Abstract

We report a large-area broadband optical absorber consisting of Ag/SiO2 stacked plasmonic layers fabricated on a self-assembly polystyrene sphere monolayer using the glancing angle deposition. Such an absorber can absorb more than 90% of light in the spectral range of 350 – 850 nm when the polystyrene spheres have a diameter of 750 nm. The broadband absorption is due to the overlap of localized plasmonic resonance wavelengths resulting from different patchy sizes and shapes of Ag coating on polystyrene spheres. Such a simple, flexible and large-area absorber has potential applications in light cloaking and energy conversion.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Light absorber based on nano-spheres on a substrate reflector

Jin Dai, Fei Ye, Yiting Chen, Mamoun Muhammed, Min Qiu, and Min Yan
Opt. Express 21(6) 6697-6706 (2013)

Plasmonic chirality of L-shaped nanostructure composed of two slices with different thickness

Yongkai Wang, Junchen Deng, Gang Wang, Tong Fu, Yu Qu, and Zhongyue Zhang
Opt. Express 24(3) 2307-2317 (2016)

Dual broadband near-infrared perfect absorber based on a hybrid plasmonic-photonic microstructure

Zhengqi Liu, Peng Zhan, Jing Chen, Chaojun Tang, Zhendong Yan, Zhuo Chen, and Zhenlin Wang
Opt. Express 21(3) 3021-3030 (2013)

References

  • View by:
  • |
  • |
  • |

  1. Y. K. Zhong, S. M. Fu, W. Huang, D. Rung, J. Y. Huang, P. Parashar, and A. Lin, “Polarization-selective ultra-broadband super absorber,” Opt. Express 25(4), A124–A133 (2017).
    [PubMed]
  2. Y. Zhou, Z. P. Hu, Y. Li, J. Q. Xu, X. S. Tang, and Y. L. Tang, “CsPbBr3 nanocrystal saturable absorber for mode-locking ytterbium fiber laser,” Appl. Phys. Lett. 108(26), 261108 (2016).
  3. L. Zhou, Y. Zhou, Y. F. Zhu, X. X. Dong, B. L. Gao, Y. Z. Wang, and S. Shen, “Broadband bidirectional visible light absorber with wide angular tolerance,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(2), 391–397 (2016).
  4. D. Liu, H. Yu, Z. Yang, and Y. D. Yuan, “Ultrathin planar broadband absorber through effective medium design,” Nano Res. 9(8), 2354–2363 (2016).
  5. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
    [PubMed]
  6. M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
    [PubMed]
  7. C. Ng, L. W. Yap, A. Roberts, W. L. Cheng, and D. E. Gomez, “Black Gold: Broadband, High Absorption of Visible Light for Photochemical Systems,” Adv. Funct. Mater. 27(2), 1604080 (2017).
  8. Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
    [PubMed]
  9. X. Chen, H. Gong, S. Dai, D. Zhao, Y. Yang, Q. Li, and M. Qiu, “Near-infrared broadband absorber with film-coupled multilayer nanorods,” Opt. Lett. 38(13), 2247–2249 (2013).
    [PubMed]
  10. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [PubMed]
  11. Y. Q. Ye, Y. Jin, and S. L. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498–504 (2010).
  12. H. Deng, L. Stan, D. Czaplewski, J. Gao, and X. Yang, “Broadband infrared absorbers with stacked double chromium ring resonators,” Opt. Express 25(23), 28295–28304 (2017).
  13. Y. Cui, K. H. Fung, J. Xu, S. He, and N. X. Fang, “Multiband plasmonic absorber based on transverse phase resonances,” Opt. Express 20(16), 17552–17559 (2012).
    [PubMed]
  14. K. Du, Q. Li, Y. Lyu, J. Ding, Y. Lu, Z. Cheng, and M. Qiu, “Control over Emissivity of Zero-Static-Power Thermal Emitters Based on Phase-Changing Material GST,” Light Sci. Appl. 6(1), e16194 (2017).
  15. W. Wang, Y. Cui, Y. He, Y. Hao, Y. Lin, X. Tian, T. Ji, and S. He, “Efficient multiband absorber based on one-dimensional periodic metal-dielectric photonic crystal with a reflective substrate,” Opt. Lett. 39(2), 331–334 (2014).
    [PubMed]
  16. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
    [PubMed]
  17. Q. Q. Liang, T. S. Wang, Z. W. Lu, Q. Sun, Y. Q. Fu, and W. X. Yu, “Metamaterial-Based Two Dimensional Plasmonic Subwavelength Structures Offer the Broadest Waveband Light Harvesting,” Adv. Opt. Mater. 1(1), 43–49 (2013).
  18. W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε″ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
  19. Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
    [PubMed]
  20. K. Q. Peng and S. T. Lee, “Silicon nanowires for photovoltaic solar energy conversion,” Adv. Mater. 23(2), 198–215 (2011).
    [PubMed]
  21. J. Yang, X. Hu, X. Li, Z. Liu, Z. Liang, X. Jiang, and J. Zi, “Broadband absorption enhancement in anisotropic metamaterials by mirror reflections,” Phys. Rev. B 80(12), 125103 (2009).
  22. E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett. 95(4), 041106 (2009).
  23. H. Deng, Z. Li, L. Stan, D. Rosenmann, D. Czaplewski, J. Gao, and X. Yang, “Broadband perfect absorber based on one ultrathin layer of refractory metal,” Opt. Lett. 40(11), 2592–2595 (2015).
    [PubMed]
  24. T. Wu, J. Lai, S. Wang, X. Li, and Y. Huang, “UV-visible broadband wide-angle polarization-insensitive absorber based on metal groove structures with multiple depths,” Appl. Opt. 56(21), 5844–5848 (2017).
    [PubMed]
  25. X. J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagnetics Res. 115, 381–397 (2011).
  26. C. W. Cheng, M. N. Abbas, C. W. Chiu, K. T. Lai, M. H. Shih, and Y. C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express 20(9), 10376–10381 (2012).
    [PubMed]
  27. Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
  28. T. Fu, Y. Qu, T. Wang, G. Wang, Y. Wang, H. Li, J. Li, L. Wang, and Z. Zhang, “Tunable chiroptical response of chiral plasmonic nanostructures fabricated with chiral templates through oblique angle deposition,” J. Phys. Chem. C 121(2), 1299–1304 (2017).
  29. L. Bradley and Y. Zhao, “Uniform plasmonic response of colloidal Ag patchy particles prepared by swinging oblique angle deposition,” Langmuir 32(19), 4969–4974 (2016).
    [PubMed]
  30. C. Han, H. M. Leung, and W. Y. Tam, “Chiral metamaterials by shadowing vapor deposition,” J. Opt. 15(7), 072101 (2013).
  31. Y. He, K. Lawrence, W. Ingram, and Y. Zhao, “Strong local chiroptical response in racemic patchy silver films: enabling a large-area chiroptical device,” ACS Photonics 2(9), 1246–1252 (2015).
  32. A. G. Dirks and H. J. Leamy, “Columnar microstructure in vapor-deposited thin films,” Thin Solid Films 47(3), 219–233 (1977).
  33. Y. He, G. K. Larsen, W. Ingram, and Y. Zhao, “Tunable three-dimensional helically stacked plasmonic layers on nanosphere monolayers,” Nano Lett. 14(4), 1976–1981 (2014).
    [PubMed]
  34. W. Ingram, C. Q. Han, Q. J. Zhang, and Y. Zhao, “Optimization of Ag-Coated Polystyrene Nanosphere Substrates for Quantitative Surface-Enhanced Raman Spectroscopy Analysis,” J. Phys. Chem. C 119(49), 27639–27648 (2015).
  35. G. K. Larsen, Y. He, W. Ingram, and Y. Zhao, “Hidden chirality in superficially racemic patchy silver films,” Nano Lett. 13(12), 6228–6232 (2013).
    [PubMed]

