Abstract

Quantum ghost imaging uses photon pairs produced from parametric downconversion to enable an alternative method of image acquisition. Information from either one of the photons does not yield an image, but an image can be obtained by harnessing the correlations between them. Here we present an examination of the resolution limits of such ghost imaging systems. In both conventional imaging and quantum ghost imaging the resolution of the image is limited by the point-spread function of the optics associated with the spatially resolving detector. However, whereas in conventional imaging systems the resolution is limited only by this point spread function, in ghost imaging we show that the resolution can be further degraded by reducing the strength of the spatial correlations inherent in the downconversion process.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
The influence of non-imaging detector design on heralded ghost-imaging and ghost-diffraction examined using a triggered ICCD camera

D. S. Tasca, R. S. Aspden, P. A. Morris, G. Anderson, R. W. Boyd, and M. J. Padgett
Opt. Express 21(25) 30460-30473 (2013)

Ghost imaging: from quantum to classical to computational

Baris I. Erkmen and Jeffrey H. Shapiro
Adv. Opt. Photon. 2(4) 405-450 (2010)

Non-diffractive computational ghost imaging

D. B. Phillips, Ruiqing He, Qian Chen, G. M. Gibson, and M. J. Padgett
Opt. Express 24(13) 14172-14182 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
    [Crossref] [PubMed]
  2. D. Strekalov, A. Sergienko, D. Klyshko, and Y. Shih, “Observation of two-photon ’ghost’ interference and diffraction,” Phys. Rev. Lett. 74, 3600 (1995).
    [Crossref] [PubMed]
  3. E. d. S. Fonseca, P. S. Ribeiro, S. Pádua, and C. Monken, “Quantum interference by a nonlocal double slit,” Phys. Rev. A 60, 1530 (1999).
    [Crossref]
  4. A. Gatti, E. Brambilla, and L. Lugiato, “Entangled imaging and wave-particle duality: from the microscopic to the macroscopic realm,” Phys. Rev. Lett. 90, 133603 (2003).
    [Crossref] [PubMed]
  5. R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
    [Crossref] [PubMed]
  6. O. S. Magaña-Loaiza, G. A. Howland, M. Malik, J. C. Howell, and R. W. Boyd, “Compressive object tracking using entangled photons,” Appl. Phys. Lett. 102, 231104 (2013).
    [Crossref]
  7. P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).
    [Crossref]
  8. R. S. Aspden, N. R. Gemmell, P. A. Morris, D. S. Tasca, L. Mertens, M. G. Tanner, R. A. Kirkwood, A. Ruggeri, A. Tosi, R. W. Boyd, G. S. Buller, R. H. Hadfield, and M. J. Padgett, “Photon-sparse microscopy: visible light imaging using infrared illumination,” Optica 2, 1049–1052 (2015).
    [Crossref]
  9. J. C. Howell, R. S. Bennink, S. J. Bentley, and R. Boyd, “Realization of the einstein-podolsky-rosen paradox using momentum-and position-entangled photons from spontaneous parametric down conversion,” Phys. Rev. Lett. 92, 210403 (2004).
    [Crossref]
  10. R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “Epr-based ghost imaging using a single-photon-sensitive camera,” New J. Phys. 15, 073032 (2013).
    [Crossref]
  11. M. D’Angelo, A. Valencia, M. H. Rubin, and Y. Shih, “Resolution of quantum and classical ghost imaging,” Phys. Rev. A 72, 013810 (2005).
    [Crossref]
  12. D. Tasca, R. Aspden, P. Morris, G. Anderson, R. Boyd, and M. Padgett, “The influence of non-imaging detector design on heralded ghost-imaging and ghost-diffraction examined using a triggered iccd camera,” Opt. express 21, 30460–30473 (2013).
    [Crossref]
  13. R. S. Aspden, M. J. Padgett, and G. C. Spalding, “Video recording true single-photon double-slit interference,” Am. J. Phys. 84, 671–677 (2016).
    [Crossref]
  14. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 013802 (2004).
    [Crossref]
  15. J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inf. Process. 11, 949–993 (2012).
    [Crossref]
  16. E. Brambilla, A. Gatti, M. Bache, and L. A. Lugiato, “Simultaneous near-field and far-field spatial quantum correlations in the high-gain regime of parametric down-conversion,” Phys. Rev. A 69, 023802 (2004).
    [Crossref]
  17. C. Law and J. Eberly, “Analysis and interpretation of high transverse entanglement in optical parametric down conversion,” Phys. Rev. Lett. 92, 127903 (2004).
    [Crossref] [PubMed]
  18. P.-A. Moreau, F. Devaux, and E. Lantz, “Einstein-podolsky-rosen paradox in twin images,” Phys. Rev. Lett. 113, 160401 (2014).
    [Crossref] [PubMed]
  19. J. Schneeloch and J. C. Howell, “Introduction to the transverse spatial correlations in spontaneous parametric down-conversion through the biphoton birth zone,” J. Opt. 18, 053501 (2016).
    [Crossref]
  20. N. B. Nill, “Conversion between sine wave and square wave spatial frequency response of an imaging system,” Tech. rep., MITRE corp. (2001).
  21. J. W. Coltman, “The specification of imaging properties by response to a sine wave input,” J. Opt. Soc. Am. 44, 468–471 (1954).
    [Crossref]
  22. D. Klyshko, “A simple method of preparing pure states of the optical-field, a realization of the einstein, podolsky, rosen experiment and a demonstration of the complementarity principle,” Usp. Fiz. Nauk 154, 133–152 (1988).
    [Crossref]
  23. R. S. Aspden, D. S. Tasca, A. Forbes, R. W. Boyd, and M. J. Padgett, “Experimental demonstration of klyshko’s advanced-wave picture using a coincidence-count based, camera-enabled imaging system,” J. Mod. Optic. 61, 547–551 (2014).
    [Crossref]

