Abstract

We report on the fabrication of diffraction gratings for application as back contact reflectors. The gratings are designed for thin-film solar cells incorporating absorbers with bandgap slightly lower than GaAs, i.e. InAs quantum dot or GaInNAs solar cells. Light trapping in the solar cells enables the increase of the absorption leading to higher short circuit current densities and higher efficiencies. We study metal/polymer back reflectors with half-sphere, blazed, and pyramid gratings, which were fabricated either by photolithography or by nanoimprint lithography. The gratings are compared in terms of the total and the specular reflectance, which determine their diffraction capabilities, i.e. the feature responsible for increasing the absorption. The pyramid grating showed the highest diffuse reflection of light compared to the half-sphere structure and the blazed grating. The diffraction efficiency measurements were in agreement with the numerical simulations. The validated model enables designing such metal/polymer back reflectors for other type of solar cells by refining the optimal dimensions of the gratings for different wavelength ranges.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Aperiodic and randomized dielectric mirrors: alternatives to metallic back reflectors for solar cells

Albert Lin, Yan-Kai Zhong, Sze-Ming Fu, Chi Wei Tseng, and Sheng Lun Yan
Opt. Express 22(S3) A880-A894 (2014)

2D back-side diffraction grating for improved light trapping in thin silicon solar cells

Jo Gjessing, Erik Stensrud Marstein, and Aasmund Sudbø
Opt. Express 18(6) 5481-5495 (2010)

Computational analysis of thin film InGaAs/GaAs quantum well solar cells with back side light trapping structures

Claiborne O. McPheeters and Edward T. Yu
Opt. Express 20(S6) A864-A878 (2012)

References

  • View by:
  • |
  • |
  • |

  1. S. Bailey, J. McNatt, R. Raffaelle, S. Hubbard, D. Forbes, L. Fritzenmeier, and W. Maurer, “The future of space photovoltaics,” in 2009 IEEE 34th Photovoltaic Specialists Conference (PVSC), (IEEE, 2009), pp. 001909.
    [Crossref]
  2. D. B. Jackrel, S. R. Bank, H. B. Yuen, M. A. Wistey, J. S. J. Harris, A. J. Ptak, S. W. Johnston, D. J. Friedman, and S. R. Kurtz, “Dilute nitride GaInNAs and GaInNAsSb solar cells by molecular beam epitaxy,” J. Appl. Phys. 101(11), 114916 (2007).
    [Crossref]
  3. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt. Res. Appl. 21(1), 1–11 (2013).
    [Crossref]
  4. A. Tukiainen, A. Aho, G. Gori, V. Polojärvi, M. Casale, E. Greco, R. Isoaho, T. Aho, M. Raappana, R. Campesato, and M. Guina, “High-efficiency GaInP/GaAs/GaInNAs solar cells grown by combined MBE-MOCVD technique,” Prog. Photovolt. Res. Appl. 24(7), 914–919 (2016).
    [Crossref]
  5. A. J. Ptak, D. J. Friedman, S. R. Kurtz, and R. C. Reedy, “Low-acceptor-concentration GaInNAs grown by molecular-beam epitaxy for high-current pin solar cell applications,” J. Appl. Phys. 98(9), 094501 (2005).
    [Crossref]
  6. A. Aho, V. Polojärvi, V. Korpijärvi, J. Salmi, A. Tukiainen, P. Laukkanen, and M. Guina, “Composition dependent growth dynamics in molecular beam epitaxy of GaInNAs solar cells,” Sol. Energy Mater. Sol. Cells 124, 150–158 (2014).
    [Crossref]
  7. A. Gubanov, V. Polojärvi, A. Aho, A. Tukiainen, N. V. Tkachenko, and M. Guina, “Dynamics of time-resolved photoluminescence in GaInNAs and GaNAsSb solar cells,” Nanoscale Res. Lett. 9(1), 80 (2014).
    [Crossref] [PubMed]
  8. V. Polojärvi, A. Aho, A. Tukiainen, A. Schramm, and M. Guina, “Comparative study of defect levels in GaInNAs, GaNAsSb, and GaInNAsSb for high-efficiency solar cells,” Appl. Phys. Lett. 108(12), 122104 (2016).
    [Crossref]
  9. V. Polojärvi, A. Aho, A. Tukiainen, M. Raappana, T. Aho, A. Schramm, and M. Guina, “Influence of As/group-III flux ratio on defects formation and photovoltaic performance of GaInNAs solar cells,” Sol. Energy Mater. Sol. Cells 149, 213–220 (2016).
    [Crossref]
  10. T. Aho, A. Aho, A. Tukiainen, V. Polojärvi, T. Salminen, M. Raappana, and M. Guina, “Enhancement of photocurrent in GaInNAs solar cells using Ag/Cu double-layer back reflector,” Appl. Phys. Lett. 109(25), 251104 (2016).
    [Crossref]
  11. D. Redfield, “Multiple‐pass thin‐film silicon solar cell,” Appl. Phys. Lett. 25(11), 647–648 (1974).
    [Crossref]
  12. F. Cappelluti, M. Gioannini, G. Ghione, and A. Khalili, “Numerical study of thin-film quantum-dot solar cells combining selective doping and light-trapping approaches,” in 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), (IEEE, 2016), pp. 1282–1286.
    [Crossref]
  13. F. Cappelluti, D. Kim, M. van Eerden, A. P. Cédola, T. Aho, G. Bissels, F. Elsehrawy, J. Wu, H. Liu, P. Mulder, G. J. Bauhuis, J. J. Schermer, T. Niemi, and M. Guina, “Light-trapping enhanced thin-film III-V quantum dot solar cells fabricated by epitaxial lift-off,” Sol. Energy Mater. Sol. Cells, in press (2018).
  14. A. Luque and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
    [Crossref]
  15. A. Mellor, A. Luque, I. Tobías, and A. Martí, “The feasibility of high-efficiency InAs/GaAs quantum dot intermediate band solar cells,” Sol. Energy Mater. Sol. Cells 130, 225–233 (2014).
    [Crossref]
  16. F. Cappelluti, G. Ghione, M. Gioannini, G. J. Bauhuis, P. Mulder, J. J. Schermer, M. Cimino, G. Gervasio, G. Bissels, E. Katsia, T. Aho, T. Niemi, M. Guina, D. Kim, J. Wu, and H. Liu, “Novel concepts for high-efficiency lightweight space solar cells,” in E3S Web of Conferences, Vol. 16, (ESA Publications Division, 2017), pp. 03007.
  17. N. Baldock and M. Mokhtarzadeh-Dehghan, “A study of solar-powered, high-altitude unmanned aerial vehicles,” Aircr. Eng. Aerosp. Technol. 78(3), 187–193 (2006).
    [Crossref]
  18. J. J. Schermer, G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. Van Deelen, A. T. J. Van Niftrik, and P. K. Larsen, “Photon confinement in high-efficiency, thin-film III–V solar cells obtained by epitaxial lift-off,” Thin Solid Films 511, 645–653 (2006).
    [Crossref]
  19. S. Mokkapati and K. R. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys. 112(10), 101101 (2012).
    [Crossref]
  20. E. Yablonovitch and O. Miller, “The Influence of the 4n2 Light Trapping Factor on Ultimate Solar Cell Efficiency,” in Optics for Solar Energy, (Optical Society of America, 2010), paper SWA1.
  21. F. Elsehrawy, F. Cappelluti, T. Aho, T. Niemi, V. Polojärvi, and M. Guina, ” Back grating optimization for light trapping in thin-film quantum dot solar cells,” in 19th Italian National Conference on Photonic Technologies (2017), pp. 34.
    [Crossref]
  22. A. Cattoni, H. Chen, J. Goffard, R. De Lépinau, B. Behaghel, C. Dupuis, N. Bardou, and S. Collin, “Multiresonant light trapping in ultra-thin GaAs and CIGS solar cells,” in Optical Nanostructures and Advanced Materials for Photovoltaics, (Optical Society of America, 2017), paper PW3A.2.
  23. U. Palanchoke, V. Jovanov, H. Kurz, P. Obermeyer, H. Stiebig, and D. Knipp, “Plasmonic effects in amorphous silicon thin film solar cells with metal back contacts,” Opt. Express 20(6), 6340–6347 (2012).
    [Crossref] [PubMed]
  24. E. Antolín, A. Martí, C. D. Farmer, P. G. Linares, E. Hernández, A. M. Sánchez, T. Ben, S. I. Molina, C. R. Stanley, and A. Luque, “Reducing carrier escape in the InAs/GaAs quantum dot intermediate band solar cell,” J. Appl. Phys. 108(6), 064513 (2010).
    [Crossref]
  25. F. Elsehrawy, T. Niemi, and F. Cappelluti, “Guided-mode resonance gratings for intermediate band quantum dot solar cells,” in Optical Nanostructures and Advanced Materials for Photovoltaics, (Optical Society of America, 2017), paper PM3A.4.
  26. A. Musu, F. Cappelluti, T. Aho, V. Polojärvi, T. Niemi, and M. Guina, “Nanostructures for light management in thin-film GaAs quantum dot solar cells,” in Light, Energy and the Environment, (Optical Society of America, 2016), paper JW4A–45.
  27. SU-8 negative epoxy resists, http://www.microchem.com/Prod-SU8_KMPR.htm , accessed December 2017.
  28. OrmoComp UV inprint, http://www.microresist.de/en/product/hybrid-polymers-0 , accessed January 2018.
  29. E. D. Palik, Handbook of optical constants of solids (Academic press, 1997), pp. 492–443.
  30. A. D. Rakić, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref] [PubMed]
  31. M. Peters, M. Rüdiger, D. Pelzer, H. Hauser, M. Hermle, and B. Bläsi, “Electro–optical modelling of solar cells with photonic structures,” in 25th European PV Solar Energy Conference and Exhibition (2010), pp. 87–91.

