Abstract

Ultrashort pulse laser systems enable new approaches of material processing and manufacturing with enhanced precision and productivity. Time- and cost-effectiveness in the context of the industrialization of ultrashort laser pulse processes require an improvement of processing speed, which is of key importance for strengthening industrial photonics based manufacturing and extending its field of applications. This article presents results on improving the speed of a laser process by parallelization for creating light deflecting volume optics. Diffractive optical elements are fabricated directly inside the encapsulant of solar modules by utilizing a spatial light modulator based parallel laser microfabrication method. The fabricated volume optical elements effectively deflect light away from front side electrodes and significantly reduce the corresponding optical losses.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Diffractive optical elements utilized for efficiency enhancement of photovoltaic modules

I. Mingareev, R. Berlich, T. J. Eichelkraut, H. Herfurth, S. Heinemann, and M. C. Richardson
Opt. Express 19(12) 11397-11404 (2011)

Excimer laser micromachining for rapid fabrication of diffractive optical elements

Gregory P. Behrmann and Michael T. Duignan
Appl. Opt. 36(20) 4666-4674 (1997)

Spatially modulated laser pulses for printing electronics

Raymond C. Y. Auyeung, Heungsoo Kim, Scott Mathews, and Alberto Piqué
Appl. Opt. 54(31) F70-F77 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Malinauskas, A. Zukauskas, S. Hasegawa, Y. Hayasaki, V. Miseikis, R. Buividas, and S. Juodkazi, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
    [Crossref]
  2. M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
    [Crossref]
  3. T. Baldacchini, Three-Dimensional Microfabrication Using Two-Photon Polymerization (Elsevier Inc., 2016).
  4. L. Kuna, G. C. Eder, C. Leiner, and G. Peharz, “Reducing shadowing losses with femtosecond-laser-written deflective optical elements in the bulk of EVA encapsulation,” Prog. Photovolt. Res. Appl. 23(9), 1120–1130 (2015).
    [Crossref]
  5. G. Peharz, L. Kuna, and C. Leiner, “Laser-assisted manufacturing of micro-optical volume elements for enhancing the amount of light absorbed by solar cells in photovoltaic modules,” Proc. SPIE 9358, 93581B (2015).
    [Crossref]
  6. I. Mingareev, R. Berlich, T. J. Eichelkraut, H. Herfurth, S. Heinemann, and M. C. Richardson, “Diffractive optical elements utilized for efficiency enhancement of photovoltaic modules,” Opt. Express 19(12), 11397–11404 (2011).
    [Crossref] [PubMed]
  7. M. F. Schumann, M. Langenhorst, M. Smeets, K. Ding, U. W. Paetzold, and M. Wegener, “All-angle invisibility cloaking of contact fingers on solar cells by refractive free-form surfaces,” Adv. Opt. Mater. 5(17), 1700164 (2017).
    [Crossref]
  8. F.-H. Chen, S. Pathreeker, J. Kaur, and I. D. Hosein, “Increasing light capture in silicon solar cells with encapsulants incorporating air prisms to reduce metallic contact losses,” Opt. Express 24(22), A1419–A1430 (2016).
    [Crossref] [PubMed]
  9. M. Muchow, T. Büchner, A. Sprafke, and G. Seifert, “Femtosecond laser-written high-efficiency blazed phase gratings in the volume of soda lime glass for light management in solar modules,” Opt. Express 23(26), 33540–33549 (2015).
    [Crossref] [PubMed]
  10. S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett. 31(11), 1705–1707 (2006).
    [Crossref] [PubMed]
  11. N. J. Jenness, K. D. Wulff, M. S. Johannes, M. J. Padgett, D. G. Cole, and R. L. Clark, “Three-dimensional parallel holographic micropatterning using a spatial light modulator,” Opt. Express 16(20), 15942–15948 (2008).
    [Crossref] [PubMed]
  12. J. L. Lawson, N. Jenness, S. Wilson, and R. L. Clark, “Method of creating microscale prototypes using SLM based holographic lithography,” Proc. SPIE 8612, 86120L (2013).
    [Crossref]
  13. M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication of three-dimensional 1 x 4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam,” Opt. Express 18(12), 12136–12143 (2010).
    [Crossref] [PubMed]
  14. S. D. Gittard, A. Nguyen, K. Obata, A. Koroleva, R. J. Narayan, and B. N. Chichkov, “Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator,” Biomed. Opt. Express 2(11), 3167–3178 (2011).
    [Crossref] [PubMed]
  15. G. Vizsnyiczai, L. Kelemen, and P. Ormos, “Holographic multi-focus 3D two-photon polymerization with real-time calculated holograms,” Opt. Express 22(20), 24217–24223 (2014).
    [Crossref] [PubMed]
  16. N. J. Jenness, R. T. Hill, A. Hucknall, A. Chilkoti, and R. L. Clark, “A versatile diffractive maskless lithography for single-shot and serial microfabrication,” Opt. Express 18(11), 11754–11762 (2010).
    [Crossref] [PubMed]
  17. L. Yang, J. Li, Y. Hu, Ch. Zhang, Z. Lao, W. Huang, and J. Chu, “Projection two-photon polymerization using a spatial light modulator,” Opt. Commun. 331, 82–86 (2014).
    [Crossref]
  18. M. Sakakura, K. Miura, T. Sawano, Y. Shimotsuma, and K. Hirao, “Three-dimensional structuring inside transparent materials by a phase modulated fs laser beam with a LCOS-SLM,” Proc. SPIE 7920, 792010 (2011).
    [Crossref]
  19. M. Skeren, I. Richter, and P. Fiala, “Iterative Fourier transform algorithm: comparison of various approaches,” J. Mod. Opt. 49(11), 1851–1870 (2002).
    [Crossref]
  20. C. Zhang, Y. Hu, W. Du, P. Wu, S. Rao, Z. Cai, Z. Lao, B. Xu, J. Ni, J. Li, G. Zhao, D. Wu, J. Chu, and K. Sugioka, “Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels,” Sci. Rep. 6(1), 33281 (2016).
    [Crossref] [PubMed]
  21. S. Schlangen, M. Ihme, M. Rahlves, and B. Roth, “Autofocusing system for spatial light modulator-based maskless lithography,” Appl. Opt. 55(8), 1863–1870 (2016).
    [Crossref] [PubMed]
  22. A. Reinders, P. Verlinden, W. van Sark, and A. Freundlich, Photovoltaic Solar Energy : From Fundamentals to Applications (John Wiley & Sons Ltd, 2017).