2016 (2)

R. S. Aspden, M. J. Padgett, and G. C. Spalding, “Video recording true single-photon double-slit interference,” Am. J. Phys. 84, 671–677 (2016).
[Crossref]

J. Schneeloch and J. C. Howell, “Introduction to the transverse spatial correlations in spontaneous parametric down-conversion through the biphoton birth zone,” J. Opt. 18, 053501 (2016).
[Crossref]

2015 (2)

2014 (2)

P.-A. Moreau, F. Devaux, and E. Lantz, “Einstein-podolsky-rosen paradox in twin images,” Phys. Rev. Lett. 113, 160401 (2014).
[Crossref] [PubMed]

R. S. Aspden, D. S. Tasca, A. Forbes, R. W. Boyd, and M. J. Padgett, “Experimental demonstration of klyshko’s advanced-wave picture using a coincidence-count based, camera-enabled imaging system,” J. Mod. Optic. 61, 547–551 (2014).
[Crossref]

2013 (3)

D. Tasca, R. Aspden, P. Morris, G. Anderson, R. Boyd, and M. Padgett, “The influence of non-imaging detector design on heralded ghost-imaging and ghost-diffraction examined using a triggered iccd camera,” Opt. express 21, 30460–30473 (2013).
[Crossref]

R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “Epr-based ghost imaging using a single-photon-sensitive camera,” New J. Phys. 15, 073032 (2013).
[Crossref]

O. S. Magaña-Loaiza, G. A. Howland, M. Malik, J. C. Howell, and R. W. Boyd, “Compressive object tracking using entangled photons,” Appl. Phys. Lett. 102, 231104 (2013).
[Crossref]

2012 (1)

J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inf. Process. 11, 949–993 (2012).
[Crossref]

2005 (1)

M. D’Angelo, A. Valencia, M. H. Rubin, and Y. Shih, “Resolution of quantum and classical ghost imaging,” Phys. Rev. A 72, 013810 (2005).
[Crossref]

2004 (5)

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 013802 (2004).
[Crossref]

E. Brambilla, A. Gatti, M. Bache, and L. A. Lugiato, “Simultaneous near-field and far-field spatial quantum correlations in the high-gain regime of parametric down-conversion,” Phys. Rev. A 69, 023802 (2004).
[Crossref]

C. Law and J. Eberly, “Analysis and interpretation of high transverse entanglement in optical parametric down conversion,” Phys. Rev. Lett. 92, 127903 (2004).
[Crossref] [PubMed]

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[Crossref] [PubMed]

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. Boyd, “Realization of the einstein-podolsky-rosen paradox using momentum-and position-entangled photons from spontaneous parametric down conversion,” Phys. Rev. Lett. 92, 210403 (2004).
[Crossref]

2003 (1)

A. Gatti, E. Brambilla, and L. Lugiato, “Entangled imaging and wave-particle duality: from the microscopic to the macroscopic realm,” Phys. Rev. Lett. 90, 133603 (2003).
[Crossref] [PubMed]

