Abstract

The photosynthetic process of phytoplankton is the basis of the material circulation and energy flow of the ecosystem. The rapid and accurate measurement of phytoplankton photosynthesis rate is of great significance to water ecological environment monitoring, marine resource assessment and global climate change prediction. On the basis of “Bio-Optical” model, a photosynthetic rate measurement method based on tunable pulsed light induced fluorescence kinetics was put forward in this paper. The chlorophyll fluorescence was used as the probe of photosynthesis process, and the phytoplankton photosynthetic rate was evaluated by the photosynthetic electron transport rate. Comparative experiment results showed that the photosynthetic electron transport rate measured by fluorescence kinetic method under different conditions of DCMU, culture light and nutrients (nitrogen) were consistent with the photosynthetic oxygen evolution rate measured by oxygen evolution method, and the correlation coefficient R2 were 0.934, 0.957 and 0.955 respectively.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Statistical approach for the retrieval of phytoplankton community structures from in situ fluorescence measurements

Shengqiang Wang, Cong Xiao, Joji Ishizaka, Zhongfeng Qiu, Deyong Sun, Qian Xu, Yuanli Zhu, Yu Huan, and Yuji Watanabe
Opt. Express 24(21) 23635-23653 (2016)

Optical properties of microalgae for enhanced biofuels production

Mautusi Mitra and Anastasios Melis
Opt. Express 16(26) 21807-21820 (2008)

References

  • View by:
  • |
  • |
  • |

  1. C. L. Sabine, R. A. Feely, N. Gruber, R. M. Key, K. Lee, J. L. Bullister, R. Wanninkhof, C. S. Wong, D. W. Wallace, B. Tilbrook, F. J. Millero, T. H. Peng, A. Kozyr, T. Ono, and A. F. Rios, “The oceanic sink for anthropogenic CO2.,” Science 305(5682), 367–371 (2004).
    [Crossref] [PubMed]
  2. P. G. Falkowski and Z. Kolber, “Estimating phytoplankton photosynthesis by active fluorescence,” Carbon Cycle (1992).
  3. U. Schreiber, U. Schliwa, and W. Bilger, “Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer,” Photosynth. Res. 10(1-2), 51–62 (1986).
    [Crossref] [PubMed]
  4. Z. S. Kolber and P. G. Falkowski, “Fast Repetition Rate (FRR) Fluorometer For Making In Situ Measurements Of Primary Productivity,” Proc. IEEE 2, 637–641 (1992).
  5. P. G. Falkowski and J. A. Raven, “Aquatic photosynthesis: (second edition)”. Freshwater Biology, 53(2), 423–423 (2013).
  6. Z. S. Qin, N. J. Zhao, G. F. Yin, C. Y. Shi, T. T. Gan, X. Xiao, J. B. Duan, X. L. Zhang, S. Chen, J. G. Liu, and W. Q. Liu, “Inversion Method of Plant Photosynthesis Parameter Based on Fast Phase and Relaxation Fluorescence Kinetics,” Acta Opt. Sin. 37(7), 0730002 (2017).
  7. D. J. Suggett, H. L. MacIntyre, T. M. Kana, and R. J. Geider, “Comparing electron transport with gas exchange: parameterising exchange rates between alternative photosynthetic currencies for eukaryotic phytoplankton,” Aquat. Microb. Ecol. 56(2–3), 147–162 (2009).
    [Crossref]
  8. C. Y. Shi, Y. J. Zhang, G. F. Yin, N. J. Zhao, J. B. Duan, X. H. Qiu, L. Fang, X. Xiao, and W. Q. Liu, “Determining the optimal excitation condition of high-frequency flash method for algae photosynthetic parameters measurement,” Guangzi Xuebao 44(2), 5–9 (2015).
  9. Z. R. Ouyang, X. B. Wen, Y. H. Geng, H. Mei, H. J. Hu, G. Y. Zhang, and Y. J. Li, “The effects of light intensities, temperatures, pH and salinities on photosynthesis of chlorella,” J. Wuhan Bot. Res. 28(1), 49–55 (2010).

2017 (1)

Z. S. Qin, N. J. Zhao, G. F. Yin, C. Y. Shi, T. T. Gan, X. Xiao, J. B. Duan, X. L. Zhang, S. Chen, J. G. Liu, and W. Q. Liu, “Inversion Method of Plant Photosynthesis Parameter Based on Fast Phase and Relaxation Fluorescence Kinetics,” Acta Opt. Sin. 37(7), 0730002 (2017).