2016 (4)

A. Tukiainen, A. Aho, G. Gori, V. Polojärvi, M. Casale, E. Greco, R. Isoaho, T. Aho, M. Raappana, R. Campesato, and M. Guina, “High-efficiency GaInP/GaAs/GaInNAs solar cells grown by combined MBE-MOCVD technique,” Prog. Photovolt. Res. Appl. 24(7), 914–919 (2016).
[Crossref]

V. Polojärvi, A. Aho, A. Tukiainen, A. Schramm, and M. Guina, “Comparative study of defect levels in GaInNAs, GaNAsSb, and GaInNAsSb for high-efficiency solar cells,” Appl. Phys. Lett. 108(12), 122104 (2016).
[Crossref]

V. Polojärvi, A. Aho, A. Tukiainen, M. Raappana, T. Aho, A. Schramm, and M. Guina, “Influence of As/group-III flux ratio on defects formation and photovoltaic performance of GaInNAs solar cells,” Sol. Energy Mater. Sol. Cells 149, 213–220 (2016).
[Crossref]

T. Aho, A. Aho, A. Tukiainen, V. Polojärvi, T. Salminen, M. Raappana, and M. Guina, “Enhancement of photocurrent in GaInNAs solar cells using Ag/Cu double-layer back reflector,” Appl. Phys. Lett. 109(25), 251104 (2016).
[Crossref]

2014 (3)

A. Aho, V. Polojärvi, V. Korpijärvi, J. Salmi, A. Tukiainen, P. Laukkanen, and M. Guina, “Composition dependent growth dynamics in molecular beam epitaxy of GaInNAs solar cells,” Sol. Energy Mater. Sol. Cells 124, 150–158 (2014).
[Crossref]

A. Gubanov, V. Polojärvi, A. Aho, A. Tukiainen, N. V. Tkachenko, and M. Guina, “Dynamics of time-resolved photoluminescence in GaInNAs and GaNAsSb solar cells,” Nanoscale Res. Lett. 9(1), 80 (2014).
[Crossref] [PubMed]

A. Mellor, A. Luque, I. Tobías, and A. Martí, “The feasibility of high-efficiency InAs/GaAs quantum dot intermediate band solar cells,” Sol. Energy Mater. Sol. Cells 130, 225–233 (2014).
[Crossref]

2013 (1)

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt. Res. Appl. 21(1), 1–11 (2013).
[Crossref]

2012 (2)

2010 (1)

E. Antolín, A. Martí, C. D. Farmer, P. G. Linares, E. Hernández, A. M. Sánchez, T. Ben, S. I. Molina, C. R. Stanley, and A. Luque, “Reducing carrier escape in the InAs/GaAs quantum dot intermediate band solar cell,” J. Appl. Phys. 108(6), 064513 (2010).
[Crossref]

2007 (1)

D. B. Jackrel, S. R. Bank, H. B. Yuen, M. A. Wistey, J. S. J. Harris, A. J. Ptak, S. W. Johnston, D. J. Friedman, and S. R. Kurtz, “Dilute nitride GaInNAs and GaInNAsSb solar cells by molecular beam epitaxy,” J. Appl. Phys. 101(11), 114916 (2007).
[Crossref]

2006 (2)

N. Baldock and M. Mokhtarzadeh-Dehghan, “A study of solar-powered, high-altitude unmanned aerial vehicles,” Aircr. Eng. Aerosp. Technol. 78(3), 187–193 (2006).
[Crossref]

J. J. Schermer, G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. Van Deelen, A. T. J. Van Niftrik, and P. K. Larsen, “Photon confinement in high-efficiency, thin-film III–V solar cells obtained by epitaxial lift-off,” Thin Solid Films 511, 645–653 (2006).
[Crossref]

2005 (1)

A. J. Ptak, D. J. Friedman, S. R. Kurtz, and R. C. Reedy, “Low-acceptor-concentration GaInNAs grown by molecular-beam epitaxy for high-current pin solar cell applications,” J. Appl. Phys. 98(9), 094501 (2005).
[Crossref]

1998 (1)

1997 (1)

A. Luque and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[Crossref]

1974 (1)

D. Redfield, “Multiple‐pass thin‐film silicon solar cell,” Appl. Phys. Lett. 25(11), 647–648 (1974).
[Crossref]

Aho, A.

A. Tukiainen, A. Aho, G. Gori, V. Polojärvi, M. Casale, E. Greco, R. Isoaho, T. Aho, M. Raappana, R. Campesato, and M. Guina, “High-efficiency GaInP/GaAs/GaInNAs solar cells grown by combined MBE-MOCVD technique,” Prog. Photovolt. Res. Appl. 24(7), 914–919 (2016).
[Crossref]

V. Polojärvi, A. Aho, A. Tukiainen, A. Schramm, and M. Guina, “Comparative study of defect levels in GaInNAs, GaNAsSb, and GaInNAsSb for high-efficiency solar cells,” Appl. Phys. Lett. 108(12), 122104 (2016).
[Crossref]

V. Polojärvi, A. Aho, A. Tukiainen, M. Raappana, T. Aho, A. Schramm, and M. Guina, “Influence of As/group-III flux ratio on defects formation and photovoltaic performance of GaInNAs solar cells,” Sol. Energy Mater. Sol. Cells 149, 213–220 (2016).
[Crossref]

T. Aho, A. Aho, A. Tukiainen, V. Polojärvi, T. Salminen, M. Raappana, and M. Guina, “Enhancement of photocurrent in GaInNAs solar cells using Ag/Cu double-layer back reflector,” Appl. Phys. Lett. 109(25), 251104 (2016).
[Crossref]

A. Gubanov, V. Polojärvi, A. Aho, A. Tukiainen, N. V. Tkachenko, and M. Guina, “Dynamics of time-resolved photoluminescence in GaInNAs and GaNAsSb solar cells,” Nanoscale Res. Lett. 9(1), 80 (2014).
[Crossref] [PubMed]

A. Aho, V. Polojärvi, V. Korpijärvi, J. Salmi, A. Tukiainen, P. Laukkanen, and M. Guina, “Composition dependent growth dynamics in molecular beam epitaxy of GaInNAs solar cells,” Sol. Energy Mater. Sol. Cells 124, 150–158 (2014).
[Crossref]

Aho, T.