2017 (1)

M. F. Schumann, M. Langenhorst, M. Smeets, K. Ding, U. W. Paetzold, and M. Wegener, “All-angle invisibility cloaking of contact fingers on solar cells by refractive free-form surfaces,” Adv. Opt. Mater. 5(17), 1700164 (2017).
[Crossref]

2016 (4)

F.-H. Chen, S. Pathreeker, J. Kaur, and I. D. Hosein, “Increasing light capture in silicon solar cells with encapsulants incorporating air prisms to reduce metallic contact losses,” Opt. Express 24(22), A1419–A1430 (2016).
[Crossref] [PubMed]

M. Malinauskas, A. Zukauskas, S. Hasegawa, Y. Hayasaki, V. Miseikis, R. Buividas, and S. Juodkazi, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref]

C. Zhang, Y. Hu, W. Du, P. Wu, S. Rao, Z. Cai, Z. Lao, B. Xu, J. Ni, J. Li, G. Zhao, D. Wu, J. Chu, and K. Sugioka, “Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels,” Sci. Rep. 6(1), 33281 (2016).
[Crossref] [PubMed]

S. Schlangen, M. Ihme, M. Rahlves, and B. Roth, “Autofocusing system for spatial light modulator-based maskless lithography,” Appl. Opt. 55(8), 1863–1870 (2016).
[Crossref] [PubMed]

2015 (3)

L. Kuna, G. C. Eder, C. Leiner, and G. Peharz, “Reducing shadowing losses with femtosecond-laser-written deflective optical elements in the bulk of EVA encapsulation,” Prog. Photovolt. Res. Appl. 23(9), 1120–1130 (2015).
[Crossref]

G. Peharz, L. Kuna, and C. Leiner, “Laser-assisted manufacturing of micro-optical volume elements for enhancing the amount of light absorbed by solar cells in photovoltaic modules,” Proc. SPIE 9358, 93581B (2015).
[Crossref]