2015 (1)

C. Y. Shi, Y. J. Zhang, G. F. Yin, N. J. Zhao, J. B. Duan, X. H. Qiu, L. Fang, X. Xiao, and W. Q. Liu, “Determining the optimal excitation condition of high-frequency flash method for algae photosynthetic parameters measurement,” Guangzi Xuebao 44(2), 5–9 (2015).

2010 (1)

Z. R. Ouyang, X. B. Wen, Y. H. Geng, H. Mei, H. J. Hu, G. Y. Zhang, and Y. J. Li, “The effects of light intensities, temperatures, pH and salinities on photosynthesis of chlorella,” J. Wuhan Bot. Res. 28(1), 49–55 (2010).

2009 (1)

D. J. Suggett, H. L. MacIntyre, T. M. Kana, and R. J. Geider, “Comparing electron transport with gas exchange: parameterising exchange rates between alternative photosynthetic currencies for eukaryotic phytoplankton,” Aquat. Microb. Ecol. 56(2–3), 147–162 (2009).
[Crossref]

2004 (1)

C. L. Sabine, R. A. Feely, N. Gruber, R. M. Key, K. Lee, J. L. Bullister, R. Wanninkhof, C. S. Wong, D. W. Wallace, B. Tilbrook, F. J. Millero, T. H. Peng, A. Kozyr, T. Ono, and A. F. Rios, “The oceanic sink for anthropogenic CO2.,” Science 305(5682), 367–371 (2004).
[Crossref] [PubMed]

1992 (1)

Z. S. Kolber and P. G. Falkowski, “Fast Repetition Rate (FRR) Fluorometer For Making In Situ Measurements Of Primary Productivity,” Proc. IEEE 2, 637–641 (1992).

1986 (1)

U. Schreiber, U. Schliwa, and W. Bilger, “Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer,” Photosynth. Res. 10(1-2), 51–62 (1986).
[Crossref] [PubMed]

Bilger, W.

U. Schreiber, U. Schliwa, and W. Bilger, “Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer,” Photosynth. Res. 10(1-2), 51–62 (1986).
[Crossref] [PubMed]

Bullister, J. L.

C. L. Sabine, R. A. Feely, N. Gruber, R. M. Key, K. Lee, J. L. Bullister, R. Wanninkhof, C. S. Wong, D. W. Wallace, B. Tilbrook, F. J. Millero, T. H. Peng, A. Kozyr, T. Ono, and A. F. Rios, “The oceanic sink for anthropogenic CO2.,” Science 305(5682), 367–371 (2004).
[Crossref] [PubMed]

Chen, S.

Z. S. Qin, N. J. Zhao, G. F. Yin, C. Y. Shi, T. T. Gan, X. Xiao, J. B. Duan, X. L. Zhang, S. Chen, J. G. Liu, and W. Q. Liu, “Inversion Method of Plant Photosynthesis Parameter Based on Fast Phase and Relaxation Fluorescence Kinetics,” Acta Opt. Sin. 37(7), 0730002 (2017).

Duan, J. B.

Z. S. Qin, N. J. Zhao, G. F. Yin, C. Y. Shi, T. T. Gan, X. Xiao, J. B. Duan, X. L. Zhang, S. Chen, J. G. Liu, and W. Q. Liu, “Inversion Method of Plant Photosynthesis Parameter Based on Fast Phase and Relaxation Fluorescence Kinetics,” Acta Opt. Sin. 37(7), 0730002 (2017).

C. Y. Shi, Y. J. Zhang, G. F. Yin, N. J. Zhao, J. B. Duan, X. H. Qiu, L. Fang, X. Xiao, and W. Q. Liu, “Determining the optimal excitation condition of high-frequency flash method for algae photosynthetic parameters measurement,” Guangzi Xuebao 44(2), 5–9 (2015).

Falkowski, P. G.

Z. S. Kolber and P. G. Falkowski, “Fast Repetition Rate (FRR) Fluorometer For Making In Situ Measurements Of Primary Productivity,” Proc. IEEE 2, 637–641 (1992).

Fang, L.

C. Y. Shi, Y. J. Zhang, G. F. Yin, N. J. Zhao, J. B. Duan, X. H. Qiu, L. Fang, X. Xiao, and W. Q. Liu, “Determining the optimal excitation condition of high-frequency flash method for algae photosynthetic parameters measurement,” Guangzi Xuebao 44(2), 5–9 (2015).