A. Tukiainen, A. Aho, G. Gori, V. Polojärvi, M. Casale, E. Greco, R. Isoaho, T. Aho, M. Raappana, R. Campesato, and M. Guina, “High-efficiency GaInP/GaAs/GaInNAs solar cells grown by combined MBE-MOCVD technique,” Prog. Photovolt. Res. Appl. 24(7), 914–919 (2016).
[Crossref]

V. Polojärvi, A. Aho, A. Tukiainen, M. Raappana, T. Aho, A. Schramm, and M. Guina, “Influence of As/group-III flux ratio on defects formation and photovoltaic performance of GaInNAs solar cells,” Sol. Energy Mater. Sol. Cells 149, 213–220 (2016).
[Crossref]

T. Aho, A. Aho, A. Tukiainen, V. Polojärvi, T. Salminen, M. Raappana, and M. Guina, “Enhancement of photocurrent in GaInNAs solar cells using Ag/Cu double-layer back reflector,” Appl. Phys. Lett. 109(25), 251104 (2016).
[Crossref]

F. Cappelluti, D. Kim, M. van Eerden, A. P. Cédola, T. Aho, G. Bissels, F. Elsehrawy, J. Wu, H. Liu, P. Mulder, G. J. Bauhuis, J. J. Schermer, T. Niemi, and M. Guina, “Light-trapping enhanced thin-film III-V quantum dot solar cells fabricated by epitaxial lift-off,” Sol. Energy Mater. Sol. Cells, in press (2018).

F. Elsehrawy, F. Cappelluti, T. Aho, T. Niemi, V. Polojärvi, and M. Guina, ” Back grating optimization for light trapping in thin-film quantum dot solar cells,” in 19th Italian National Conference on Photonic Technologies (2017), pp. 34.
[Crossref]

Antolín, E.

E. Antolín, A. Martí, C. D. Farmer, P. G. Linares, E. Hernández, A. M. Sánchez, T. Ben, S. I. Molina, C. R. Stanley, and A. Luque, “Reducing carrier escape in the InAs/GaAs quantum dot intermediate band solar cell,” J. Appl. Phys. 108(6), 064513 (2010).
[Crossref]

Baldock, N.

N. Baldock and M. Mokhtarzadeh-Dehghan, “A study of solar-powered, high-altitude unmanned aerial vehicles,” Aircr. Eng. Aerosp. Technol. 78(3), 187–193 (2006).
[Crossref]

Bank, S. R.

D. B. Jackrel, S. R. Bank, H. B. Yuen, M. A. Wistey, J. S. J. Harris, A. J. Ptak, S. W. Johnston, D. J. Friedman, and S. R. Kurtz, “Dilute nitride GaInNAs and GaInNAsSb solar cells by molecular beam epitaxy,” J. Appl. Phys. 101(11), 114916 (2007).
[Crossref]

Bauhuis, G. J.

J. J. Schermer, G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. Van Deelen, A. T. J. Van Niftrik, and P. K. Larsen, “Photon confinement in high-efficiency, thin-film III–V solar cells obtained by epitaxial lift-off,” Thin Solid Films 511, 645–653 (2006).
[Crossref]

F. Cappelluti, D. Kim, M. van Eerden, A. P. Cédola, T. Aho, G. Bissels, F. Elsehrawy, J. Wu, H. Liu, P. Mulder, G. J. Bauhuis, J. J. Schermer, T. Niemi, and M. Guina, “Light-trapping enhanced thin-film III-V quantum dot solar cells fabricated by epitaxial lift-off,” Sol. Energy Mater. Sol. Cells, in press (2018).

Ben, T.

E. Antolín, A. Martí, C. D. Farmer, P. G. Linares, E. Hernández, A. M. Sánchez, T. Ben, S. I. Molina, C. R. Stanley, and A. Luque, “Reducing carrier escape in the InAs/GaAs quantum dot intermediate band solar cell,” J. Appl. Phys. 108(6), 064513 (2010).
[Crossref]

Bissels, G.

F. Cappelluti, D. Kim, M. van Eerden, A. P. Cédola, T. Aho, G. Bissels, F. Elsehrawy, J. Wu, H. Liu, P. Mulder, G. J. Bauhuis, J. J. Schermer, T. Niemi, and M. Guina, “Light-trapping enhanced thin-film III-V quantum dot solar cells fabricated by epitaxial lift-off,” Sol. Energy Mater. Sol. Cells, in press (2018).

Bläsi, B.

M. Peters, M. Rüdiger, D. Pelzer, H. Hauser, M. Hermle, and B. Bläsi, “Electro–optical modelling of solar cells with photonic structures,” in 25th European PV Solar Energy Conference and Exhibition (2010), pp. 87–91.

Campesato, R.

A. Tukiainen, A. Aho, G. Gori, V. Polojärvi, M. Casale, E. Greco, R. Isoaho, T. Aho, M. Raappana, R. Campesato, and M. Guina, “High-efficiency GaInP/GaAs/GaInNAs solar cells grown by combined MBE-MOCVD technique,” Prog. Photovolt. Res. Appl. 24(7), 914–919 (2016).
[Crossref]

Cappelluti, F.

F. Cappelluti, D. Kim, M. van Eerden, A. P. Cédola, T. Aho, G. Bissels, F. Elsehrawy, J. Wu, H. Liu, P. Mulder, G. J. Bauhuis, J. J. Schermer, T. Niemi, and M. Guina, “Light-trapping enhanced thin-film III-V quantum dot solar cells fabricated by epitaxial lift-off,” Sol. Energy Mater. Sol. Cells, in press (2018).

F. Elsehrawy, F. Cappelluti, T. Aho, T. Niemi, V. Polojärvi, and M. Guina, ” Back grating optimization for light trapping in thin-film quantum dot solar cells,” in 19th Italian National Conference on Photonic Technologies (2017), pp. 34.
[Crossref]

Casale, M.

A. Tukiainen, A. Aho, G. Gori, V. Polojärvi, M. Casale, E. Greco, R. Isoaho, T. Aho, M. Raappana, R. Campesato, and M. Guina, “High-efficiency GaInP/GaAs/GaInNAs solar cells grown by combined MBE-MOCVD technique,” Prog. Photovolt. Res. Appl. 24(7), 914–919 (2016).
[Crossref]

Catchpole, K. R.

S. Mokkapati and K. R. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys. 112(10), 101101 (2012).
[Crossref]

Cédola, A. P.

F. Cappelluti, D. Kim, M. van Eerden, A. P. Cédola, T. Aho, G. Bissels, F. Elsehrawy, J. Wu, H. Liu, P. Mulder, G. J. Bauhuis, J. J. Schermer, T. Niemi, and M. Guina, “Light-trapping enhanced thin-film III-V quantum dot solar cells fabricated by epitaxial lift-off,” Sol. Energy Mater. Sol. Cells, in press (2018).

Djurišic, A. B.

Dunlop, E. D.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt. Res. Appl. 21(1), 1–11 (2013).
[Crossref]

Elazar, J. M.