M. Muchow, T. Büchner, A. Sprafke, and G. Seifert, “Femtosecond laser-written high-efficiency blazed phase gratings in the volume of soda lime glass for light management in solar modules,” Opt. Express 23(26), 33540–33549 (2015).
[Crossref] [PubMed]

2014 (2)

G. Vizsnyiczai, L. Kelemen, and P. Ormos, “Holographic multi-focus 3D two-photon polymerization with real-time calculated holograms,” Opt. Express 22(20), 24217–24223 (2014).
[Crossref] [PubMed]

L. Yang, J. Li, Y. Hu, Ch. Zhang, Z. Lao, W. Huang, and J. Chu, “Projection two-photon polymerization using a spatial light modulator,” Opt. Commun. 331, 82–86 (2014).
[Crossref]

2013 (2)

J. L. Lawson, N. Jenness, S. Wilson, and R. L. Clark, “Method of creating microscale prototypes using SLM based holographic lithography,” Proc. SPIE 8612, 86120L (2013).
[Crossref]

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[Crossref]

2011 (3)

2010 (2)

2008 (1)

2006 (1)

2002 (1)

M. Skeren, I. Richter, and P. Fiala, “Iterative Fourier transform algorithm: comparison of various approaches,” J. Mod. Opt. 49(11), 1851–1870 (2002).
[Crossref]

Berlich, R.

Büchner, T.

Buividas, R.

M. Malinauskas, A. Zukauskas, S. Hasegawa, Y. Hayasaki, V. Miseikis, R. Buividas, and S. Juodkazi, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Cai, Z.

C. Zhang, Y. Hu, W. Du, P. Wu, S. Rao, Z. Cai, Z. Lao, B. Xu, J. Ni, J. Li, G. Zhao, D. Wu, J. Chu, and K. Sugioka, “Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels,” Sci. Rep. 6(1), 33281 (2016).
[Crossref] [PubMed]

Chen, F.-H.

Chichkov, B. N.

Chilkoti, A.

Chu, J.

C. Zhang, Y. Hu, W. Du, P. Wu, S. Rao, Z. Cai, Z. Lao, B. Xu, J. Ni, J. Li, G. Zhao, D. Wu, J. Chu, and K. Sugioka, “Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels,” Sci. Rep. 6(1), 33281 (2016).
[Crossref] [PubMed]

L. Yang, J. Li, Y. Hu, Ch. Zhang, Z. Lao, W. Huang, and J. Chu, “Projection two-photon polymerization using a spatial light modulator,” Opt. Commun. 331, 82–86 (2014).
[Crossref]

Clark, R. L.

Cole, D. G.

Ding, K.

M. F. Schumann, M. Langenhorst, M. Smeets, K. Ding, U. W. Paetzold, and M. Wegener, “All-angle invisibility cloaking of contact fingers on solar cells by refractive free-form surfaces,” Adv. Opt. Mater. 5(17), 1700164 (2017).
[Crossref]

Du, W.

C. Zhang, Y. Hu, W. Du, P. Wu, S. Rao, Z. Cai, Z. Lao, B. Xu, J. Ni, J. Li, G. Zhao, D. Wu, J. Chu, and K. Sugioka, “Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels,” Sci. Rep. 6(1), 33281 (2016).
[Crossref] [PubMed]

Eder, G. C.

L. Kuna, G. C. Eder, C. Leiner, and G. Peharz, “Reducing shadowing losses with femtosecond-laser-written deflective optical elements in the bulk of EVA encapsulation,” Prog. Photovolt. Res. Appl. 23(9), 1120–1130 (2015).
[Crossref]

Eichelkraut, T. J.

Farsari, M.

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[Crossref]

Fiala, P.

M. Skeren, I. Richter, and P. Fiala, “Iterative Fourier transform algorithm: comparison of various approaches,” J. Mod. Opt. 49(11), 1851–1870 (2002).
[Crossref]

Gittard, S. D.

Hasegawa, S.

M. Malinauskas, A. Zukauskas, S. Hasegawa, Y. Hayasaki, V. Miseikis, R. Buividas, and S. Juodkazi, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref]

S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett. 31(11), 1705–1707 (2006).
[Crossref] [PubMed]

Hayasaki, Y.