Feely, R. A.

C. L. Sabine, R. A. Feely, N. Gruber, R. M. Key, K. Lee, J. L. Bullister, R. Wanninkhof, C. S. Wong, D. W. Wallace, B. Tilbrook, F. J. Millero, T. H. Peng, A. Kozyr, T. Ono, and A. F. Rios, “The oceanic sink for anthropogenic CO2.,” Science 305(5682), 367–371 (2004).
[Crossref] [PubMed]

Gan, T. T.

Z. S. Qin, N. J. Zhao, G. F. Yin, C. Y. Shi, T. T. Gan, X. Xiao, J. B. Duan, X. L. Zhang, S. Chen, J. G. Liu, and W. Q. Liu, “Inversion Method of Plant Photosynthesis Parameter Based on Fast Phase and Relaxation Fluorescence Kinetics,” Acta Opt. Sin. 37(7), 0730002 (2017).

Geider, R. J.

D. J. Suggett, H. L. MacIntyre, T. M. Kana, and R. J. Geider, “Comparing electron transport with gas exchange: parameterising exchange rates between alternative photosynthetic currencies for eukaryotic phytoplankton,” Aquat. Microb. Ecol. 56(2–3), 147–162 (2009).
[Crossref]

Geng, Y. H.

Z. R. Ouyang, X. B. Wen, Y. H. Geng, H. Mei, H. J. Hu, G. Y. Zhang, and Y. J. Li, “The effects of light intensities, temperatures, pH and salinities on photosynthesis of chlorella,” J. Wuhan Bot. Res. 28(1), 49–55 (2010).

Gruber, N.

C. L. Sabine, R. A. Feely, N. Gruber, R. M. Key, K. Lee, J. L. Bullister, R. Wanninkhof, C. S. Wong, D. W. Wallace, B. Tilbrook, F. J. Millero, T. H. Peng, A. Kozyr, T. Ono, and A. F. Rios, “The oceanic sink for anthropogenic CO2.,” Science 305(5682), 367–371 (2004).
[Crossref] [PubMed]

Hu, H. J.

Z. R. Ouyang, X. B. Wen, Y. H. Geng, H. Mei, H. J. Hu, G. Y. Zhang, and Y. J. Li, “The effects of light intensities, temperatures, pH and salinities on photosynthesis of chlorella,” J. Wuhan Bot. Res. 28(1), 49–55 (2010).

Kana, T. M.

D. J. Suggett, H. L. MacIntyre, T. M. Kana, and R. J. Geider, “Comparing electron transport with gas exchange: parameterising exchange rates between alternative photosynthetic currencies for eukaryotic phytoplankton,” Aquat. Microb. Ecol. 56(2–3), 147–162 (2009).
[Crossref]

Key, R. M.

C. L. Sabine, R. A. Feely, N. Gruber, R. M. Key, K. Lee, J. L. Bullister, R. Wanninkhof, C. S. Wong, D. W. Wallace, B. Tilbrook, F. J. Millero, T. H. Peng, A. Kozyr, T. Ono, and A. F. Rios, “The oceanic sink for anthropogenic CO2.,” Science 305(5682), 367–371 (2004).
[Crossref] [PubMed]

Kolber, Z. S.

Z. S. Kolber and P. G. Falkowski, “Fast Repetition Rate (FRR) Fluorometer For Making In Situ Measurements Of Primary Productivity,” Proc. IEEE 2, 637–641 (1992).

Kozyr, A.

C. L. Sabine, R. A. Feely, N. Gruber, R. M. Key, K. Lee, J. L. Bullister, R. Wanninkhof, C. S. Wong, D. W. Wallace, B. Tilbrook, F. J. Millero, T. H. Peng, A. Kozyr, T. Ono, and A. F. Rios, “The oceanic sink for anthropogenic CO2.,” Science 305(5682), 367–371 (2004).
[Crossref] [PubMed]

Lee, K.

C. L. Sabine, R. A. Feely, N. Gruber, R. M. Key, K. Lee, J. L. Bullister, R. Wanninkhof, C. S. Wong, D. W. Wallace, B. Tilbrook, F. J. Millero, T. H. Peng, A. Kozyr, T. Ono, and A. F. Rios, “The oceanic sink for anthropogenic CO2.,” Science 305(5682), 367–371 (2004).
[Crossref] [PubMed]

Li, Y. J.