Elsehrawy, F.

F. Elsehrawy, F. Cappelluti, T. Aho, T. Niemi, V. Polojärvi, and M. Guina, ” Back grating optimization for light trapping in thin-film quantum dot solar cells,” in 19th Italian National Conference on Photonic Technologies (2017), pp. 34.
[Crossref]

F. Cappelluti, D. Kim, M. van Eerden, A. P. Cédola, T. Aho, G. Bissels, F. Elsehrawy, J. Wu, H. Liu, P. Mulder, G. J. Bauhuis, J. J. Schermer, T. Niemi, and M. Guina, “Light-trapping enhanced thin-film III-V quantum dot solar cells fabricated by epitaxial lift-off,” Sol. Energy Mater. Sol. Cells, in press (2018).

Emery, K.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt. Res. Appl. 21(1), 1–11 (2013).
[Crossref]

Farmer, C. D.

E. Antolín, A. Martí, C. D. Farmer, P. G. Linares, E. Hernández, A. M. Sánchez, T. Ben, S. I. Molina, C. R. Stanley, and A. Luque, “Reducing carrier escape in the InAs/GaAs quantum dot intermediate band solar cell,” J. Appl. Phys. 108(6), 064513 (2010).
[Crossref]

Friedman, D. J.

D. B. Jackrel, S. R. Bank, H. B. Yuen, M. A. Wistey, J. S. J. Harris, A. J. Ptak, S. W. Johnston, D. J. Friedman, and S. R. Kurtz, “Dilute nitride GaInNAs and GaInNAsSb solar cells by molecular beam epitaxy,” J. Appl. Phys. 101(11), 114916 (2007).
[Crossref]

A. J. Ptak, D. J. Friedman, S. R. Kurtz, and R. C. Reedy, “Low-acceptor-concentration GaInNAs grown by molecular-beam epitaxy for high-current pin solar cell applications,” J. Appl. Phys. 98(9), 094501 (2005).
[Crossref]

Gori, G.

A. Tukiainen, A. Aho, G. Gori, V. Polojärvi, M. Casale, E. Greco, R. Isoaho, T. Aho, M. Raappana, R. Campesato, and M. Guina, “High-efficiency GaInP/GaAs/GaInNAs solar cells grown by combined MBE-MOCVD technique,” Prog. Photovolt. Res. Appl. 24(7), 914–919 (2016).
[Crossref]

Greco, E.

A. Tukiainen, A. Aho, G. Gori, V. Polojärvi, M. Casale, E. Greco, R. Isoaho, T. Aho, M. Raappana, R. Campesato, and M. Guina, “High-efficiency GaInP/GaAs/GaInNAs solar cells grown by combined MBE-MOCVD technique,” Prog. Photovolt. Res. Appl. 24(7), 914–919 (2016).
[Crossref]

Green, M. A.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt. Res. Appl. 21(1), 1–11 (2013).
[Crossref]

Gubanov, A.

A. Gubanov, V. Polojärvi, A. Aho, A. Tukiainen, N. V. Tkachenko, and M. Guina, “Dynamics of time-resolved photoluminescence in GaInNAs and GaNAsSb solar cells,” Nanoscale Res. Lett. 9(1), 80 (2014).
[Crossref] [PubMed]

Guina, M.

A. Tukiainen, A. Aho, G. Gori, V. Polojärvi, M. Casale, E. Greco, R. Isoaho, T. Aho, M. Raappana, R. Campesato, and M. Guina, “High-efficiency GaInP/GaAs/GaInNAs solar cells grown by combined MBE-MOCVD technique,” Prog. Photovolt. Res. Appl. 24(7), 914–919 (2016).
[Crossref]

T. Aho, A. Aho, A. Tukiainen, V. Polojärvi, T. Salminen, M. Raappana, and M. Guina, “Enhancement of photocurrent in GaInNAs solar cells using Ag/Cu double-layer back reflector,” Appl. Phys. Lett. 109(25), 251104 (2016).
[Crossref]

V. Polojärvi, A. Aho, A. Tukiainen, M. Raappana, T. Aho, A. Schramm, and M. Guina, “Influence of As/group-III flux ratio on defects formation and photovoltaic performance of GaInNAs solar cells,” Sol. Energy Mater. Sol. Cells 149, 213–220 (2016).
[Crossref]

V. Polojärvi, A. Aho, A. Tukiainen, A. Schramm, and M. Guina, “Comparative study of defect levels in GaInNAs, GaNAsSb, and GaInNAsSb for high-efficiency solar cells,” Appl. Phys. Lett. 108(12), 122104 (2016).
[Crossref]

A. Gubanov, V. Polojärvi, A. Aho, A. Tukiainen, N. V. Tkachenko, and M. Guina, “Dynamics of time-resolved photoluminescence in GaInNAs and GaNAsSb solar cells,” Nanoscale Res. Lett. 9(1), 80 (2014).
[Crossref] [PubMed]

A. Aho, V. Polojärvi, V. Korpijärvi, J. Salmi, A. Tukiainen, P. Laukkanen, and M. Guina, “Composition dependent growth dynamics in molecular beam epitaxy of GaInNAs solar cells,” Sol. Energy Mater. Sol. Cells 124, 150–158 (2014).
[Crossref]

F. Cappelluti, D. Kim, M. van Eerden, A. P. Cédola, T. Aho, G. Bissels, F. Elsehrawy, J. Wu, H. Liu, P. Mulder, G. J. Bauhuis, J. J. Schermer, T. Niemi, and M. Guina, “Light-trapping enhanced thin-film III-V quantum dot solar cells fabricated by epitaxial lift-off,” Sol. Energy Mater. Sol. Cells, in press (2018).

F. Elsehrawy, F. Cappelluti, T. Aho, T. Niemi, V. Polojärvi, and M. Guina, ” Back grating optimization for light trapping in thin-film quantum dot solar cells,” in 19th Italian National Conference on Photonic Technologies (2017), pp. 34.
[Crossref]

Harris, J. S. J.

D. B. Jackrel, S. R. Bank, H. B. Yuen, M. A. Wistey, J. S. J. Harris, A. J. Ptak, S. W. Johnston, D. J. Friedman, and S. R. Kurtz, “Dilute nitride GaInNAs and GaInNAsSb solar cells by molecular beam epitaxy,” J. Appl. Phys. 101(11), 114916 (2007).
[Crossref]

Hauser, H.

M. Peters, M. Rüdiger, D. Pelzer, H. Hauser, M. Hermle, and B. Bläsi, “Electro–optical modelling of solar cells with photonic structures,” in 25th European PV Solar Energy Conference and Exhibition (2010), pp. 87–91.

Haverkamp, E. J.

J. J. Schermer, G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. Van Deelen, A. T. J. Van Niftrik, and P. K. Larsen, “Photon confinement in high-efficiency, thin-film III–V solar cells obtained by epitaxial lift-off,” Thin Solid Films 511, 645–653 (2006).
[Crossref]

Hermle, M.

M. Peters, M. Rüdiger, D. Pelzer, H. Hauser, M. Hermle, and B. Bläsi, “Electro–optical modelling of solar cells with photonic structures,” in 25th European PV Solar Energy Conference and Exhibition (2010), pp. 87–91.

Hernández, E.

E. Antolín, A. Martí, C. D. Farmer, P. G. Linares, E. Hernández, A. M. Sánchez, T. Ben, S. I. Molina, C. R. Stanley, and A. Luque, “Reducing carrier escape in the InAs/GaAs quantum dot intermediate band solar cell,” J. Appl. Phys. 108(6), 064513 (2010).
[Crossref]

Hishikawa, Y.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt. Res. Appl. 21(1), 1–11 (2013).
[Crossref]

Isoaho, R.