M. Malinauskas, A. Zukauskas, S. Hasegawa, Y. Hayasaki, V. Miseikis, R. Buividas, and S. Juodkazi, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref]

S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett. 31(11), 1705–1707 (2006).
[Crossref] [PubMed]

Heinemann, S.

Herfurth, H.

Hill, R. T.

Hirao, K.

M. Sakakura, K. Miura, T. Sawano, Y. Shimotsuma, and K. Hirao, “Three-dimensional structuring inside transparent materials by a phase modulated fs laser beam with a LCOS-SLM,” Proc. SPIE 7920, 792010 (2011).
[Crossref]

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication of three-dimensional 1 x 4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam,” Opt. Express 18(12), 12136–12143 (2010).
[Crossref] [PubMed]

Hosein, I. D.

Hu, Y.

C. Zhang, Y. Hu, W. Du, P. Wu, S. Rao, Z. Cai, Z. Lao, B. Xu, J. Ni, J. Li, G. Zhao, D. Wu, J. Chu, and K. Sugioka, “Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels,” Sci. Rep. 6(1), 33281 (2016).
[Crossref] [PubMed]

L. Yang, J. Li, Y. Hu, Ch. Zhang, Z. Lao, W. Huang, and J. Chu, “Projection two-photon polymerization using a spatial light modulator,” Opt. Commun. 331, 82–86 (2014).
[Crossref]

Huang, W.

L. Yang, J. Li, Y. Hu, Ch. Zhang, Z. Lao, W. Huang, and J. Chu, “Projection two-photon polymerization using a spatial light modulator,” Opt. Commun. 331, 82–86 (2014).
[Crossref]

Hucknall, A.

Ihme, M.

Jenness, N.

J. L. Lawson, N. Jenness, S. Wilson, and R. L. Clark, “Method of creating microscale prototypes using SLM based holographic lithography,” Proc. SPIE 8612, 86120L (2013).
[Crossref]

Jenness, N. J.

Johannes, M. S.

Juodkazi, S.

M. Malinauskas, A. Zukauskas, S. Hasegawa, Y. Hayasaki, V. Miseikis, R. Buividas, and S. Juodkazi, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Juodkazis, S.

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[Crossref]

Kaur, J.

Kelemen, L.

Koroleva, A.

Kuna, L.

L. Kuna, G. C. Eder, C. Leiner, and G. Peharz, “Reducing shadowing losses with femtosecond-laser-written deflective optical elements in the bulk of EVA encapsulation,” Prog. Photovolt. Res. Appl. 23(9), 1120–1130 (2015).
[Crossref]

G. Peharz, L. Kuna, and C. Leiner, “Laser-assisted manufacturing of micro-optical volume elements for enhancing the amount of light absorbed by solar cells in photovoltaic modules,” Proc. SPIE 9358, 93581B (2015).
[Crossref]

Langenhorst, M.

M. F. Schumann, M. Langenhorst, M. Smeets, K. Ding, U. W. Paetzold, and M. Wegener, “All-angle invisibility cloaking of contact fingers on solar cells by refractive free-form surfaces,” Adv. Opt. Mater. 5(17), 1700164 (2017).
[Crossref]

Lao, Z.

C. Zhang, Y. Hu, W. Du, P. Wu, S. Rao, Z. Cai, Z. Lao, B. Xu, J. Ni, J. Li, G. Zhao, D. Wu, J. Chu, and K. Sugioka, “Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels,” Sci. Rep. 6(1), 33281 (2016).
[Crossref] [PubMed]

L. Yang, J. Li, Y. Hu, Ch. Zhang, Z. Lao, W. Huang, and J. Chu, “Projection two-photon polymerization using a spatial light modulator,” Opt. Commun. 331, 82–86 (2014).
[Crossref]

Lawson, J. L.

J. L. Lawson, N. Jenness, S. Wilson, and R. L. Clark, “Method of creating microscale prototypes using SLM based holographic lithography,” Proc. SPIE 8612, 86120L (2013).
[Crossref]

Leiner, C.

G. Peharz, L. Kuna, and C. Leiner, “Laser-assisted manufacturing of micro-optical volume elements for enhancing the amount of light absorbed by solar cells in photovoltaic modules,” Proc. SPIE 9358, 93581B (2015).
[Crossref]

L. Kuna, G. C. Eder, C. Leiner, and G. Peharz, “Reducing shadowing losses with femtosecond-laser-written deflective optical elements in the bulk of EVA encapsulation,” Prog. Photovolt. Res. Appl. 23(9), 1120–1130 (2015).
[Crossref]

Li, J.