1999 (1)

E. d. S. Fonseca, P. S. Ribeiro, S. Pádua, and C. Monken, “Quantum interference by a nonlocal double slit,” Phys. Rev. A 60, 1530 (1999).
[Crossref]

1995 (2)

T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref] [PubMed]

D. Strekalov, A. Sergienko, D. Klyshko, and Y. Shih, “Observation of two-photon ’ghost’ interference and diffraction,” Phys. Rev. Lett. 74, 3600 (1995).
[Crossref] [PubMed]

1988 (1)

D. Klyshko, “A simple method of preparing pure states of the optical-field, a realization of the einstein, podolsky, rosen experiment and a demonstration of the complementarity principle,” Usp. Fiz. Nauk 154, 133–152 (1988).
[Crossref]

1954 (1)

Anderson, G.

Aspden, R.

Aspden, R. S.

R. S. Aspden, M. J. Padgett, and G. C. Spalding, “Video recording true single-photon double-slit interference,” Am. J. Phys. 84, 671–677 (2016).
[Crossref]

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).
[Crossref]

R. S. Aspden, N. R. Gemmell, P. A. Morris, D. S. Tasca, L. Mertens, M. G. Tanner, R. A. Kirkwood, A. Ruggeri, A. Tosi, R. W. Boyd, G. S. Buller, R. H. Hadfield, and M. J. Padgett, “Photon-sparse microscopy: visible light imaging using infrared illumination,” Optica 2, 1049–1052 (2015).
[Crossref]

R. S. Aspden, D. S. Tasca, A. Forbes, R. W. Boyd, and M. J. Padgett, “Experimental demonstration of klyshko’s advanced-wave picture using a coincidence-count based, camera-enabled imaging system,” J. Mod. Optic. 61, 547–551 (2014).
[Crossref]

R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “Epr-based ghost imaging using a single-photon-sensitive camera,” New J. Phys. 15, 073032 (2013).
[Crossref]

Bache, M.

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 013802 (2004).
[Crossref]

E. Brambilla, A. Gatti, M. Bache, and L. A. Lugiato, “Simultaneous near-field and far-field spatial quantum correlations in the high-gain regime of parametric down-conversion,” Phys. Rev. A 69, 023802 (2004).
[Crossref]

Bell, J. E.

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).
[Crossref]

Bennink, R. S.

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[Crossref] [PubMed]

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. Boyd, “Realization of the einstein-podolsky-rosen paradox using momentum-and position-entangled photons from spontaneous parametric down conversion,” Phys. Rev. Lett. 92, 210403 (2004).
[Crossref]

Bentley, S. J.

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. Boyd, “Realization of the einstein-podolsky-rosen paradox using momentum-and position-entangled photons from spontaneous parametric down conversion,” Phys. Rev. Lett. 92, 210403 (2004).
[Crossref]

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[Crossref] [PubMed]

Boyd, R.

D. Tasca, R. Aspden, P. Morris, G. Anderson, R. Boyd, and M. Padgett, “The influence of non-imaging detector design on heralded ghost-imaging and ghost-diffraction examined using a triggered iccd camera,” Opt. express 21, 30460–30473 (2013).
[Crossref]

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. Boyd, “Realization of the einstein-podolsky-rosen paradox using momentum-and position-entangled photons from spontaneous parametric down conversion,” Phys. Rev. Lett. 92, 210403 (2004).
[Crossref]

Boyd, R. W.

R. S. Aspden, N. R. Gemmell, P. A. Morris, D. S. Tasca, L. Mertens, M. G. Tanner, R. A. Kirkwood, A. Ruggeri, A. Tosi, R. W. Boyd, G. S. Buller, R. H. Hadfield, and M. J. Padgett, “Photon-sparse microscopy: visible light imaging using infrared illumination,” Optica 2, 1049–1052 (2015).
[Crossref]

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).
[Crossref]

R. S. Aspden, D. S. Tasca, A. Forbes, R. W. Boyd, and M. J. Padgett, “Experimental demonstration of klyshko’s advanced-wave picture using a coincidence-count based, camera-enabled imaging system,” J. Mod. Optic. 61, 547–551 (2014).
[Crossref]

O. S. Magaña-Loaiza, G. A. Howland, M. Malik, J. C. Howell, and R. W. Boyd, “Compressive object tracking using entangled photons,” Appl. Phys. Lett. 102, 231104 (2013).
[Crossref]

R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “Epr-based ghost imaging using a single-photon-sensitive camera,” New J. Phys. 15, 073032 (2013).
[Crossref]

J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inf. Process. 11, 949–993 (2012).
[Crossref]

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[Crossref] [PubMed]

Brambilla, E.

