell and enhanced absorption by back surface texturing,” in “Photovoltaic Specialists Conference (PVSC), 2016 IEEE 43rd,” (IEEE, 2016), pp. 1276–1281.

Tobías, I.

A. Mellor, A. Luque, I. Tobías, and A. Martí, “The feasibility of high-efficiency inas/gaas quantum dot intermediate band solar cells,” Sol. Energy Mater Sol. Cells 130, 225–233 (2014).
[Crossref]

A. Mellor, I. Tobías, A. Martí, and A. Luque, “A numerical study of bi-periodic binary diffraction gratings for solar cell applications,” Sol. Energy Mater Sol. Cells 95, 3527–3535 (2011).
[Crossref]

Tommila, J.

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. Kontio, A. Turtiainen, T. Niemi, and et al.., “Nanostructured broadband antireflection coatings on alinp fabricated by nanoimprint lithography,” Sol. Energy Mater Sol. Cells 94, 1845–1848 (2010).
[Crossref]

Tukiainen, A.

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. Kontio, A. Turtiainen, T. Niemi, and et al.., “Nanostructured broadband antireflection coatings on alinp fabricated by nanoimprint lithography,” Sol. Energy Mater Sol. Cells 94, 1845–1848 (2010).
[Crossref]

Turner, S.

Turtiainen, A.

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. Kontio, A. Turtiainen, T. Niemi, and et al.., “Nanostructured broadband antireflection coatings on alinp fabricated by nanoimprint lithography,” Sol. Energy Mater Sol. Cells 94, 1845–1848 (2010).
[Crossref]

van Eerden, M.

F. Cappelluti, D. Kim, M. van Eerden, A. Cédola, T. Aho, G. Bissels, F. Elsehrawy, J. Wu, H. Liu, and P. Mulder, “Light-trapping enhanced thin-film iii-v quantum dot solar cells fabricated by epitaxial lift-off,” Sol. Energy Mater Sol. Cells (in press) (2018).
[Crossref]

Viheriälä, J.

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. Kontio, A. Turtiainen, T. Niemi, and et al.., “Nanostructured broadband antireflection coatings on alinp fabricated by nanoimprint lithography,” Sol. Energy Mater Sol. Cells 94, 1845–1848 (2010).
[Crossref]

Wang, C.-C.

C.-C. Wang and S.-D. Lin, “Resonant cavity-enhanced quantum-dot infrared photodetectors with sub-wavelength grating mirror,” J. Appl. Phys. 113, 213108 (2013).
[Crossref]

Wang, S.

S. Wang, M. Moharam, R. Magnusson, and J. Bagby, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” JOSA A 7, 1470–1474 (1990).
[Crossref]

Wu, J.

F. Cappelluti, D. Kim, M. van Eerden, A. Cédola, T. Aho, G. Bissels, F. Elsehrawy, J. Wu, H. Liu, and P. Mulder, “Light-trapping enhanced thin-film iii-v quantum dot solar cells fabricated by epitaxial lift-off,” Sol. Energy Mater Sol. Cells (in press) (2018).
[Crossref]

Wu, M.-L.

Yoshida, K.

Y. Okada, N. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. Phillips, D. Farrell, K. Yoshida, and et al.., “Intermediate band solar cells: Recent progress and future directions,” Appl. Phys. Rev. 2, 021302 (2015).
[Crossref]

Yoshida, M.

Y. Okada, N. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. Phillips, D. Farrell, K. Yoshida, and et al.., “Intermediate band solar cells: Recent progress and future directions,” Appl. Phys. Rev. 2, 021302 (2015).
[Crossref]

Adv. Mater. (1)

A. Luque and A. Marti, “The intermediate band solar cell: progress toward the realization of an attractive concept,” Adv. Mater. 22, 160–174 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

H. Feng Lu, S. Mokkapati, L. Fu, G. Jolley, H. Hoe Tan, and C. Jagadish, “Plasmonic quantum dot solar cells for enhanced infrared response,” Appl. Phys. Lett. 100, 103505 (2012).
[Crossref]

Appl. Phys. Rev. (1)

Y. Okada, N. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. Phillips, D. Farrell, K. Yoshida, and et al.., “Intermediate band solar cells: Recent progress and future directions,” Appl. Phys. Rev. 2, 021302 (2015).
[Crossref]

J Nanophotonics (1)

T. Khaleque and R. Magnusson, “Light management through guided-mode resonances in thin-film silicon solar cells,” J Nanophotonics 8, 083995 (2014).
[Crossref]

J. Appl. Phys. (2)

C.-C. Wang and S.-D. Lin, “Resonant cavity-enhanced quantum-dot infrared photodetectors with sub-wavelength grating mirror,” J. Appl. Phys. 113, 213108 (2013).
[Crossref]