C. Zhang, Y. Hu, W. Du, P. Wu, S. Rao, Z. Cai, Z. Lao, B. Xu, J. Ni, J. Li, G. Zhao, D. Wu, J. Chu, and K. Sugioka, “Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels,” Sci. Rep. 6(1), 33281 (2016).
[Crossref] [PubMed]

L. Yang, J. Li, Y. Hu, Ch. Zhang, Z. Lao, W. Huang, and J. Chu, “Projection two-photon polymerization using a spatial light modulator,” Opt. Commun. 331, 82–86 (2014).
[Crossref]

Malinauskas, M.

M. Malinauskas, A. Zukauskas, S. Hasegawa, Y. Hayasaki, V. Miseikis, R. Buividas, and S. Juodkazi, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref]

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[Crossref]

Mingareev, I.

Miseikis, V.

M. Malinauskas, A. Zukauskas, S. Hasegawa, Y. Hayasaki, V. Miseikis, R. Buividas, and S. Juodkazi, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Miura, K.

M. Sakakura, K. Miura, T. Sawano, Y. Shimotsuma, and K. Hirao, “Three-dimensional structuring inside transparent materials by a phase modulated fs laser beam with a LCOS-SLM,” Proc. SPIE 7920, 792010 (2011).
[Crossref]

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication of three-dimensional 1 x 4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam,” Opt. Express 18(12), 12136–12143 (2010).
[Crossref] [PubMed]

Muchow, M.

Narayan, R. J.

Nguyen, A.

Ni, J.

C. Zhang, Y. Hu, W. Du, P. Wu, S. Rao, Z. Cai, Z. Lao, B. Xu, J. Ni, J. Li, G. Zhao, D. Wu, J. Chu, and K. Sugioka, “Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels,” Sci. Rep. 6(1), 33281 (2016).
[Crossref] [PubMed]

Nishida, N.

Obata, K.

Ormos, P.

Padgett, M. J.

Paetzold, U. W.

M. F. Schumann, M. Langenhorst, M. Smeets, K. Ding, U. W. Paetzold, and M. Wegener, “All-angle invisibility cloaking of contact fingers on solar cells by refractive free-form surfaces,” Adv. Opt. Mater. 5(17), 1700164 (2017).
[Crossref]

Pathreeker, S.

Peharz, G.

L. Kuna, G. C. Eder, C. Leiner, and G. Peharz, “Reducing shadowing losses with femtosecond-laser-written deflective optical elements in the bulk of EVA encapsulation,” Prog. Photovolt. Res. Appl. 23(9), 1120–1130 (2015).
[Crossref]

G. Peharz, L. Kuna, and C. Leiner, “Laser-assisted manufacturing of micro-optical volume elements for enhancing the amount of light absorbed by solar cells in photovoltaic modules,” Proc. SPIE 9358, 93581B (2015).
[Crossref]

Piskarskas, A.

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[Crossref]

Rahlves, M.

Rao, S.

C. Zhang, Y. Hu, W. Du, P. Wu, S. Rao, Z. Cai, Z. Lao, B. Xu, J. Ni, J. Li, G. Zhao, D. Wu, J. Chu, and K. Sugioka, “Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels,” Sci. Rep. 6(1), 33281 (2016).
[Crossref] [PubMed]

Richardson, M. C.

Richter, I.

M. Skeren, I. Richter, and P. Fiala, “Iterative Fourier transform algorithm: comparison of various approaches,” J. Mod. Opt. 49(11), 1851–1870 (2002).
[Crossref]

Roth, B.

Sakakura, M.

M. Sakakura, K. Miura, T. Sawano, Y. Shimotsuma, and K. Hirao, “Three-dimensional structuring inside transparent materials by a phase modulated fs laser beam with a LCOS-SLM,” Proc. SPIE 7920, 792010 (2011).
[Crossref]

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication of three-dimensional 1 x 4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam,” Opt. Express 18(12), 12136–12143 (2010).
[Crossref] [PubMed]

Sawano, T.

