Abstract

In view of the problem of the on-line measurement of algae classification, a method of algae classification and concentration determination based on the discrete three-dimensional fluorescence spectra was studied in this work. The discrete three-dimensional fluorescence spectra of twelve common species of algae belonging to five categories were analyzed, the discrete three-dimensional standard spectra of five categories were built, and the recognition, classification and concentration prediction of algae categories were realized by the discrete three-dimensional fluorescence spectra coupled with non-negative weighted least squares linear regression analysis. The results show that similarities between discrete three-dimensional standard spectra of different categories were reduced and the accuracies of recognition, classification and concentration prediction of the algae categories were significantly improved. By comparing with that of the chlorophyll a fluorescence excitation spectra method, the recognition accuracy rate in pure samples by discrete three-dimensional fluorescence spectra is improved 1.38%, and the recovery rate and classification accuracy in pure diatom samples 34.1% and 46.8%, respectively; the recognition accuracy rate of mixed samples by discrete-three dimensional fluorescence spectra is enhanced by 26.1%, the recovery rate of mixed samples with Chlorophyta 37.8%, and the classification accuracy of mixed samples with diatoms 54.6%.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Statistical approach for the retrieval of phytoplankton community structures from in situ fluorescence measurements

Shengqiang Wang, Cong Xiao, Joji Ishizaka, Zhongfeng Qiu, Deyong Sun, Qian Xu, Yuanli Zhu, Yu Huan, and Yuji Watanabe
Opt. Express 24(21) 23635-23653 (2016)

Development of a UV laser-induced fluorescence lidar for monitoring blue-green algae in Lake Suwa

Yasunori Saito, Kengo Takano, Fumitoshi Kobayashi, Kazuki Kobayashi, and Ho-Dong Park
Appl. Opt. 53(30) 7030-7036 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. Hilton, E. Rigg, and G. Jaworski, “Algal identification using in vivo fluorescence spectra,” J. Plankton Res. 11(1), 65–74 (1989).
    [Crossref]
  2. J. Gregor and M. Blahoslav, “A Simple In Vivo Fluorescence Method for the Selective Detection and Quantification of Freshwater Cyanobacteria and Eukaryotic Algae,” Clean-Soil Air Water 33(2), 142–148 (2005).
  3. J. Kolbowski and U. Schreiber, “Computer-controlled phytoplankton analyzer based on 4-wavelengths PAM chlorophyll fluorometer,” in Photosynthesis: From Light to Biosphere, Volume V (Kluwer Academic Publishers, 1995), pp. 825–828.
  4. C. S. Yentsch and D. A. Phinney, “Spectral fluorescence: an ataxonomic tool for studying the structure of phytoplankton populations,” J. Plankton Res. 7(5), 617–632 (1985).
    [Crossref]
  5. M. Beutler, K. H. Wiltshire, B. Meyer, C. Moldaenke, C. Lüring, M. Meyerhöfer, U.-P. Hansen, and H. Dau, “A fluorometric method for the differentiation of algal populations in vivo and in situ,” Photosynth. Res. 72(1), 39–53 (2002).
    [Crossref] [PubMed]
  6. J. W. Harrison, E. T. Howel, S. B. Watson, R. E. H. Smith, “Improved estimates of phytoplankton community composition based on in situ spectral fluorescence: use of ordination and field-derived norm spectra for the bbe FluoroProbe,” Canadian Journal of Fisheries & Aquatic Sciences 73, 10 (2016).
    [Crossref]
  7. N. Escoffier, C. Bernard, S. Hamlaou, and A. Groleau, “Quantifying phytoplankton communities using spectral fluorescence: the effects of species composition and physiological state,” J. Plankton Res. 37(1), 1–15 (2014).
  8. National Environmental Protection Bureau, “Monitoring Analysis Methods for Water and Wastewater,” Zhongguo Huanjing Kexue (EPA, 1997).
  9. G. Yin, N. Zhao, L. Hu, X. Yu, C. Shi, X. Xiao, L. Fang, J. Duan, T. Gan, Y. Zhang, J. Liu, and W. Liu, “Classified Measurement of Phytoplankton Based on Characteristic Fluorescence of Photosynthetic Pigments,” Acta Opt. Sin. 34(09), 0930005 (2014).
    [Crossref]
  10. K. X. Wan, I. Vidavsky, and M. L. Gross, “Comparing similar spectra: From similarity index to spectral contrast angle,” J. Am. Soc. Mass Spectrom. 13(1), 85–88 (2002).
    [Crossref] [PubMed]

2014 (2)

N. Escoffier, C. Bernard, S. Hamlaou, and A. Groleau, “Quantifying phytoplankton communities using spectral fluorescence: the effects of species composition and physiological state,” J. Plankton Res. 37(1), 1–15 (2014).