A. Tukiainen, A. Aho, G. Gori, V. Polojärvi, M. Casale, E. Greco, R. Isoaho, T. Aho, M. Raappana, R. Campesato, and M. Guina, “High-efficiency GaInP/GaAs/GaInNAs solar cells grown by combined MBE-MOCVD technique,” Prog. Photovolt. Res. Appl. 24(7), 914–919 (2016).
[Crossref]

Jackrel, D. B.

D. B. Jackrel, S. R. Bank, H. B. Yuen, M. A. Wistey, J. S. J. Harris, A. J. Ptak, S. W. Johnston, D. J. Friedman, and S. R. Kurtz, “Dilute nitride GaInNAs and GaInNAsSb solar cells by molecular beam epitaxy,” J. Appl. Phys. 101(11), 114916 (2007).
[Crossref]

Johnston, S. W.

D. B. Jackrel, S. R. Bank, H. B. Yuen, M. A. Wistey, J. S. J. Harris, A. J. Ptak, S. W. Johnston, D. J. Friedman, and S. R. Kurtz, “Dilute nitride GaInNAs and GaInNAsSb solar cells by molecular beam epitaxy,” J. Appl. Phys. 101(11), 114916 (2007).
[Crossref]

Jovanov, V.

Kim, D.

F. Cappelluti, D. Kim, M. van Eerden, A. P. Cédola, T. Aho, G. Bissels, F. Elsehrawy, J. Wu, H. Liu, P. Mulder, G. J. Bauhuis, J. J. Schermer, T. Niemi, and M. Guina, “Light-trapping enhanced thin-film III-V quantum dot solar cells fabricated by epitaxial lift-off,” Sol. Energy Mater. Sol. Cells, in press (2018).

Knipp, D.

Korpijärvi, V.

A. Aho, V. Polojärvi, V. Korpijärvi, J. Salmi, A. Tukiainen, P. Laukkanen, and M. Guina, “Composition dependent growth dynamics in molecular beam epitaxy of GaInNAs solar cells,” Sol. Energy Mater. Sol. Cells 124, 150–158 (2014).
[Crossref]

Kurtz, S. R.

D. B. Jackrel, S. R. Bank, H. B. Yuen, M. A. Wistey, J. S. J. Harris, A. J. Ptak, S. W. Johnston, D. J. Friedman, and S. R. Kurtz, “Dilute nitride GaInNAs and GaInNAsSb solar cells by molecular beam epitaxy,” J. Appl. Phys. 101(11), 114916 (2007).
[Crossref]

A. J. Ptak, D. J. Friedman, S. R. Kurtz, and R. C. Reedy, “Low-acceptor-concentration GaInNAs grown by molecular-beam epitaxy for high-current pin solar cell applications,” J. Appl. Phys. 98(9), 094501 (2005).
[Crossref]

Kurz, H.

Larsen, P. K.

J. J. Schermer, G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. Van Deelen, A. T. J. Van Niftrik, and P. K. Larsen, “Photon confinement in high-efficiency, thin-film III–V solar cells obtained by epitaxial lift-off,” Thin Solid Films 511, 645–653 (2006).
[Crossref]

Laukkanen, P.

A. Aho, V. Polojärvi, V. Korpijärvi, J. Salmi, A. Tukiainen, P. Laukkanen, and M. Guina, “Composition dependent growth dynamics in molecular beam epitaxy of GaInNAs solar cells,” Sol. Energy Mater. Sol. Cells 124, 150–158 (2014).
[Crossref]

Linares, P. G.

E. Antolín, A. Martí, C. D. Farmer, P. G. Linares, E. Hernández, A. M. Sánchez, T. Ben, S. I. Molina, C. R. Stanley, and A. Luque, “Reducing carrier escape in the InAs/GaAs quantum dot intermediate band solar cell,” J. Appl. Phys. 108(6), 064513 (2010).
[Crossref]

Liu, H.

F. Cappelluti, D. Kim, M. van Eerden, A. P. Cédola, T. Aho, G. Bissels, F. Elsehrawy, J. Wu, H. Liu, P. Mulder, G. J. Bauhuis, J. J. Schermer, T. Niemi, and M. Guina, “Light-trapping enhanced thin-film III-V quantum dot solar cells fabricated by epitaxial lift-off,” Sol. Energy Mater. Sol. Cells, in press (2018).

Luque, A.

A. Mellor, A. Luque, I. Tobías, and A. Martí, “The feasibility of high-efficiency InAs/GaAs quantum dot intermediate band solar cells,” Sol. Energy Mater. Sol. Cells 130, 225–233 (2014).
[Crossref]

E. Antolín, A. Martí, C. D. Farmer, P. G. Linares, E. Hernández, A. M. Sánchez, T. Ben, S. I. Molina, C. R. Stanley, and A. Luque, “Reducing carrier escape in the InAs/GaAs quantum dot intermediate band solar cell,” J. Appl. Phys. 108(6), 064513 (2010).
[Crossref]

A. Luque and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[Crossref]

Majewski, M. L.

Martí, A.

A. Mellor, A. Luque, I. Tobías, and A. Martí, “The feasibility of high-efficiency InAs/GaAs quantum dot intermediate band solar cells,” Sol. Energy Mater. Sol. Cells 130, 225–233 (2014).
[Crossref]

E. Antolín, A. Martí, C. D. Farmer, P. G. Linares, E. Hernández, A. M. Sánchez, T. Ben, S. I. Molina, C. R. Stanley, and A. Luque, “Reducing carrier escape in the InAs/GaAs quantum dot intermediate band solar cell,” J. Appl. Phys. 108(6), 064513 (2010).
[Crossref]

A. Luque and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[Crossref]

Mellor, A.

A. Mellor, A. Luque, I. Tobías, and A. Martí, “The feasibility of high-efficiency InAs/GaAs quantum dot intermediate band solar cells,” Sol. Energy Mater. Sol. Cells 130, 225–233 (2014).
[Crossref]

Mokhtarzadeh-Dehghan, M.

N. Baldock and M. Mokhtarzadeh-Dehghan, “A study of solar-powered, high-altitude unmanned aerial vehicles,” Aircr. Eng. Aerosp. Technol. 78(3), 187–193 (2006).
[Crossref]

Mokkapati, S.

S. Mokkapati and K. R. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys. 112(10), 101101 (2012).
[Crossref]

Molina, S. I.

E. Antolín, A. Martí, C. D. Farmer, P. G. Linares, E. Hernández, A. M. Sánchez, T. Ben, S. I. Molina, C. R. Stanley, and A. Luque, “Reducing carrier escape in the InAs/GaAs quantum dot intermediate band solar cell,” J. Appl. Phys. 108(6), 064513 (2010).
[Crossref]

Mulder, P.

J. J. Schermer, G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. Van Deelen, A. T. J. Van Niftrik, and P. K. Larsen, “Photon confinement in high-efficiency, thin-film III–V solar cells obtained by epitaxial lift-off,” Thin Solid Films 511, 645–653 (2006).
[Crossref]

F. Cappelluti, D. Kim, M. van Eerden, A. P. Cédola, T. Aho, G. Bissels, F. Elsehrawy, J. Wu, H. Liu, P. Mulder, G. J. Bauhuis, J. J. Schermer, T. Niemi, and M. Guina, “Light-trapping enhanced thin-film III-V quantum dot solar cells fabricated by epitaxial lift-off,” Sol. Energy Mater. Sol. Cells, in press (2018).

Niemi, T.

F. Cappelluti, D. Kim, M. van Eerden, A. P. Cédola, T. Aho, G. Bissels, F. Elsehrawy, J. Wu, H. Liu, P. Mulder, G. J. Bauhuis, J. J. Schermer, T. Niemi, and M. Guina, “Light-trapping enhanced thin-film III-V quantum dot solar cells fabricated by epitaxial lift-off,” Sol. Energy Mater. Sol. Cells, in press (2018).