Z. R. Ouyang, X. B. Wen, Y. H. Geng, H. Mei, H. J. Hu, G. Y. Zhang, and Y. J. Li, “The effects of light intensities, temperatures, pH and salinities on photosynthesis of chlorella,” J. Wuhan Bot. Res. 28(1), 49–55 (2010).

Liu, J. G.

Z. S. Qin, N. J. Zhao, G. F. Yin, C. Y. Shi, T. T. Gan, X. Xiao, J. B. Duan, X. L. Zhang, S. Chen, J. G. Liu, and W. Q. Liu, “Inversion Method of Plant Photosynthesis Parameter Based on Fast Phase and Relaxation Fluorescence Kinetics,” Acta Opt. Sin. 37(7), 0730002 (2017).

Liu, W. Q.

Z. S. Qin, N. J. Zhao, G. F. Yin, C. Y. Shi, T. T. Gan, X. Xiao, J. B. Duan, X. L. Zhang, S. Chen, J. G. Liu, and W. Q. Liu, “Inversion Method of Plant Photosynthesis Parameter Based on Fast Phase and Relaxation Fluorescence Kinetics,” Acta Opt. Sin. 37(7), 0730002 (2017).

C. Y. Shi, Y. J. Zhang, G. F. Yin, N. J. Zhao, J. B. Duan, X. H. Qiu, L. Fang, X. Xiao, and W. Q. Liu, “Determining the optimal excitation condition of high-frequency flash method for algae photosynthetic parameters measurement,” Guangzi Xuebao 44(2), 5–9 (2015).

MacIntyre, H. L.

D. J. Suggett, H. L. MacIntyre, T. M. Kana, and R. J. Geider, “Comparing electron transport with gas exchange: parameterising exchange rates between alternative photosynthetic currencies for eukaryotic phytoplankton,” Aquat. Microb. Ecol. 56(2–3), 147–162 (2009).
[Crossref]

Mei, H.

Z. R. Ouyang, X. B. Wen, Y. H. Geng, H. Mei, H. J. Hu, G. Y. Zhang, and Y. J. Li, “The effects of light intensities, temperatures, pH and salinities on photosynthesis of chlorella,” J. Wuhan Bot. Res. 28(1), 49–55 (2010).

Millero, F. J.

C. L. Sabine, R. A. Feely, N. Gruber, R. M. Key, K. Lee, J. L. Bullister, R. Wanninkhof, C. S. Wong, D. W. Wallace, B. Tilbrook, F. J. Millero, T. H. Peng, A. Kozyr, T. Ono, and A. F. Rios, “The oceanic sink for anthropogenic CO2.,” Science 305(5682), 367–371 (2004).
[Crossref] [PubMed]

Ono, T.

C. L. Sabine, R. A. Feely, N. Gruber, R. M. Key, K. Lee, J. L. Bullister, R. Wanninkhof, C. S. Wong, D. W. Wallace, B. Tilbrook, F. J. Millero, T. H. Peng, A. Kozyr, T. Ono, and A. F. Rios, “The oceanic sink for anthropogenic CO2.,” Science 305(5682), 367–371 (2004).
[Crossref] [PubMed]

Ouyang, Z. R.

Z. R. Ouyang, X. B. Wen, Y. H. Geng, H. Mei, H. J. Hu, G. Y. Zhang, and Y. J. Li, “The effects of light intensities, temperatures, pH and salinities on photosynthesis of chlorella,” J. Wuhan Bot. Res. 28(1), 49–55 (2010).

Peng, T. H.

C. L. Sabine, R. A. Feely, N. Gruber, R. M. Key, K. Lee, J. L. Bullister, R. Wanninkhof, C. S. Wong, D. W. Wallace, B. Tilbrook, F. J. Millero, T. H. Peng, A. Kozyr, T. Ono, and A. F. Rios, “The oceanic sink for anthropogenic CO2.,” Science 305(5682), 367–371 (2004).
[Crossref] [PubMed]

Qin, Z. S.

Z. S. Qin, N. J. Zhao, G. F. Yin, C. Y. Shi, T. T. Gan, X. Xiao, J. B. Duan, X. L. Zhang, S. Chen, J. G. Liu, and W. Q. Liu, “Inversion Method of Plant Photosynthesis Parameter Based on Fast Phase and Relaxation Fluorescence Kinetics,” Acta Opt. Sin. 37(7), 0730002 (2017).