Y. Harada, T. Maeda, and T. Kita, “Intraband carrier dynamics in inas/gaas quantum dots stimulated by bound-to-continuum excitation,” J. Appl. Phys. 113, 223511 (2013).
[Crossref]

JOSA A (1)

S. Wang, M. Moharam, R. Magnusson, and J. Bagby, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” JOSA A 7, 1470–1474 (1990).
[Crossref]

Opt. Express (3)

Phys. Rev. Lett. (1)

A. Luque and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78, 5014–5017 (1997).
[Crossref]

Sol. Energy Mater Sol. Cells (3)

A. Mellor, I. Tobías, A. Martí, and A. Luque, “A numerical study of bi-periodic binary diffraction gratings for solar cell applications,” Sol. Energy Mater Sol. Cells 95, 3527–3535 (2011).
[Crossref]

A. Mellor, A. Luque, I. Tobías, and A. Martí, “The feasibility of high-efficiency inas/gaas quantum dot intermediate band solar cells,” Sol. Energy Mater Sol. Cells 130, 225–233 (2014).
[Crossref]

J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. Kontio, A. Turtiainen, T. Niemi, and et al.., “Nanostructured broadband antireflection coatings on alinp fabricated by nanoimprint lithography,” Sol. Energy Mater Sol. Cells 94, 1845–1848 (2010).
[Crossref]

Other (5)

E. D. Palik, Handbook of Optical Constants of Solids, vol. 3 (Academic press, 1998).

M. V. C. Synopsys Inc., “Rsoft Diffractmod User Guide,” v2016.09 (2016).

A. Musu, F. Cappelluti, T. Aho, V. Polojärvi, T. K. Niemi, and M. Guina, “Nanostructures for light management in thin-film gaas quantum dot solar cells,” in “Solid-State Lighting,” (Optical Society of America, 2016), pp. JW4A45.

B. L. Smith, M. A. Slocum, Z. S. Bittner, Y. Dai, G. T. Nelson, S. D. Hellstroem, R. Tatavarti, and S. M. Hubbard, “Inverted growth evaluation for epitaxial lift off (elo) quantum dot solar cell and enhanced absorption by back surface texturing,” in “Photovoltaic Specialists Conference (PVSC), 2016 IEEE 43rd,” (IEEE, 2016), pp. 1276–1281.

F. Cappelluti, D. Kim, M. van Eerden, A. Cédola, T. Aho, G. Bissels, F. Elsehrawy, J. Wu, H. Liu, and P. Mulder, “Light-trapping enhanced thin-film iii-v quantum dot solar cells fabricated by epitaxial lift-off,” Sol. Energy Mater Sol. Cells (in press) (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Schematic band diagram of a IB solar cell highlighting the sub-bandgap optical transistions between valence band and IB (VB→IB) and conduction band and IB (IB→CB), and the above gap (VB→CB) optical transition.
Fig. 2
Fig. 2 (a) Schematic sketch of an elementary GMR structure composed of a slab waveguide characterized by effective index neff with a grating integrated at the rear side. (b) Designed solar cell structure terminated by a three-dimensional cubic grating with period=Λ. The layer thicknesses are: 110 nm - SiO2, 55 nm - TiO2, 300 nm - GaAs, 150 nm - QD, 200 nm -GaAs, 82 nm - AlInP, h = 1200 nm for the AlInP grating height (varied during optimization), 250 nm - polymer (n = 1.55).
Fig. 3
Fig. 3 Effective refractive index of the guided modes vs. wavelength, with phase matching conditions for first (m =1) and second (m =2) order modes of linear grating with different periods.
Fig. 4
Fig. 4 Map of the peak absorbance enhancement for cubic grating as a function of grating periods in x and y directions.
Fig. 5
Fig. 5 (a) Average electric field amplitude and (b) average spatial absorbed photon density at λIC = 4.6 µm. The spatial profiles are obtained by averaging across the x − y plane.
Fig. 6
Fig. 6 Absorbance spectra of the optimum GMR structure and the planar structure in the (a) MIR - QD intraband optical transition - and (b) visible-NIR - GaAs and QD interband transitions - ranges.
Fig. 7
Fig. 7 GMR Gain vs. angle of incidence θinc for the cubic (Λ = 3.8 µm) and the half-spherical grating (Λ = 5.6 µm) at wavelength λIC = 4.6 µm.
Fig. 8
Fig. 8 (a) GMR enhancement vs. QD intraband optical absorption coefficient (αIC) at the peak wavelength. (b) Estimated optimum grating period and aspect ratio (height/period) as a function of the second photon absorption energy (EIC). All the optimum points except the one at highest energy (see text) identify GMR enhancement larger than 100 at EIC.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n eff = n air sin θ inc m λ Λ

Metrics