G. Yin, N. Zhao, L. Hu, X. Yu, C. Shi, X. Xiao, L. Fang, J. Duan, T. Gan, Y. Zhang, J. Liu, and W. Liu, “Classified Measurement of Phytoplankton Based on Characteristic Fluorescence of Photosynthetic Pigments,” Acta Opt. Sin. 34(09), 0930005 (2014).
[Crossref]

2005 (1)

J. Gregor and M. Blahoslav, “A Simple In Vivo Fluorescence Method for the Selective Detection and Quantification of Freshwater Cyanobacteria and Eukaryotic Algae,” Clean-Soil Air Water 33(2), 142–148 (2005).

2002 (2)

M. Beutler, K. H. Wiltshire, B. Meyer, C. Moldaenke, C. Lüring, M. Meyerhöfer, U.-P. Hansen, and H. Dau, “A fluorometric method for the differentiation of algal populations in vivo and in situ,” Photosynth. Res. 72(1), 39–53 (2002).
[Crossref] [PubMed]

K. X. Wan, I. Vidavsky, and M. L. Gross, “Comparing similar spectra: From similarity index to spectral contrast angle,” J. Am. Soc. Mass Spectrom. 13(1), 85–88 (2002).
[Crossref] [PubMed]

1989 (1)

J. Hilton, E. Rigg, and G. Jaworski, “Algal identification using in vivo fluorescence spectra,” J. Plankton Res. 11(1), 65–74 (1989).
[Crossref]

1985 (1)

C. S. Yentsch and D. A. Phinney, “Spectral fluorescence: an ataxonomic tool for studying the structure of phytoplankton populations,” J. Plankton Res. 7(5), 617–632 (1985).
[Crossref]

Bernard, C.

N. Escoffier, C. Bernard, S. Hamlaou, and A. Groleau, “Quantifying phytoplankton communities using spectral fluorescence: the effects of species composition and physiological state,” J. Plankton Res. 37(1), 1–15 (2014).

Beutler, M.

M. Beutler, K. H. Wiltshire, B. Meyer, C. Moldaenke, C. Lüring, M. Meyerhöfer, U.-P. Hansen, and H. Dau, “A fluorometric method for the differentiation of algal populations in vivo and in situ,” Photosynth. Res. 72(1), 39–53 (2002).
[Crossref] [PubMed]

Blahoslav, M.

J. Gregor and M. Blahoslav, “A Simple In Vivo Fluorescence Method for the Selective Detection and Quantification of Freshwater Cyanobacteria and Eukaryotic Algae,” Clean-Soil Air Water 33(2), 142–148 (2005).

Dau, H.

M. Beutler, K. H. Wiltshire, B. Meyer, C. Moldaenke, C. Lüring, M. Meyerhöfer, U.-P. Hansen, and H. Dau, “A fluorometric method for the differentiation of algal populations in vivo and in situ,” Photosynth. Res. 72(1), 39–53 (2002).
[Crossref] [PubMed]

Duan, J.

G. Yin, N. Zhao, L. Hu, X. Yu, C. Shi, X. Xiao, L. Fang, J. Duan, T. Gan, Y. Zhang, J. Liu, and W. Liu, “Classified Measurement of Phytoplankton Based on Characteristic Fluorescence of Photosynthetic Pigments,” Acta Opt. Sin. 34(09), 0930005 (2014).
[Crossref]

Escoffier, N.

N. Escoffier, C. Bernard, S. Hamlaou, and A. Groleau, “Quantifying phytoplankton communities using spectral fluorescence: the effects of species composition and physiological state,” J. Plankton Res. 37(1), 1–15 (2014).

Fang, L.