Qiu, X. H.

C. Y. Shi, Y. J. Zhang, G. F. Yin, N. J. Zhao, J. B. Duan, X. H. Qiu, L. Fang, X. Xiao, and W. Q. Liu, “Determining the optimal excitation condition of high-frequency flash method for algae photosynthetic parameters measurement,” Guangzi Xuebao 44(2), 5–9 (2015).

Rios, A. F.

C. L. Sabine, R. A. Feely, N. Gruber, R. M. Key, K. Lee, J. L. Bullister, R. Wanninkhof, C. S. Wong, D. W. Wallace, B. Tilbrook, F. J. Millero, T. H. Peng, A. Kozyr, T. Ono, and A. F. Rios, “The oceanic sink for anthropogenic CO2.,” Science 305(5682), 367–371 (2004).
[Crossref] [PubMed]

Sabine, C. L.

C. L. Sabine, R. A. Feely, N. Gruber, R. M. Key, K. Lee, J. L. Bullister, R. Wanninkhof, C. S. Wong, D. W. Wallace, B. Tilbrook, F. J. Millero, T. H. Peng, A. Kozyr, T. Ono, and A. F. Rios, “The oceanic sink for anthropogenic CO2.,” Science 305(5682), 367–371 (2004).
[Crossref] [PubMed]

Schliwa, U.

U. Schreiber, U. Schliwa, and W. Bilger, “Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer,” Photosynth. Res. 10(1-2), 51–62 (1986).
[Crossref] [PubMed]

Schreiber, U.

U. Schreiber, U. Schliwa, and W. Bilger, “Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer,” Photosynth. Res. 10(1-2), 51–62 (1986).
[Crossref] [PubMed]

Shi, C. Y.

Z. S. Qin, N. J. Zhao, G. F. Yin, C. Y. Shi, T. T. Gan, X. Xiao, J. B. Duan, X. L. Zhang, S. Chen, J. G. Liu, and W. Q. Liu, “Inversion Method of Plant Photosynthesis Parameter Based on Fast Phase and Relaxation Fluorescence Kinetics,” Acta Opt. Sin. 37(7), 0730002 (2017).

C. Y. Shi, Y. J. Zhang, G. F. Yin, N. J. Zhao, J. B. Duan, X. H. Qiu, L. Fang, X. Xiao, and W. Q. Liu, “Determining the optimal excitation condition of high-frequency flash method for algae photosynthetic parameters measurement,” Guangzi Xuebao 44(2), 5–9 (2015).

Suggett, D. J.

D. J. Suggett, H. L. MacIntyre, T. M. Kana, and R. J. Geider, “Comparing electron transport with gas exchange: parameterising exchange rates between alternative photosynthetic currencies for eukaryotic phytoplankton,” Aquat. Microb. Ecol. 56(2–3), 147–162 (2009).
[Crossref]

Tilbrook, B.

C. L. Sabine, R. A. Feely, N. Gruber, R. M. Key, K. Lee, J. L. Bullister, R. Wanninkhof, C. S. Wong, D. W. Wallace, B. Tilbrook, F. J. Millero, T. H. Peng, A. Kozyr, T. Ono, and A. F. Rios, “The oceanic sink for anthropogenic CO2.,” Science 305(5682), 367–371 (2004).
[Crossref] [PubMed]

Wallace, D. W.

C. L. Sabine, R. A. Feely, N. Gruber, R. M. Key, K. Lee, J. L. Bullister, R. Wanninkhof, C. S. Wong, D. W. Wallace, B. Tilbrook, F. J. Millero, T. H. Peng, A. Kozyr, T. Ono, and A. F. Rios, “The oceanic sink for anthropogenic CO2.,” Science 305(5682), 367–371 (2004).
[Crossref] [PubMed]

Wanninkhof, R.

C. L. Sabine, R. A. Feely, N. Gruber, R. M. Key, K. Lee, J. L. Bullister, R. Wanninkhof, C. S. Wong, D. W. Wallace, B. Tilbrook, F. J. Millero, T. H. Peng, A. Kozyr, T. Ono, and A. F. Rios, “The oceanic sink for anthropogenic CO2.,” Science 305(5682), 367–371 (2004).
[Crossref] [PubMed]

Wen, X. B.