M. Sakakura, K. Miura, T. Sawano, Y. Shimotsuma, and K. Hirao, “Three-dimensional structuring inside transparent materials by a phase modulated fs laser beam with a LCOS-SLM,” Proc. SPIE 7920, 792010 (2011).
[Crossref]

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication of three-dimensional 1 x 4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam,” Opt. Express 18(12), 12136–12143 (2010).
[Crossref] [PubMed]

Schlangen, S.

Schumann, M. F.

M. F. Schumann, M. Langenhorst, M. Smeets, K. Ding, U. W. Paetzold, and M. Wegener, “All-angle invisibility cloaking of contact fingers on solar cells by refractive free-form surfaces,” Adv. Opt. Mater. 5(17), 1700164 (2017).
[Crossref]

Seifert, G.

Shimotsuma, Y.

M. Sakakura, K. Miura, T. Sawano, Y. Shimotsuma, and K. Hirao, “Three-dimensional structuring inside transparent materials by a phase modulated fs laser beam with a LCOS-SLM,” Proc. SPIE 7920, 792010 (2011).
[Crossref]

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication of three-dimensional 1 x 4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam,” Opt. Express 18(12), 12136–12143 (2010).
[Crossref] [PubMed]

Skeren, M.

M. Skeren, I. Richter, and P. Fiala, “Iterative Fourier transform algorithm: comparison of various approaches,” J. Mod. Opt. 49(11), 1851–1870 (2002).
[Crossref]

Smeets, M.

M. F. Schumann, M. Langenhorst, M. Smeets, K. Ding, U. W. Paetzold, and M. Wegener, “All-angle invisibility cloaking of contact fingers on solar cells by refractive free-form surfaces,” Adv. Opt. Mater. 5(17), 1700164 (2017).
[Crossref]

Sprafke, A.

Sugioka, K.

C. Zhang, Y. Hu, W. Du, P. Wu, S. Rao, Z. Cai, Z. Lao, B. Xu, J. Ni, J. Li, G. Zhao, D. Wu, J. Chu, and K. Sugioka, “Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels,” Sci. Rep. 6(1), 33281 (2016).
[Crossref] [PubMed]

Vizsnyiczai, G.

Wegener, M.

M. F. Schumann, M. Langenhorst, M. Smeets, K. Ding, U. W. Paetzold, and M. Wegener, “All-angle invisibility cloaking of contact fingers on solar cells by refractive free-form surfaces,” Adv. Opt. Mater. 5(17), 1700164 (2017).
[Crossref]

Wilson, S.

J. L. Lawson, N. Jenness, S. Wilson, and R. L. Clark, “Method of creating microscale prototypes using SLM based holographic lithography,” Proc. SPIE 8612, 86120L (2013).
[Crossref]

Wu, D.

C. Zhang, Y. Hu, W. Du, P. Wu, S. Rao, Z. Cai, Z. Lao, B. Xu, J. Ni, J. Li, G. Zhao, D. Wu, J. Chu, and K. Sugioka, “Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels,” Sci. Rep. 6(1), 33281 (2016).
[Crossref] [PubMed]

Wu, P.

C. Zhang, Y. Hu, W. Du, P. Wu, S. Rao, Z. Cai, Z. Lao, B. Xu, J. Ni, J. Li, G. Zhao, D. Wu, J. Chu, and K. Sugioka, “Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels,” Sci. Rep. 6(1), 33281 (2016).
[Crossref] [PubMed]

Wulff, K. D.

Xu, B.

C. Zhang, Y. Hu, W. Du, P. Wu, S. Rao, Z. Cai, Z. Lao, B. Xu, J. Ni, J. Li, G. Zhao, D. Wu, J. Chu, and K. Sugioka, “Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels,” Sci. Rep. 6(1), 33281 (2016).
[Crossref] [PubMed]

Yang, L.

L. Yang, J. Li, Y. Hu, Ch. Zhang, Z. Lao, W. Huang, and J. Chu, “Projection two-photon polymerization using a spatial light modulator,” Opt. Commun. 331, 82–86 (2014).
[Crossref]

Zhang, C.

C. Zhang, Y. Hu, W. Du, P. Wu, S. Rao, Z. Cai, Z. Lao, B. Xu, J. Ni, J. Li, G. Zhao, D. Wu, J. Chu, and K. Sugioka, “Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels,” Sci. Rep. 6(1), 33281 (2016).
[Crossref] [PubMed]

Zhang, Ch.