G. Yin, N. Zhao, L. Hu, X. Yu, C. Shi, X. Xiao, L. Fang, J. Duan, T. Gan, Y. Zhang, J. Liu, and W. Liu, “Classified Measurement of Phytoplankton Based on Characteristic Fluorescence of Photosynthetic Pigments,” Acta Opt. Sin. 34(09), 0930005 (2014).
[Crossref]

Gan, T.

G. Yin, N. Zhao, L. Hu, X. Yu, C. Shi, X. Xiao, L. Fang, J. Duan, T. Gan, Y. Zhang, J. Liu, and W. Liu, “Classified Measurement of Phytoplankton Based on Characteristic Fluorescence of Photosynthetic Pigments,” Acta Opt. Sin. 34(09), 0930005 (2014).
[Crossref]

Gregor, J.

J. Gregor and M. Blahoslav, “A Simple In Vivo Fluorescence Method for the Selective Detection and Quantification of Freshwater Cyanobacteria and Eukaryotic Algae,” Clean-Soil Air Water 33(2), 142–148 (2005).

Groleau, A.

N. Escoffier, C. Bernard, S. Hamlaou, and A. Groleau, “Quantifying phytoplankton communities using spectral fluorescence: the effects of species composition and physiological state,” J. Plankton Res. 37(1), 1–15 (2014).

Gross, M. L.

K. X. Wan, I. Vidavsky, and M. L. Gross, “Comparing similar spectra: From similarity index to spectral contrast angle,” J. Am. Soc. Mass Spectrom. 13(1), 85–88 (2002).
[Crossref] [PubMed]

Hamlaou, S.

N. Escoffier, C. Bernard, S. Hamlaou, and A. Groleau, “Quantifying phytoplankton communities using spectral fluorescence: the effects of species composition and physiological state,” J. Plankton Res. 37(1), 1–15 (2014).

Hansen, U.-P.

M. Beutler, K. H. Wiltshire, B. Meyer, C. Moldaenke, C. Lüring, M. Meyerhöfer, U.-P. Hansen, and H. Dau, “A fluorometric method for the differentiation of algal populations in vivo and in situ,” Photosynth. Res. 72(1), 39–53 (2002).
[Crossref] [PubMed]

Hilton, J.

J. Hilton, E. Rigg, and G. Jaworski, “Algal identification using in vivo fluorescence spectra,” J. Plankton Res. 11(1), 65–74 (1989).
[Crossref]

Hu, L.

G. Yin, N. Zhao, L. Hu, X. Yu, C. Shi, X. Xiao, L. Fang, J. Duan, T. Gan, Y. Zhang, J. Liu, and W. Liu, “Classified Measurement of Phytoplankton Based on Characteristic Fluorescence of Photosynthetic Pigments,” Acta Opt. Sin. 34(09), 0930005 (2014).
[Crossref]

Jaworski, G.

J. Hilton, E. Rigg, and G. Jaworski, “Algal identification using in vivo fluorescence spectra,” J. Plankton Res. 11(1), 65–74 (1989).
[Crossref]

Liu, J.

G. Yin, N. Zhao, L. Hu, X. Yu, C. Shi, X. Xiao, L. Fang, J. Duan, T. Gan, Y. Zhang, J. Liu, and W. Liu, “Classified Measurement of Phytoplankton Based on Characteristic Fluorescence of Photosynthetic Pigments,” Acta Opt. Sin. 34(09), 0930005 (2014).
[Crossref]

Liu, W.

G. Yin, N. Zhao, L. Hu, X. Yu, C. Shi, X. Xiao, L. Fang, J. Duan, T. Gan, Y. Zhang, J. Liu, and W. Liu, “Classified Measurement of Phytoplankton Based on Characteristic Fluorescence of Photosynthetic Pigments,” Acta Opt. Sin. 34(09), 0930005 (2014).
[Crossref]

Lüring, C.

M. Beutler, K. H. Wiltshire, B. Meyer, C. Moldaenke, C. Lüring, M. Meyerhöfer, U.-P. Hansen, and H. Dau, “A fluorometric method for the differentiation of algal populations in vivo and in situ,” Photosynth. Res. 72(1), 39–53 (2002).
[Crossref] [PubMed]

Meyer, B.

M. Beutler, K. H. Wiltshire, B. Meyer, C. Moldaenke, C. Lüring, M. Meyerhöfer, U.-P. Hansen, and H. Dau, “A fluorometric method for the differentiation of algal populations in vivo and in situ,” Photosynth. Res. 72(1), 39–53 (2002).
[Crossref] [PubMed]

Meyerhöfer, M.