E. Brambilla, A. Gatti, M. Bache, and L. A. Lugiato, “Simultaneous near-field and far-field spatial quantum correlations in the high-gain regime of parametric down-conversion,” Phys. Rev. A 69, 023802 (2004).
[Crossref]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 013802 (2004).
[Crossref]

A. Gatti, E. Brambilla, and L. Lugiato, “Entangled imaging and wave-particle duality: from the microscopic to the macroscopic realm,” Phys. Rev. Lett. 90, 133603 (2003).
[Crossref] [PubMed]

Buller, G. S.

Coltman, J. W.

D’Angelo, M.

M. D’Angelo, A. Valencia, M. H. Rubin, and Y. Shih, “Resolution of quantum and classical ghost imaging,” Phys. Rev. A 72, 013810 (2005).
[Crossref]

Devaux, F.

P.-A. Moreau, F. Devaux, and E. Lantz, “Einstein-podolsky-rosen paradox in twin images,” Phys. Rev. Lett. 113, 160401 (2014).
[Crossref] [PubMed]

Eberly, J.

C. Law and J. Eberly, “Analysis and interpretation of high transverse entanglement in optical parametric down conversion,” Phys. Rev. Lett. 92, 127903 (2004).
[Crossref] [PubMed]

Fonseca, E. d. S.

E. d. S. Fonseca, P. S. Ribeiro, S. Pádua, and C. Monken, “Quantum interference by a nonlocal double slit,” Phys. Rev. A 60, 1530 (1999).
[Crossref]

Forbes, A.

R. S. Aspden, D. S. Tasca, A. Forbes, R. W. Boyd, and M. J. Padgett, “Experimental demonstration of klyshko’s advanced-wave picture using a coincidence-count based, camera-enabled imaging system,” J. Mod. Optic. 61, 547–551 (2014).
[Crossref]

Gatti, A.

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 013802 (2004).
[Crossref]

E. Brambilla, A. Gatti, M. Bache, and L. A. Lugiato, “Simultaneous near-field and far-field spatial quantum correlations in the high-gain regime of parametric down-conversion,” Phys. Rev. A 69, 023802 (2004).
[Crossref]

A. Gatti, E. Brambilla, and L. Lugiato, “Entangled imaging and wave-particle duality: from the microscopic to the macroscopic realm,” Phys. Rev. Lett. 90, 133603 (2003).
[Crossref] [PubMed]

Gemmell, N. R.

Hadfield, R. H.

Howell, J. C.

J. Schneeloch and J. C. Howell, “Introduction to the transverse spatial correlations in spontaneous parametric down-conversion through the biphoton birth zone,” J. Opt. 18, 053501 (2016).
[Crossref]

O. S. Magaña-Loaiza, G. A. Howland, M. Malik, J. C. Howell, and R. W. Boyd, “Compressive object tracking using entangled photons,” Appl. Phys. Lett. 102, 231104 (2013).
[Crossref]

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. Boyd, “Realization of the einstein-podolsky-rosen paradox using momentum-and position-entangled photons from spontaneous parametric down conversion,” Phys. Rev. Lett. 92, 210403 (2004).
[Crossref]

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[Crossref] [PubMed]

Howland, G. A.

O. S. Magaña-Loaiza, G. A. Howland, M. Malik, J. C. Howell, and R. W. Boyd, “Compressive object tracking using entangled photons,” Appl. Phys. Lett. 102, 231104 (2013).
[Crossref]

Kirkwood, R. A.

Klyshko, D.

D. Strekalov, A. Sergienko, D. Klyshko, and Y. Shih, “Observation of two-photon ’ghost’ interference and diffraction,” Phys. Rev. Lett. 74, 3600 (1995).
[Crossref] [PubMed]

D. Klyshko, “A simple method of preparing pure states of the optical-field, a realization of the einstein, podolsky, rosen experiment and a demonstration of the complementarity principle,” Usp. Fiz. Nauk 154, 133–152 (1988).
[Crossref]

Lantz, E.