L. Yang, J. Li, Y. Hu, Ch. Zhang, Z. Lao, W. Huang, and J. Chu, “Projection two-photon polymerization using a spatial light modulator,” Opt. Commun. 331, 82–86 (2014).
[Crossref]

Zhao, G.

C. Zhang, Y. Hu, W. Du, P. Wu, S. Rao, Z. Cai, Z. Lao, B. Xu, J. Ni, J. Li, G. Zhao, D. Wu, J. Chu, and K. Sugioka, “Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels,” Sci. Rep. 6(1), 33281 (2016).
[Crossref] [PubMed]

Zukauskas, A.

M. Malinauskas, A. Zukauskas, S. Hasegawa, Y. Hayasaki, V. Miseikis, R. Buividas, and S. Juodkazi, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Adv. Opt. Mater. (1)

M. F. Schumann, M. Langenhorst, M. Smeets, K. Ding, U. W. Paetzold, and M. Wegener, “All-angle invisibility cloaking of contact fingers on solar cells by refractive free-form surfaces,” Adv. Opt. Mater. 5(17), 1700164 (2017).
[Crossref]

Appl. Opt. (1)

Biomed. Opt. Express (1)

J. Mod. Opt. (1)

M. Skeren, I. Richter, and P. Fiala, “Iterative Fourier transform algorithm: comparison of various approaches,” J. Mod. Opt. 49(11), 1851–1870 (2002).
[Crossref]

Light Sci. Appl. (1)

M. Malinauskas, A. Zukauskas, S. Hasegawa, Y. Hayasaki, V. Miseikis, R. Buividas, and S. Juodkazi, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Opt. Commun. (1)

L. Yang, J. Li, Y. Hu, Ch. Zhang, Z. Lao, W. Huang, and J. Chu, “Projection two-photon polymerization using a spatial light modulator,” Opt. Commun. 331, 82–86 (2014).
[Crossref]

Opt. Express (7)

G. Vizsnyiczai, L. Kelemen, and P. Ormos, “Holographic multi-focus 3D two-photon polymerization with real-time calculated holograms,” Opt. Express 22(20), 24217–24223 (2014).
[Crossref] [PubMed]

N. J. Jenness, R. T. Hill, A. Hucknall, A. Chilkoti, and R. L. Clark, “A versatile diffractive maskless lithography for single-shot and serial microfabrication,” Opt. Express 18(11), 11754–11762 (2010).
[Crossref] [PubMed]

N. J. Jenness, K. D. Wulff, M. S. Johannes, M. J. Padgett, D. G. Cole, and R. L. Clark, “Three-dimensional parallel holographic micropatterning using a spatial light modulator,” Opt. Express 16(20), 15942–15948 (2008).
[Crossref] [PubMed]

I. Mingareev, R. Berlich, T. J. Eichelkraut, H. Herfurth, S. Heinemann, and M. C. Richardson, “Diffractive optical elements utilized for efficiency enhancement of photovoltaic modules,” Opt. Express 19(12), 11397–11404 (2011).
[Crossref] [PubMed]

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication of three-dimensional 1 x 4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam,” Opt. Express 18(12), 12136–12143 (2010).
[Crossref] [PubMed]

F.-H. Chen, S. Pathreeker, J. Kaur, and I. D. Hosein, “Increasing light capture in silicon solar cells with encapsulants incorporating air prisms to reduce metallic contact losses,” Opt. Express 24(22), A1419–A1430 (2016).
[Crossref] [PubMed]

M. Muchow, T. Büchner, A. Sprafke, and G. Seifert, “Femtosecond laser-written high-efficiency blazed phase gratings in the volume of soda lime glass for light management in solar modules,” Opt. Express 23(26), 33540–33549 (2015).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rep. (1)

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[Crossref]

Proc. SPIE (3)

G. Peharz, L. Kuna, and C. Leiner, “Laser-assisted manufacturing of micro-optical volume elements for enhancing the amount of light absorbed by solar cells in photovoltaic modules,” Proc. SPIE 9358, 93581B (2015).
[Crossref]

J. L. Lawson, N. Jenness, S. Wilson, and R. L. Clark, “Method of creating microscale prototypes using SLM based holographic lithography,” Proc. SPIE 8612, 86120L (2013).
[Crossref]