M. Beutler, K. H. Wiltshire, B. Meyer, C. Moldaenke, C. Lüring, M. Meyerhöfer, U.-P. Hansen, and H. Dau, “A fluorometric method for the differentiation of algal populations in vivo and in situ,” Photosynth. Res. 72(1), 39–53 (2002).
[Crossref] [PubMed]

Moldaenke, C.

M. Beutler, K. H. Wiltshire, B. Meyer, C. Moldaenke, C. Lüring, M. Meyerhöfer, U.-P. Hansen, and H. Dau, “A fluorometric method for the differentiation of algal populations in vivo and in situ,” Photosynth. Res. 72(1), 39–53 (2002).
[Crossref] [PubMed]

Phinney, D. A.

C. S. Yentsch and D. A. Phinney, “Spectral fluorescence: an ataxonomic tool for studying the structure of phytoplankton populations,” J. Plankton Res. 7(5), 617–632 (1985).
[Crossref]

Rigg, E.

J. Hilton, E. Rigg, and G. Jaworski, “Algal identification using in vivo fluorescence spectra,” J. Plankton Res. 11(1), 65–74 (1989).
[Crossref]

Shi, C.

G. Yin, N. Zhao, L. Hu, X. Yu, C. Shi, X. Xiao, L. Fang, J. Duan, T. Gan, Y. Zhang, J. Liu, and W. Liu, “Classified Measurement of Phytoplankton Based on Characteristic Fluorescence of Photosynthetic Pigments,” Acta Opt. Sin. 34(09), 0930005 (2014).
[Crossref]

Vidavsky, I.

K. X. Wan, I. Vidavsky, and M. L. Gross, “Comparing similar spectra: From similarity index to spectral contrast angle,” J. Am. Soc. Mass Spectrom. 13(1), 85–88 (2002).
[Crossref] [PubMed]

Wan, K. X.

K. X. Wan, I. Vidavsky, and M. L. Gross, “Comparing similar spectra: From similarity index to spectral contrast angle,” J. Am. Soc. Mass Spectrom. 13(1), 85–88 (2002).
[Crossref] [PubMed]

Wiltshire, K. H.

M. Beutler, K. H. Wiltshire, B. Meyer, C. Moldaenke, C. Lüring, M. Meyerhöfer, U.-P. Hansen, and H. Dau, “A fluorometric method for the differentiation of algal populations in vivo and in situ,” Photosynth. Res. 72(1), 39–53 (2002).
[Crossref] [PubMed]

Xiao, X.

G. Yin, N. Zhao, L. Hu, X. Yu, C. Shi, X. Xiao, L. Fang, J. Duan, T. Gan, Y. Zhang, J. Liu, and W. Liu, “Classified Measurement of Phytoplankton Based on Characteristic Fluorescence of Photosynthetic Pigments,” Acta Opt. Sin. 34(09), 0930005 (2014).
[Crossref]

Yentsch, C. S.

C. S. Yentsch and D. A. Phinney, “Spectral fluorescence: an ataxonomic tool for studying the structure of phytoplankton populations,” J. Plankton Res. 7(5), 617–632 (1985).
[Crossref]

Yin, G.

G. Yin, N. Zhao, L. Hu, X. Yu, C. Shi, X. Xiao, L. Fang, J. Duan, T. Gan, Y. Zhang, J. Liu, and W. Liu, “Classified Measurement of Phytoplankton Based on Characteristic Fluorescence of Photosynthetic Pigments,” Acta Opt. Sin. 34(09), 0930005 (2014).
[Crossref]

Yu, X.

G. Yin, N. Zhao, L. Hu, X. Yu, C. Shi, X. Xiao, L. Fang, J. Duan, T. Gan, Y. Zhang, J. Liu, and W. Liu, “Classified Measurement of Phytoplankton Based on Characteristic Fluorescence of Photosynthetic Pigments,” Acta Opt. Sin. 34(09), 0930005 (2014).
[Crossref]

Zhang, Y.

G. Yin, N. Zhao, L. Hu, X. Yu, C. Shi, X. Xiao, L. Fang, J. Duan, T. Gan, Y. Zhang, J. Liu, and W. Liu, “Classified Measurement of Phytoplankton Based on Characteristic Fluorescence of Photosynthetic Pigments,” Acta Opt. Sin. 34(09), 0930005 (2014).
[Crossref]

Zhao, N.