Z. R. Ouyang, X. B. Wen, Y. H. Geng, H. Mei, H. J. Hu, G. Y. Zhang, and Y. J. Li, “The effects of light intensities, temperatures, pH and salinities on photosynthesis of chlorella,” J. Wuhan Bot. Res. 28(1), 49–55 (2010).

Wong, C. S.

C. L. Sabine, R. A. Feely, N. Gruber, R. M. Key, K. Lee, J. L. Bullister, R. Wanninkhof, C. S. Wong, D. W. Wallace, B. Tilbrook, F. J. Millero, T. H. Peng, A. Kozyr, T. Ono, and A. F. Rios, “The oceanic sink for anthropogenic CO2.,” Science 305(5682), 367–371 (2004).
[Crossref] [PubMed]

Xiao, X.

Z. S. Qin, N. J. Zhao, G. F. Yin, C. Y. Shi, T. T. Gan, X. Xiao, J. B. Duan, X. L. Zhang, S. Chen, J. G. Liu, and W. Q. Liu, “Inversion Method of Plant Photosynthesis Parameter Based on Fast Phase and Relaxation Fluorescence Kinetics,” Acta Opt. Sin. 37(7), 0730002 (2017).

C. Y. Shi, Y. J. Zhang, G. F. Yin, N. J. Zhao, J. B. Duan, X. H. Qiu, L. Fang, X. Xiao, and W. Q. Liu, “Determining the optimal excitation condition of high-frequency flash method for algae photosynthetic parameters measurement,” Guangzi Xuebao 44(2), 5–9 (2015).

Yin, G. F.

Z. S. Qin, N. J. Zhao, G. F. Yin, C. Y. Shi, T. T. Gan, X. Xiao, J. B. Duan, X. L. Zhang, S. Chen, J. G. Liu, and W. Q. Liu, “Inversion Method of Plant Photosynthesis Parameter Based on Fast Phase and Relaxation Fluorescence Kinetics,” Acta Opt. Sin. 37(7), 0730002 (2017).

C. Y. Shi, Y. J. Zhang, G. F. Yin, N. J. Zhao, J. B. Duan, X. H. Qiu, L. Fang, X. Xiao, and W. Q. Liu, “Determining the optimal excitation condition of high-frequency flash method for algae photosynthetic parameters measurement,” Guangzi Xuebao 44(2), 5–9 (2015).

Zhang, G. Y.

Z. R. Ouyang, X. B. Wen, Y. H. Geng, H. Mei, H. J. Hu, G. Y. Zhang, and Y. J. Li, “The effects of light intensities, temperatures, pH and salinities on photosynthesis of chlorella,” J. Wuhan Bot. Res. 28(1), 49–55 (2010).

Zhang, X. L.

Z. S. Qin, N. J. Zhao, G. F. Yin, C. Y. Shi, T. T. Gan, X. Xiao, J. B. Duan, X. L. Zhang, S. Chen, J. G. Liu, and W. Q. Liu, “Inversion Method of Plant Photosynthesis Parameter Based on Fast Phase and Relaxation Fluorescence Kinetics,” Acta Opt. Sin. 37(7), 0730002 (2017).

Zhang, Y. J.

C. Y. Shi, Y. J. Zhang, G. F. Yin, N. J. Zhao, J. B. Duan, X. H. Qiu, L. Fang, X. Xiao, and W. Q. Liu, “Determining the optimal excitation condition of high-frequency flash method for algae photosynthetic parameters measurement,” Guangzi Xuebao 44(2), 5–9 (2015).

Zhao, N. J.

Z. S. Qin, N. J. Zhao, G. F. Yin, C. Y. Shi, T. T. Gan, X. Xiao, J. B. Duan, X. L. Zhang, S. Chen, J. G. Liu, and W. Q. Liu, “Inversion Method of Plant Photosynthesis Parameter Based on Fast Phase and Relaxation Fluorescence Kinetics,” Acta Opt. Sin. 37(7), 0730002 (2017).

C. Y. Shi, Y. J. Zhang, G. F. Yin, N. J. Zhao, J. B. Duan, X. H. Qiu, L. Fang, X. Xiao, and W. Q. Liu, “Determining the optimal excitation condition of high-frequency flash method for algae photosynthetic parameters measurement,” Guangzi Xuebao 44(2), 5–9 (2015).