P.-A. Moreau, F. Devaux, and E. Lantz, “Einstein-podolsky-rosen paradox in twin images,” Phys. Rev. Lett. 113, 160401 (2014).
[Crossref] [PubMed]

Law, C.

C. Law and J. Eberly, “Analysis and interpretation of high transverse entanglement in optical parametric down conversion,” Phys. Rev. Lett. 92, 127903 (2004).
[Crossref] [PubMed]

Lugiato, L.

A. Gatti, E. Brambilla, and L. Lugiato, “Entangled imaging and wave-particle duality: from the microscopic to the macroscopic realm,” Phys. Rev. Lett. 90, 133603 (2003).
[Crossref] [PubMed]

Lugiato, L. A.

E. Brambilla, A. Gatti, M. Bache, and L. A. Lugiato, “Simultaneous near-field and far-field spatial quantum correlations in the high-gain regime of parametric down-conversion,” Phys. Rev. A 69, 023802 (2004).
[Crossref]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 013802 (2004).
[Crossref]

Magaña-Loaiza, O. S.

O. S. Magaña-Loaiza, G. A. Howland, M. Malik, J. C. Howell, and R. W. Boyd, “Compressive object tracking using entangled photons,” Appl. Phys. Lett. 102, 231104 (2013).
[Crossref]

Malik, M.

O. S. Magaña-Loaiza, G. A. Howland, M. Malik, J. C. Howell, and R. W. Boyd, “Compressive object tracking using entangled photons,” Appl. Phys. Lett. 102, 231104 (2013).
[Crossref]

Mertens, L.

Monken, C.

E. d. S. Fonseca, P. S. Ribeiro, S. Pádua, and C. Monken, “Quantum interference by a nonlocal double slit,” Phys. Rev. A 60, 1530 (1999).
[Crossref]

Moreau, P.-A.

P.-A. Moreau, F. Devaux, and E. Lantz, “Einstein-podolsky-rosen paradox in twin images,” Phys. Rev. Lett. 113, 160401 (2014).
[Crossref] [PubMed]

Morris, P.

Morris, P. A.

Nill, N. B.

N. B. Nill, “Conversion between sine wave and square wave spatial frequency response of an imaging system,” Tech. rep., MITRE corp. (2001).

Padgett, M.

Padgett, M. J.

R. S. Aspden, M. J. Padgett, and G. C. Spalding, “Video recording true single-photon double-slit interference,” Am. J. Phys. 84, 671–677 (2016).
[Crossref]

R. S. Aspden, N. R. Gemmell, P. A. Morris, D. S. Tasca, L. Mertens, M. G. Tanner, R. A. Kirkwood, A. Ruggeri, A. Tosi, R. W. Boyd, G. S. Buller, R. H. Hadfield, and M. J. Padgett, “Photon-sparse microscopy: visible light imaging using infrared illumination,” Optica 2, 1049–1052 (2015).
[Crossref]

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).
[Crossref]

R. S. Aspden, D. S. Tasca, A. Forbes, R. W. Boyd, and M. J. Padgett, “Experimental demonstration of klyshko’s advanced-wave picture using a coincidence-count based, camera-enabled imaging system,” J. Mod. Optic. 61, 547–551 (2014).
[Crossref]

R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “Epr-based ghost imaging using a single-photon-sensitive camera,” New J. Phys. 15, 073032 (2013).
[Crossref]

Pádua, S.

E. d. S. Fonseca, P. S. Ribeiro, S. Pádua, and C. Monken, “Quantum interference by a nonlocal double slit,” Phys. Rev. A 60, 1530 (1999).
[Crossref]

Pittman, T.

T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref] [PubMed]

Ribeiro, P. S.

E. d. S. Fonseca, P. S. Ribeiro, S. Pádua, and C. Monken, “Quantum interference by a nonlocal double slit,” Phys. Rev. A 60, 1530 (1999).
[Crossref]

Rubin, M. H.

M. D’Angelo, A. Valencia, M. H. Rubin, and Y. Shih, “Resolution of quantum and classical ghost imaging,” Phys. Rev. A 72, 013810 (2005).
[Crossref]

Ruggeri, A.

Schneeloch, J.

J. Schneeloch and J. C. Howell, “Introduction to the transverse spatial correlations in spontaneous parametric down-conversion through the biphoton birth zone,” J. Opt. 18, 053501 (2016).
[Crossref]

Sergienko, A.