F. Elsehrawy, F. Cappelluti, T. Aho, T. Niemi, V. Polojärvi, and M. Guina, ” Back grating optimization for light trapping in thin-film quantum dot solar cells,” in 19th Italian National Conference on Photonic Technologies (2017), pp. 34.
[Crossref]

Obermeyer, P.

Palanchoke, U.

Pelzer, D.

M. Peters, M. Rüdiger, D. Pelzer, H. Hauser, M. Hermle, and B. Bläsi, “Electro–optical modelling of solar cells with photonic structures,” in 25th European PV Solar Energy Conference and Exhibition (2010), pp. 87–91.

Peters, M.

M. Peters, M. Rüdiger, D. Pelzer, H. Hauser, M. Hermle, and B. Bläsi, “Electro–optical modelling of solar cells with photonic structures,” in 25th European PV Solar Energy Conference and Exhibition (2010), pp. 87–91.

Polojärvi, V.

T. Aho, A. Aho, A. Tukiainen, V. Polojärvi, T. Salminen, M. Raappana, and M. Guina, “Enhancement of photocurrent in GaInNAs solar cells using Ag/Cu double-layer back reflector,” Appl. Phys. Lett. 109(25), 251104 (2016).
[Crossref]

V. Polojärvi, A. Aho, A. Tukiainen, A. Schramm, and M. Guina, “Comparative study of defect levels in GaInNAs, GaNAsSb, and GaInNAsSb for high-efficiency solar cells,” Appl. Phys. Lett. 108(12), 122104 (2016).
[Crossref]

V. Polojärvi, A. Aho, A. Tukiainen, M. Raappana, T. Aho, A. Schramm, and M. Guina, “Influence of As/group-III flux ratio on defects formation and photovoltaic performance of GaInNAs solar cells,” Sol. Energy Mater. Sol. Cells 149, 213–220 (2016).
[Crossref]

A. Tukiainen, A. Aho, G. Gori, V. Polojärvi, M. Casale, E. Greco, R. Isoaho, T. Aho, M. Raappana, R. Campesato, and M. Guina, “High-efficiency GaInP/GaAs/GaInNAs solar cells grown by combined MBE-MOCVD technique,” Prog. Photovolt. Res. Appl. 24(7), 914–919 (2016).
[Crossref]

A. Gubanov, V. Polojärvi, A. Aho, A. Tukiainen, N. V. Tkachenko, and M. Guina, “Dynamics of time-resolved photoluminescence in GaInNAs and GaNAsSb solar cells,” Nanoscale Res. Lett. 9(1), 80 (2014).
[Crossref] [PubMed]

A. Aho, V. Polojärvi, V. Korpijärvi, J. Salmi, A. Tukiainen, P. Laukkanen, and M. Guina, “Composition dependent growth dynamics in molecular beam epitaxy of GaInNAs solar cells,” Sol. Energy Mater. Sol. Cells 124, 150–158 (2014).
[Crossref]

F. Elsehrawy, F. Cappelluti, T. Aho, T. Niemi, V. Polojärvi, and M. Guina, ” Back grating optimization for light trapping in thin-film quantum dot solar cells,” in 19th Italian National Conference on Photonic Technologies (2017), pp. 34.
[Crossref]

Ptak, A. J.

D. B. Jackrel, S. R. Bank, H. B. Yuen, M. A. Wistey, J. S. J. Harris, A. J. Ptak, S. W. Johnston, D. J. Friedman, and S. R. Kurtz, “Dilute nitride GaInNAs and GaInNAsSb solar cells by molecular beam epitaxy,” J. Appl. Phys. 101(11), 114916 (2007).
[Crossref]

A. J. Ptak, D. J. Friedman, S. R. Kurtz, and R. C. Reedy, “Low-acceptor-concentration GaInNAs grown by molecular-beam epitaxy for high-current pin solar cell applications,” J. Appl. Phys. 98(9), 094501 (2005).
[Crossref]

Raappana, M.

A. Tukiainen, A. Aho, G. Gori, V. Polojärvi, M. Casale, E. Greco, R. Isoaho, T. Aho, M. Raappana, R. Campesato, and M. Guina, “High-efficiency GaInP/GaAs/GaInNAs solar cells grown by combined MBE-MOCVD technique,” Prog. Photovolt. Res. Appl. 24(7), 914–919 (2016).
[Crossref]

V. Polojärvi, A. Aho, A. Tukiainen, M. Raappana, T. Aho, A. Schramm, and M. Guina, “Influence of As/group-III flux ratio on defects formation and photovoltaic performance of GaInNAs solar cells,” Sol. Energy Mater. Sol. Cells 149, 213–220 (2016).
[Crossref]

T. Aho, A. Aho, A. Tukiainen, V. Polojärvi, T. Salminen, M. Raappana, and M. Guina, “Enhancement of photocurrent in GaInNAs solar cells using Ag/Cu double-layer back reflector,” Appl. Phys. Lett. 109(25), 251104 (2016).
[Crossref]

Rakic, A. D.

Redfield, D.

D. Redfield, “Multiple‐pass thin‐film silicon solar cell,” Appl. Phys. Lett. 25(11), 647–648 (1974).
[Crossref]

Reedy, R. C.

A. J. Ptak, D. J. Friedman, S. R. Kurtz, and R. C. Reedy, “Low-acceptor-concentration GaInNAs grown by molecular-beam epitaxy for high-current pin solar cell applications,” J. Appl. Phys. 98(9), 094501 (2005).
[Crossref]

Rüdiger, M.

M. Peters, M. Rüdiger, D. Pelzer, H. Hauser, M. Hermle, and B. Bläsi, “Electro–optical modelling of solar cells with photonic structures,” in 25th European PV Solar Energy Conference and Exhibition (2010), pp. 87–91.

Salmi, J.

A. Aho, V. Polojärvi, V. Korpijärvi, J. Salmi, A. Tukiainen, P. Laukkanen, and M. Guina, “Composition dependent growth dynamics in molecular beam epitaxy of GaInNAs solar cells,” Sol. Energy Mater. Sol. Cells 124, 150–158 (2014).
[Crossref]

Salminen, T.

T. Aho, A. Aho, A. Tukiainen, V. Polojärvi, T. Salminen, M. Raappana, and M. Guina, “Enhancement of photocurrent in GaInNAs solar cells using Ag/Cu double-layer back reflector,” Appl. Phys. Lett. 109(25), 251104 (2016).
[Crossref]

Sánchez, A. M.

E. Antolín, A. Martí, C. D. Farmer, P. G. Linares, E. Hernández, A. M. Sánchez, T. Ben, S. I. Molina, C. R. Stanley, and A. Luque, “Reducing carrier escape in the InAs/GaAs quantum dot intermediate band solar cell,” J. Appl. Phys. 108(6), 064513 (2010).
[Crossref]

Schermer, J. J.

J. J. Schermer, G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. Van Deelen, A. T. J. Van Niftrik, and P. K. Larsen, “Photon confinement in high-efficiency, thin-film III–V solar cells obtained by epitaxial lift-off,” Thin Solid Films 511, 645–653 (2006).
[Crossref]

F. Cappelluti, D. Kim, M. van Eerden, A. P. Cédola, T. Aho, G. Bissels, F. Elsehrawy, J. Wu, H. Liu, P. Mulder, G. J. Bauhuis, J. J. Schermer, T. Niemi, and M. Guina, “Light-trapping enhanced thin-film III-V quantum dot solar cells fabricated by epitaxial lift-off,” Sol. Energy Mater. Sol. Cells, in press (2018).

Schramm, A.