Acta Opt. Sin. (1)

Z. S. Qin, N. J. Zhao, G. F. Yin, C. Y. Shi, T. T. Gan, X. Xiao, J. B. Duan, X. L. Zhang, S. Chen, J. G. Liu, and W. Q. Liu, “Inversion Method of Plant Photosynthesis Parameter Based on Fast Phase and Relaxation Fluorescence Kinetics,” Acta Opt. Sin. 37(7), 0730002 (2017).

Aquat. Microb. Ecol. (1)

D. J. Suggett, H. L. MacIntyre, T. M. Kana, and R. J. Geider, “Comparing electron transport with gas exchange: parameterising exchange rates between alternative photosynthetic currencies for eukaryotic phytoplankton,” Aquat. Microb. Ecol. 56(2–3), 147–162 (2009).
[Crossref]

Guangzi Xuebao (1)

C. Y. Shi, Y. J. Zhang, G. F. Yin, N. J. Zhao, J. B. Duan, X. H. Qiu, L. Fang, X. Xiao, and W. Q. Liu, “Determining the optimal excitation condition of high-frequency flash method for algae photosynthetic parameters measurement,” Guangzi Xuebao 44(2), 5–9 (2015).

J. Wuhan Bot. Res. (1)

Z. R. Ouyang, X. B. Wen, Y. H. Geng, H. Mei, H. J. Hu, G. Y. Zhang, and Y. J. Li, “The effects of light intensities, temperatures, pH and salinities on photosynthesis of chlorella,” J. Wuhan Bot. Res. 28(1), 49–55 (2010).

Photosynth. Res. (1)

U. Schreiber, U. Schliwa, and W. Bilger, “Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer,” Photosynth. Res. 10(1-2), 51–62 (1986).
[Crossref] [PubMed]

Proc. IEEE (1)

Z. S. Kolber and P. G. Falkowski, “Fast Repetition Rate (FRR) Fluorometer For Making In Situ Measurements Of Primary Productivity,” Proc. IEEE 2, 637–641 (1992).

Science (1)

C. L. Sabine, R. A. Feely, N. Gruber, R. M. Key, K. Lee, J. L. Bullister, R. Wanninkhof, C. S. Wong, D. W. Wallace, B. Tilbrook, F. J. Millero, T. H. Peng, A. Kozyr, T. Ono, and A. F. Rios, “The oceanic sink for anthropogenic CO2.,” Science 305(5682), 367–371 (2004).
[Crossref] [PubMed]

Other (2)

P. G. Falkowski and Z. Kolber, “Estimating phytoplankton photosynthesis by active fluorescence,” Carbon Cycle (1992).

P. G. Falkowski and J. A. Raven, “Aquatic photosynthesis: (second edition)”. Freshwater Biology, 53(2), 423–423 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Diagram of the energy flow in phytoplankton photosynthesis (modified from [5]).
Fig. 2
Fig. 2 Measurement process of tunable pulsed light induced fluorescence kinetics.
Fig. 3
Fig. 3 Diagram of tunable pulsed light induced fluorescence kinetics measurement system.
Fig. 4
Fig. 4 Procedure of comparative experiment for phytoplankton photosynthetic rate.
Fig. 5
Fig. 5 Results of phytoplankton photosynthetic rate under DCMU stress (a)Photosynthetic oxygen evolution rate curves (b)Photosynthetic electron transport rate curves (c)Change of PO2 and Pe versus DCMU concentration (d)Correlation between PO2 and Pe.
Fig. 6
Fig. 6 Results of phytoplankton photosynthetic rate under different culture light intensities (a)Photosynthetic oxygen evolution rate curves (b)Photosynthetic electron transport rate curves (c)Change of PO2 and Pe versus DCMU concentration (d)Correlation between PO2 and Pe.
Fig. 7
Fig. 7 Results of phytoplankton photosynthetic rate under different nutrient concentrations (a) Photosynthetic oxygen evolution rate curves (b) Photosynthetic electron transport rate curves (c) Change of PO2 and Pe versus DCMU concentration (d)Correlation between PO2 and Pe.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

P e =E× A PSII × T e
F(t)= F o +( F m F o )( 1exp( σ PSII 0 t Edt ) )
G(t)= F o +( F m F o )( exp( t/ τ QA ) )
A PSII = σ PSII / Φ QA
T e = Φ T × Φ P × Φ QA
Φ P = ( F m F o )/ ( F m ' F o ' )
Φ QA =1/ τ QA
P e =E× A PSII × T e =E× σ PSII × ( F m F o )/ ( F m ' F o ' ) ×1/ τ QA

Metrics