T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref] [PubMed]

D. Strekalov, A. Sergienko, D. Klyshko, and Y. Shih, “Observation of two-photon ’ghost’ interference and diffraction,” Phys. Rev. Lett. 74, 3600 (1995).
[Crossref] [PubMed]

Shapiro, J. H.

J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inf. Process. 11, 949–993 (2012).
[Crossref]

Shih, Y.

M. D’Angelo, A. Valencia, M. H. Rubin, and Y. Shih, “Resolution of quantum and classical ghost imaging,” Phys. Rev. A 72, 013810 (2005).
[Crossref]

T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref] [PubMed]

D. Strekalov, A. Sergienko, D. Klyshko, and Y. Shih, “Observation of two-photon ’ghost’ interference and diffraction,” Phys. Rev. Lett. 74, 3600 (1995).
[Crossref] [PubMed]

Spalding, G. C.

R. S. Aspden, M. J. Padgett, and G. C. Spalding, “Video recording true single-photon double-slit interference,” Am. J. Phys. 84, 671–677 (2016).
[Crossref]

Strekalov, D.

T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref] [PubMed]

D. Strekalov, A. Sergienko, D. Klyshko, and Y. Shih, “Observation of two-photon ’ghost’ interference and diffraction,” Phys. Rev. Lett. 74, 3600 (1995).
[Crossref] [PubMed]

Tanner, M. G.

Tasca, D.

Tasca, D. S.

R. S. Aspden, N. R. Gemmell, P. A. Morris, D. S. Tasca, L. Mertens, M. G. Tanner, R. A. Kirkwood, A. Ruggeri, A. Tosi, R. W. Boyd, G. S. Buller, R. H. Hadfield, and M. J. Padgett, “Photon-sparse microscopy: visible light imaging using infrared illumination,” Optica 2, 1049–1052 (2015).
[Crossref]

R. S. Aspden, D. S. Tasca, A. Forbes, R. W. Boyd, and M. J. Padgett, “Experimental demonstration of klyshko’s advanced-wave picture using a coincidence-count based, camera-enabled imaging system,” J. Mod. Optic. 61, 547–551 (2014).
[Crossref]

R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “Epr-based ghost imaging using a single-photon-sensitive camera,” New J. Phys. 15, 073032 (2013).
[Crossref]

Tosi, A.

Valencia, A.

M. D’Angelo, A. Valencia, M. H. Rubin, and Y. Shih, “Resolution of quantum and classical ghost imaging,” Phys. Rev. A 72, 013810 (2005).
[Crossref]

Am. J. Phys. (1)

R. S. Aspden, M. J. Padgett, and G. C. Spalding, “Video recording true single-photon double-slit interference,” Am. J. Phys. 84, 671–677 (2016).
[Crossref]

Appl. Phys. Lett. (1)

O. S. Magaña-Loaiza, G. A. Howland, M. Malik, J. C. Howell, and R. W. Boyd, “Compressive object tracking using entangled photons,” Appl. Phys. Lett. 102, 231104 (2013).
[Crossref]

J. Mod. Optic. (1)

R. S. Aspden, D. S. Tasca, A. Forbes, R. W. Boyd, and M. J. Padgett, “Experimental demonstration of klyshko’s advanced-wave picture using a coincidence-count based, camera-enabled imaging system,” J. Mod. Optic. 61, 547–551 (2014).
[Crossref]

J. Opt. (1)

J. Schneeloch and J. C. Howell, “Introduction to the transverse spatial correlations in spontaneous parametric down-conversion through the biphoton birth zone,” J. Opt. 18, 053501 (2016).
[Crossref]

J. Opt. Soc. Am. (1)

Nat. Commun. (1)

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).
[Crossref]

New J. Phys. (1)

R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “Epr-based ghost imaging using a single-photon-sensitive camera,” New J. Phys. 15, 073032 (2013).
[Crossref]

Opt. express (1)

Optica (1)

Phys. Rev. A (5)

T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429 (1995).
[Crossref] [PubMed]

E. d. S. Fonseca, P. S. Ribeiro, S. Pádua, and C. Monken, “Quantum interference by a nonlocal double slit,” Phys. Rev. A 60, 1530 (1999).
[Crossref]

M. D’Angelo, A. Valencia, M. H. Rubin, and Y. Shih, “Resolution of quantum and classical ghost imaging,” Phys. Rev. A 72, 013810 (2005).
[Crossref]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 013802 (2004).
[Crossref]