V. Polojärvi, A. Aho, A. Tukiainen, M. Raappana, T. Aho, A. Schramm, and M. Guina, “Influence of As/group-III flux ratio on defects formation and photovoltaic performance of GaInNAs solar cells,” Sol. Energy Mater. Sol. Cells 149, 213–220 (2016).
[Crossref]

V. Polojärvi, A. Aho, A. Tukiainen, A. Schramm, and M. Guina, “Comparative study of defect levels in GaInNAs, GaNAsSb, and GaInNAsSb for high-efficiency solar cells,” Appl. Phys. Lett. 108(12), 122104 (2016).
[Crossref]

Stanley, C. R.

E. Antolín, A. Martí, C. D. Farmer, P. G. Linares, E. Hernández, A. M. Sánchez, T. Ben, S. I. Molina, C. R. Stanley, and A. Luque, “Reducing carrier escape in the InAs/GaAs quantum dot intermediate band solar cell,” J. Appl. Phys. 108(6), 064513 (2010).
[Crossref]

Stiebig, H.

Tkachenko, N. V.

A. Gubanov, V. Polojärvi, A. Aho, A. Tukiainen, N. V. Tkachenko, and M. Guina, “Dynamics of time-resolved photoluminescence in GaInNAs and GaNAsSb solar cells,” Nanoscale Res. Lett. 9(1), 80 (2014).
[Crossref] [PubMed]

Tobías, I.

A. Mellor, A. Luque, I. Tobías, and A. Martí, “The feasibility of high-efficiency InAs/GaAs quantum dot intermediate band solar cells,” Sol. Energy Mater. Sol. Cells 130, 225–233 (2014).
[Crossref]

Tukiainen, A.

V. Polojärvi, A. Aho, A. Tukiainen, A. Schramm, and M. Guina, “Comparative study of defect levels in GaInNAs, GaNAsSb, and GaInNAsSb for high-efficiency solar cells,” Appl. Phys. Lett. 108(12), 122104 (2016).
[Crossref]

V. Polojärvi, A. Aho, A. Tukiainen, M. Raappana, T. Aho, A. Schramm, and M. Guina, “Influence of As/group-III flux ratio on defects formation and photovoltaic performance of GaInNAs solar cells,” Sol. Energy Mater. Sol. Cells 149, 213–220 (2016).
[Crossref]

T. Aho, A. Aho, A. Tukiainen, V. Polojärvi, T. Salminen, M. Raappana, and M. Guina, “Enhancement of photocurrent in GaInNAs solar cells using Ag/Cu double-layer back reflector,” Appl. Phys. Lett. 109(25), 251104 (2016).
[Crossref]

A. Tukiainen, A. Aho, G. Gori, V. Polojärvi, M. Casale, E. Greco, R. Isoaho, T. Aho, M. Raappana, R. Campesato, and M. Guina, “High-efficiency GaInP/GaAs/GaInNAs solar cells grown by combined MBE-MOCVD technique,” Prog. Photovolt. Res. Appl. 24(7), 914–919 (2016).
[Crossref]

A. Aho, V. Polojärvi, V. Korpijärvi, J. Salmi, A. Tukiainen, P. Laukkanen, and M. Guina, “Composition dependent growth dynamics in molecular beam epitaxy of GaInNAs solar cells,” Sol. Energy Mater. Sol. Cells 124, 150–158 (2014).
[Crossref]

A. Gubanov, V. Polojärvi, A. Aho, A. Tukiainen, N. V. Tkachenko, and M. Guina, “Dynamics of time-resolved photoluminescence in GaInNAs and GaNAsSb solar cells,” Nanoscale Res. Lett. 9(1), 80 (2014).
[Crossref] [PubMed]

Van Deelen, J.

J. J. Schermer, G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. Van Deelen, A. T. J. Van Niftrik, and P. K. Larsen, “Photon confinement in high-efficiency, thin-film III–V solar cells obtained by epitaxial lift-off,” Thin Solid Films 511, 645–653 (2006).
[Crossref]

van Eerden, M.

F. Cappelluti, D. Kim, M. van Eerden, A. P. Cédola, T. Aho, G. Bissels, F. Elsehrawy, J. Wu, H. Liu, P. Mulder, G. J. Bauhuis, J. J. Schermer, T. Niemi, and M. Guina, “Light-trapping enhanced thin-film III-V quantum dot solar cells fabricated by epitaxial lift-off,” Sol. Energy Mater. Sol. Cells, in press (2018).

Van Niftrik, A. T. J.

J. J. Schermer, G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. Van Deelen, A. T. J. Van Niftrik, and P. K. Larsen, “Photon confinement in high-efficiency, thin-film III–V solar cells obtained by epitaxial lift-off,” Thin Solid Films 511, 645–653 (2006).
[Crossref]

Warta, W.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt. Res. Appl. 21(1), 1–11 (2013).
[Crossref]

Wistey, M. A.

D. B. Jackrel, S. R. Bank, H. B. Yuen, M. A. Wistey, J. S. J. Harris, A. J. Ptak, S. W. Johnston, D. J. Friedman, and S. R. Kurtz, “Dilute nitride GaInNAs and GaInNAsSb solar cells by molecular beam epitaxy,” J. Appl. Phys. 101(11), 114916 (2007).
[Crossref]

Wu, J.

F. Cappelluti, D. Kim, M. van Eerden, A. P. Cédola, T. Aho, G. Bissels, F. Elsehrawy, J. Wu, H. Liu, P. Mulder, G. J. Bauhuis, J. J. Schermer, T. Niemi, and M. Guina, “Light-trapping enhanced thin-film III-V quantum dot solar cells fabricated by epitaxial lift-off,” Sol. Energy Mater. Sol. Cells, in press (2018).

Yuen, H. B.

D. B. Jackrel, S. R. Bank, H. B. Yuen, M. A. Wistey, J. S. J. Harris, A. J. Ptak, S. W. Johnston, D. J. Friedman, and S. R. Kurtz, “Dilute nitride GaInNAs and GaInNAsSb solar cells by molecular beam epitaxy,” J. Appl. Phys. 101(11), 114916 (2007).
[Crossref]

Aircr. Eng. Aerosp. Technol. (1)

N. Baldock and M. Mokhtarzadeh-Dehghan, “A study of solar-powered, high-altitude unmanned aerial vehicles,” Aircr. Eng. Aerosp. Technol. 78(3), 187–193 (2006).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

T. Aho, A. Aho, A. Tukiainen, V. Polojärvi, T. Salminen, M. Raappana, and M. Guina, “Enhancement of photocurrent in GaInNAs solar cells using Ag/Cu double-layer back reflector,” Appl. Phys. Lett. 109(25), 251104 (2016).
[Crossref]

D. Redfield, “Multiple‐pass thin‐film silicon solar cell,” Appl. Phys. Lett. 25(11), 647–648 (1974).
[Crossref]

V. Polojärvi, A. Aho, A. Tukiainen, A. Schramm, and M. Guina, “Comparative study of defect levels in GaInNAs, GaNAsSb, and GaInNAsSb for high-efficiency solar cells,” Appl. Phys. Lett. 108(12), 122104 (2016).
[Crossref]

J. Appl. Phys. (4)

D. B. Jackrel, S. R. Bank, H. B. Yuen, M. A. Wistey, J. S. J. Harris, A. J. Ptak, S. W. Johnston, D. J. Friedman, and S. R. Kurtz, “Dilute nitride GaInNAs and GaInNAsSb solar cells by molecular beam epitaxy,” J. Appl. Phys. 101(11), 114916 (2007).
[Crossref]

A. J. Ptak, D. J. Friedman, S. R. Kurtz, and R. C. Reedy, “Low-acceptor-concentration GaInNAs grown by molecular-beam epitaxy for high-current pin solar cell applications,” J. Appl. Phys. 98(9), 094501 (2005).
[Crossref]