G. Yin, N. Zhao, L. Hu, X. Yu, C. Shi, X. Xiao, L. Fang, J. Duan, T. Gan, Y. Zhang, J. Liu, and W. Liu, “Classified Measurement of Phytoplankton Based on Characteristic Fluorescence of Photosynthetic Pigments,” Acta Opt. Sin. 34(09), 0930005 (2014).
[Crossref]

Acta Opt. Sin. (1)

G. Yin, N. Zhao, L. Hu, X. Yu, C. Shi, X. Xiao, L. Fang, J. Duan, T. Gan, Y. Zhang, J. Liu, and W. Liu, “Classified Measurement of Phytoplankton Based on Characteristic Fluorescence of Photosynthetic Pigments,” Acta Opt. Sin. 34(09), 0930005 (2014).
[Crossref]

Clean-Soil Air Water (1)

J. Gregor and M. Blahoslav, “A Simple In Vivo Fluorescence Method for the Selective Detection and Quantification of Freshwater Cyanobacteria and Eukaryotic Algae,” Clean-Soil Air Water 33(2), 142–148 (2005).

J. Am. Soc. Mass Spectrom. (1)

K. X. Wan, I. Vidavsky, and M. L. Gross, “Comparing similar spectra: From similarity index to spectral contrast angle,” J. Am. Soc. Mass Spectrom. 13(1), 85–88 (2002).
[Crossref] [PubMed]

J. Plankton Res. (3)

N. Escoffier, C. Bernard, S. Hamlaou, and A. Groleau, “Quantifying phytoplankton communities using spectral fluorescence: the effects of species composition and physiological state,” J. Plankton Res. 37(1), 1–15 (2014).

C. S. Yentsch and D. A. Phinney, “Spectral fluorescence: an ataxonomic tool for studying the structure of phytoplankton populations,” J. Plankton Res. 7(5), 617–632 (1985).
[Crossref]

J. Hilton, E. Rigg, and G. Jaworski, “Algal identification using in vivo fluorescence spectra,” J. Plankton Res. 11(1), 65–74 (1989).
[Crossref]

Photosynth. Res. (1)

M. Beutler, K. H. Wiltshire, B. Meyer, C. Moldaenke, C. Lüring, M. Meyerhöfer, U.-P. Hansen, and H. Dau, “A fluorometric method for the differentiation of algal populations in vivo and in situ,” Photosynth. Res. 72(1), 39–53 (2002).
[Crossref] [PubMed]

Other (3)

J. W. Harrison, E. T. Howel, S. B. Watson, R. E. H. Smith, “Improved estimates of phytoplankton community composition based on in situ spectral fluorescence: use of ordination and field-derived norm spectra for the bbe FluoroProbe,” Canadian Journal of Fisheries & Aquatic Sciences 73, 10 (2016).
[Crossref]

J. Kolbowski and U. Schreiber, “Computer-controlled phytoplankton analyzer based on 4-wavelengths PAM chlorophyll fluorometer,” in Photosynthesis: From Light to Biosphere, Volume V (Kluwer Academic Publishers, 1995), pp. 825–828.

National Environmental Protection Bureau, “Monitoring Analysis Methods for Water and Wastewater,” Zhongguo Huanjing Kexue (EPA, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1 The chlorophyll a (685nm) fluorescence excitation spectrum.
Fig. 2
Fig. 2 Discrete three-dimensional fluorescence spectra.

Tables (4)

Tables Icon

Table 1 The algae species and the culture medium of twelve algae belonging to Cyanophyta, Chlorophyta, Diatom, Pyrrophyta and Cryptophyta

Tables Icon

Table 2 Similarity of fluorescence spectra of different phytoplankton

Tables Icon

Table 3 Discrimination results for samples of single division

Tables Icon

Table 4 Discrimination results for mixed samples

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

F i =( ε 11 ε 1n ε m1 ε mn )
M= i=1 5 f i a i +χ
χ 2 = λ=1 mn ( M i=1 5 f i a i i=1 5 ω i a i ) 2
SI=1[ 2 π ×arccos( A 1 A 2 | A 1 || A 2 | ) ] 0SI1

Metrics