2017 (8)

Y. K. Zhong, S. M. Fu, W. Huang, D. Rung, J. Y. Huang, P. Parashar, and A. Lin, “Polarization-selective ultra-broadband super absorber,” Opt. Express 25(4), A124–A133 (2017).
[PubMed]

C. Ng, L. W. Yap, A. Roberts, W. L. Cheng, and D. E. Gomez, “Black Gold: Broadband, High Absorption of Visible Light for Photochemical Systems,” Adv. Funct. Mater. 27(2), 1604080 (2017).

H. Deng, L. Stan, D. Czaplewski, J. Gao, and X. Yang, “Broadband infrared absorbers with stacked double chromium ring resonators,” Opt. Express 25(23), 28295–28304 (2017).

K. Du, Q. Li, Y. Lyu, J. Ding, Y. Lu, Z. Cheng, and M. Qiu, “Control over Emissivity of Zero-Static-Power Thermal Emitters Based on Phase-Changing Material GST,” Light Sci. Appl. 6(1), e16194 (2017).

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε″ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).

T. Wu, J. Lai, S. Wang, X. Li, and Y. Huang, “UV-visible broadband wide-angle polarization-insensitive absorber based on metal groove structures with multiple depths,” Appl. Opt. 56(21), 5844–5848 (2017).
[PubMed]

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).

T. Fu, Y. Qu, T. Wang, G. Wang, Y. Wang, H. Li, J. Li, L. Wang, and Z. Zhang, “Tunable chiroptical response of chiral plasmonic nanostructures fabricated with chiral templates through oblique angle deposition,” J. Phys. Chem. C 121(2), 1299–1304 (2017).