M. Sakakura, K. Miura, T. Sawano, Y. Shimotsuma, and K. Hirao, “Three-dimensional structuring inside transparent materials by a phase modulated fs laser beam with a LCOS-SLM,” Proc. SPIE 7920, 792010 (2011).
[Crossref]

Prog. Photovolt. Res. Appl. (1)

L. Kuna, G. C. Eder, C. Leiner, and G. Peharz, “Reducing shadowing losses with femtosecond-laser-written deflective optical elements in the bulk of EVA encapsulation,” Prog. Photovolt. Res. Appl. 23(9), 1120–1130 (2015).
[Crossref]

Sci. Rep. (1)

C. Zhang, Y. Hu, W. Du, P. Wu, S. Rao, Z. Cai, Z. Lao, B. Xu, J. Ni, J. Li, G. Zhao, D. Wu, J. Chu, and K. Sugioka, “Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels,” Sci. Rep. 6(1), 33281 (2016).
[Crossref] [PubMed]

Other (2)

A. Reinders, P. Verlinden, W. van Sark, and A. Freundlich, Photovoltaic Solar Energy : From Fundamentals to Applications (John Wiley & Sons Ltd, 2017).

T. Baldacchini, Three-Dimensional Microfabrication Using Two-Photon Polymerization (Elsevier Inc., 2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Optical setup of the spatial light modulator based holographic laser microfabrication system. After passing the SLM, the light propagates to the back focal plane of an objective through four lenses (L3-L6). The first lens is located about one focal length away from the SLM to perform the Fourier transform.
Fig. 2
Fig. 2 Laminated industrial solar cell made of crystalline silicon material (area = 156×156 mm2) having screen printed electrodes with a grid finger width of about 100 µm and a spacing of about 2.2 mm.
Fig. 3
Fig. 3 Diffraction grating as volume optical element above the grid fingers of the solar cells: (a) grayscale bitmap image (256x256 pixels) containing the aimed grating pattern, the pixels of white (2688 pixels) are the positions of the laser spots for one single exposure (b) random 100 pixel fragment taken from the grating structure in (a) as input for the IFTA, (c) 1024x1024 CGH calculated for the random 100 pixel fragment from (b)
Fig. 4
Fig. 4 Microscopic images of fabricated optical gratings (using the bitmap in Fig. 3 (a) as input) in PDMS: (a) exposure test matrix using exposure frame rates from 1 – 29 Hz in steps of 2 Hz (starting in the upper left corner), (b) close up of the central pattern from (a) exposed with a frame rate of 15Hz
Fig. 5
Fig. 5 Grating structures (5×5mm2), corresponding to Fig. 4 (b), in the volume of a PDMS block: (a) Diffraction of a He Ne laser beam on the volume structures, indicating clearly the optical behavior of a quadratic diffraction grating, (b) Transmission of the zero order beam and total integrated transmission for a single and double grating structure in PDMS.
Fig. 6
Fig. 6 A cross sectional sketch of the solar cell test module used for the experiments.
Fig. 7
Fig. 7 Schematic of the optical microstructures fabrication inside the solar modules by direct femtosecond-laser writing. The volume optical elements are created approximately 120 and 270µm above the grid fingers.
Fig. 8
Fig. 8 Microscope image (reflection mode), top view to the surface of the solar cell, showing a screen-printed grid finger (front side electrode) running in a horizontal direction. Above this grid finger we fabricated two “double” gratings in the bulk of the EVA encapsulant of the solar module. The double gratings, indicated by the two indicator lines, appears to be “cloaked” which is a result of light being deflected away from the grid finger.
Fig. 9
Fig. 9 Results of a LBIC measurement: (a) two-dimensional photocurrent map around a solar cell grid finger. Photocurrent measurements corresponding to active solar cell areas (no grid finger) were normalized to 1. The grid finger is found at Y values between 100 and 200µm. The left part of the grid finger (X Distance ~0-120 µm) is covered with a “double” grating structure, the remaining part of the grid finger was used as reference. The measured photocurrent is coded in terms of color (see color bar), (b) photo current line scans across the grid finger, comparing the positions at X = 50µm (grid finger covered with a “double” grating) and X = 167 µm (grid finger without a “double” grating)

Metrics