S. Mokkapati and K. R. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys. 112(10), 101101 (2012).
[Crossref]

E. Antolín, A. Martí, C. D. Farmer, P. G. Linares, E. Hernández, A. M. Sánchez, T. Ben, S. I. Molina, C. R. Stanley, and A. Luque, “Reducing carrier escape in the InAs/GaAs quantum dot intermediate band solar cell,” J. Appl. Phys. 108(6), 064513 (2010).
[Crossref]

Nanoscale Res. Lett. (1)

A. Gubanov, V. Polojärvi, A. Aho, A. Tukiainen, N. V. Tkachenko, and M. Guina, “Dynamics of time-resolved photoluminescence in GaInNAs and GaNAsSb solar cells,” Nanoscale Res. Lett. 9(1), 80 (2014).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. Lett. (1)

A. Luque and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[Crossref]

Prog. Photovolt. Res. Appl. (2)

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 41),” Prog. Photovolt. Res. Appl. 21(1), 1–11 (2013).
[Crossref]

A. Tukiainen, A. Aho, G. Gori, V. Polojärvi, M. Casale, E. Greco, R. Isoaho, T. Aho, M. Raappana, R. Campesato, and M. Guina, “High-efficiency GaInP/GaAs/GaInNAs solar cells grown by combined MBE-MOCVD technique,” Prog. Photovolt. Res. Appl. 24(7), 914–919 (2016).
[Crossref]

Sol. Energy Mater. Sol. Cells (3)

A. Aho, V. Polojärvi, V. Korpijärvi, J. Salmi, A. Tukiainen, P. Laukkanen, and M. Guina, “Composition dependent growth dynamics in molecular beam epitaxy of GaInNAs solar cells,” Sol. Energy Mater. Sol. Cells 124, 150–158 (2014).
[Crossref]

V. Polojärvi, A. Aho, A. Tukiainen, M. Raappana, T. Aho, A. Schramm, and M. Guina, “Influence of As/group-III flux ratio on defects formation and photovoltaic performance of GaInNAs solar cells,” Sol. Energy Mater. Sol. Cells 149, 213–220 (2016).
[Crossref]

A. Mellor, A. Luque, I. Tobías, and A. Martí, “The feasibility of high-efficiency InAs/GaAs quantum dot intermediate band solar cells,” Sol. Energy Mater. Sol. Cells 130, 225–233 (2014).
[Crossref]

Thin Solid Films (1)

J. J. Schermer, G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. Van Deelen, A. T. J. Van Niftrik, and P. K. Larsen, “Photon confinement in high-efficiency, thin-film III–V solar cells obtained by epitaxial lift-off,” Thin Solid Films 511, 645–653 (2006).
[Crossref]

Other (13)

F. Cappelluti, G. Ghione, M. Gioannini, G. J. Bauhuis, P. Mulder, J. J. Schermer, M. Cimino, G. Gervasio, G. Bissels, E. Katsia, T. Aho, T. Niemi, M. Guina, D. Kim, J. Wu, and H. Liu, “Novel concepts for high-efficiency lightweight space solar cells,” in E3S Web of Conferences, Vol. 16, (ESA Publications Division, 2017), pp. 03007.

F. Cappelluti, M. Gioannini, G. Ghione, and A. Khalili, “Numerical study of thin-film quantum-dot solar cells combining selective doping and light-trapping approaches,” in 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), (IEEE, 2016), pp. 1282–1286.
[Crossref]

F. Cappelluti, D. Kim, M. van Eerden, A. P. Cédola, T. Aho, G. Bissels, F. Elsehrawy, J. Wu, H. Liu, P. Mulder, G. J. Bauhuis, J. J. Schermer, T. Niemi, and M. Guina, “Light-trapping enhanced thin-film III-V quantum dot solar cells fabricated by epitaxial lift-off,” Sol. Energy Mater. Sol. Cells, in press (2018).

S. Bailey, J. McNatt, R. Raffaelle, S. Hubbard, D. Forbes, L. Fritzenmeier, and W. Maurer, “The future of space photovoltaics,” in 2009 IEEE 34th Photovoltaic Specialists Conference (PVSC), (IEEE, 2009), pp. 001909.
[Crossref]

M. Peters, M. Rüdiger, D. Pelzer, H. Hauser, M. Hermle, and B. Bläsi, “Electro–optical modelling of solar cells with photonic structures,” in 25th European PV Solar Energy Conference and Exhibition (2010), pp. 87–91.

F. Elsehrawy, T. Niemi, and F. Cappelluti, “Guided-mode resonance gratings for intermediate band quantum dot solar cells,” in Optical Nanostructures and Advanced Materials for Photovoltaics, (Optical Society of America, 2017), paper PM3A.4.

A. Musu, F. Cappelluti, T. Aho, V. Polojärvi, T. Niemi, and M. Guina, “Nanostructures for light management in thin-film GaAs quantum dot solar cells,” in Light, Energy and the Environment, (Optical Society of America, 2016), paper JW4A–45.

SU-8 negative epoxy resists, http://www.microchem.com/Prod-SU8_KMPR.htm , accessed December 2017.

OrmoComp UV inprint, http://www.microresist.de/en/product/hybrid-polymers-0 , accessed January 2018.

E. D. Palik, Handbook of optical constants of solids (Academic press, 1997), pp. 492–443.

E. Yablonovitch and O. Miller, “The Influence of the 4n2 Light Trapping Factor on Ultimate Solar Cell Efficiency,” in Optics for Solar Energy, (Optical Society of America, 2010), paper SWA1.

F. Elsehrawy, F. Cappelluti, T. Aho, T. Niemi, V. Polojärvi, and M. Guina, ” Back grating optimization for light trapping in thin-film quantum dot solar cells,” in 19th Italian National Conference on Photonic Technologies (2017), pp. 34.
[Crossref]

A. Cattoni, H. Chen, J. Goffard, R. De Lépinau, B. Behaghel, C. Dupuis, N. Bardou, and S. Collin, “Multiresonant light trapping in ultra-thin GaAs and CIGS solar cells,” in Optical Nanostructures and Advanced Materials for Photovoltaics, (Optical Society of America, 2017), paper PW3A.2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic structure of a thin-film QDSC employing light trapping.
Fig. 2
Fig. 2 The schematic drawing of the structures. (a) The planar reflector with SU-8 or OrmoComp layer, (b) the reflector with the half-sphere grating, (c) the reflector with the blazed grating, and (d) the reflector with the pyramid grating.
Fig. 3
Fig. 3 (a) Optical profilometer image of the half-sphere structure, (b) Cross-sectional SEM image of the blazed grating, (c) and (d) SEM images of the pyramid grating.
Fig. 4
Fig. 4 Total and specular reflectance of the half-sphere structure and the planar reference. The red double-headed arrow represents the diffuse reflectance.
Fig. 5
Fig. 5 The measured (a) and the simulated (b) diffraction efficiency of the half-sphere structured sample.
Fig. 6
Fig. 6 The measured (a) and the simulated (b) reflectance of the blazed grating, the pyramid grating, and the planar reference. The difference between the total and the specular reflectance represents the amount of diffracted light (the red double-headed arrow).
Fig. 7
Fig. 7 The measured (a) and the simulated (b) diffraction efficiency of the blazed grating. The measurements are presented in two different directions whereas the simulations are only in single direction.
Fig. 8
Fig. 8 The measured (a) and the simulated (b) diffraction efficiency of the pyramid grating. The measured diffraction efficiency is an average of the two directions.
Fig. 9
Fig. 9 Absorbance spectrum for QDSCs in three different configuration.

Metrics