E. Brambilla, A. Gatti, M. Bache, and L. A. Lugiato, “Simultaneous near-field and far-field spatial quantum correlations in the high-gain regime of parametric down-conversion,” Phys. Rev. A 69, 023802 (2004).
[Crossref]

Phys. Rev. Lett. (6)

C. Law and J. Eberly, “Analysis and interpretation of high transverse entanglement in optical parametric down conversion,” Phys. Rev. Lett. 92, 127903 (2004).
[Crossref] [PubMed]

P.-A. Moreau, F. Devaux, and E. Lantz, “Einstein-podolsky-rosen paradox in twin images,” Phys. Rev. Lett. 113, 160401 (2014).
[Crossref] [PubMed]

A. Gatti, E. Brambilla, and L. Lugiato, “Entangled imaging and wave-particle duality: from the microscopic to the macroscopic realm,” Phys. Rev. Lett. 90, 133603 (2003).
[Crossref] [PubMed]

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[Crossref] [PubMed]

D. Strekalov, A. Sergienko, D. Klyshko, and Y. Shih, “Observation of two-photon ’ghost’ interference and diffraction,” Phys. Rev. Lett. 74, 3600 (1995).
[Crossref] [PubMed]

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. Boyd, “Realization of the einstein-podolsky-rosen paradox using momentum-and position-entangled photons from spontaneous parametric down conversion,” Phys. Rev. Lett. 92, 210403 (2004).
[Crossref]

Quantum Inf. Process. (1)

J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inf. Process. 11, 949–993 (2012).
[Crossref]

Usp. Fiz. Nauk (1)

D. Klyshko, “A simple method of preparing pure states of the optical-field, a realization of the einstein, podolsky, rosen experiment and a demonstration of the complementarity principle,” Usp. Fiz. Nauk 154, 133–152 (1988).
[Crossref]

Other (1)

N. B. Nill, “Conversion between sine wave and square wave spatial frequency response of an imaging system,” Tech. rep., MITRE corp. (2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) Simplified schematic of the down-conversion imaging system. The SLMs, either of which can be programmed to create the object (i.e. resolution target), are in the far-field (FF) of the BBO crystal. Depending upon which SLM is used to display the target, the configuration is either a conventional or ghost imaging system. The signal from the heralding detector coupled to a multimode fibre (MMF) triggers the ICCD camera. Three apertures Ac, Ap and Ah can be introduced respectively in the camera arm, in the pump and in the heralding arm. (b) The Klyshko Advanced Wave Picture. In this representation, the heralding detector is replaced by a classical source propagating through the system. The BBO crystal acts here as a mirror combined with a spatial filter of the same diameter as the pump beam in the down-conversion setup. Therefore, only a fraction of the beam scattered from the ghost object passes through the system, thereby limiting the resolution of the system.
Fig. 2
Fig. 2 Images of a binary sector resolution target acquired by summing 2000 binary frames of photon detection using conventional imaging and ghost Imaging for different apertures size placed in a) the camera arm; b) in the pump; c) in the heralding arm. The different apertures sizes in the same column correspond to equivalent resolution power. The 500μm white scale-bar shown at the top left also applies to all of the other reconstructed images shown in the figure. The colorbars are expressed in number of photons.
Fig. 3
Fig. 3 Modulation transfer function of the imaging system, extracted from the images presented in Fig. 2, plotted as a function of the spatial frequencies of the object in the object plane for both conventional and Ghost imaging, and for apertures placed in a) the camera arm; b) in the pump; c) in the Heralding arm. The different dashed lines correspond to the expected resolution limits given by the Rayleigh criterion: the red one corresponds to the resolution limit set by the aperture placed in the different arms; the green one corresponds to the resolution limit set by the size of the unrestricted pump beam size; the blue corresponds to the resolution limit set by a camera imaging arm restricted only by the aperture used to correctly filter the SLM diffraction orders. In each graphs the ordinate corresponds to the MTF values (potentially varying from 0 to 1) and the abscissa corresponds to the spatial frequency associated with the size of the object features in its own plane.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

σ x f 2 λ p π w p
FOV x f λ p L
V = ( FOV x σ x ) 2 π 2 w p 2 4 L λ p
C ( r ) = I max ( r ) I min ( r ) I max ( r ) + I min ( r )
M ( ξ ) = π 4 [ C ( ξ ) + C ( 3 ξ ) 3 C ( 5 ξ ) 5 + ]
M ( ξ ) π 4 C ( ξ )

Metrics