2016 (4)

L. Bradley and Y. Zhao, “Uniform plasmonic response of colloidal Ag patchy particles prepared by swinging oblique angle deposition,” Langmuir 32(19), 4969–4974 (2016).
[PubMed]

Y. Zhou, Z. P. Hu, Y. Li, J. Q. Xu, X. S. Tang, and Y. L. Tang, “CsPbBr3 nanocrystal saturable absorber for mode-locking ytterbium fiber laser,” Appl. Phys. Lett. 108(26), 261108 (2016).

L. Zhou, Y. Zhou, Y. F. Zhu, X. X. Dong, B. L. Gao, Y. Z. Wang, and S. Shen, “Broadband bidirectional visible light absorber with wide angular tolerance,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(2), 391–397 (2016).

D. Liu, H. Yu, Z. Yang, and Y. D. Yuan, “Ultrathin planar broadband absorber through effective medium design,” Nano Res. 9(8), 2354–2363 (2016).

2015 (3)

H. Deng, Z. Li, L. Stan, D. Rosenmann, D. Czaplewski, J. Gao, and X. Yang, “Broadband perfect absorber based on one ultrathin layer of refractory metal,” Opt. Lett. 40(11), 2592–2595 (2015).
[PubMed]

Y. He, K. Lawrence, W. Ingram, and Y. Zhao, “Strong local chiroptical response in racemic patchy silver films: enabling a large-area chiroptical device,” ACS Photonics 2(9), 1246–1252 (2015).

W. Ingram, C. Q. Han, Q. J. Zhang, and Y. Zhao, “Optimization of Ag-Coated Polystyrene Nanosphere Substrates for Quantitative Surface-Enhanced Raman Spectroscopy Analysis,” J. Phys. Chem. C 119(49), 27639–27648 (2015).

2014 (2)

Y. He, G. K. Larsen, W. Ingram, and Y. Zhao, “Tunable three-dimensional helically stacked plasmonic layers on nanosphere monolayers,” Nano Lett. 14(4), 1976–1981 (2014).
[PubMed]

W. Wang, Y. Cui, Y. He, Y. Hao, Y. Lin, X. Tian, T. Ji, and S. He, “Efficient multiband absorber based on one-dimensional periodic metal-dielectric photonic crystal with a reflective substrate,” Opt. Lett. 39(2), 331–334 (2014).
[PubMed]

2013 (4)

X. Chen, H. Gong, S. Dai, D. Zhao, Y. Yang, Q. Li, and M. Qiu, “Near-infrared broadband absorber with film-coupled multilayer nanorods,” Opt. Lett. 38(13), 2247–2249 (2013).
[PubMed]

G. K. Larsen, Y. He, W. Ingram, and Y. Zhao, “Hidden chirality in superficially racemic patchy silver films,” Nano Lett. 13(12), 6228–6232 (2013).
[PubMed]

Q. Q. Liang, T. S. Wang, Z. W. Lu, Q. Sun, Y. Q. Fu, and W. X. Yu, “Metamaterial-Based Two Dimensional Plasmonic Subwavelength Structures Offer the Broadest Waveband Light Harvesting,” Adv. Opt. Mater. 1(1), 43–49 (2013).

C. Han, H. M. Leung, and W. Y. Tam, “Chiral metamaterials by shadowing vapor deposition,” J. Opt. 15(7), 072101 (2013).

2012 (4)

C. W. Cheng, M. N. Abbas, C. W. Chiu, K. T. Lai, M. H. Shih, and Y. C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express 20(9), 10376–10381 (2012).
[PubMed]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[PubMed]

Y. Cui, K. H. Fung, J. Xu, S. He, and N. X. Fang, “Multiband plasmonic absorber based on transverse phase resonances,” Opt. Express 20(16), 17552–17559 (2012).
[PubMed]

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[PubMed]

2011 (6)

K. Q. Peng and S. T. Lee, “Silicon nanowires for photovoltaic solar energy conversion,” Adv. Mater. 23(2), 198–215 (2011).
[PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[PubMed]

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[PubMed]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[PubMed]

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[PubMed]

X. J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagnetics Res. 115, 381–397 (2011).

2010 (1)

2009 (2)

J. Yang, X. Hu, X. Li, Z. Liu, Z. Liang, X. Jiang, and J. Zi, “Broadband absorption enhancement in anisotropic metamaterials by mirror reflections,” Phys. Rev. B 80(12), 125103 (2009).

E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett. 95(4), 041106 (2009).

1977 (1)

A. G. Dirks and H. J. Leamy, “Columnar microstructure in vapor-deposited thin films,” Thin Solid Films 47(3), 219–233 (1977).

Abbas, M. N.

Abdelaziz, R.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[PubMed]

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[PubMed]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[PubMed]

Bai, S.

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε″ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).

Bradley, L.

L. Bradley and Y. Zhao, “Uniform plasmonic response of colloidal Ag patchy particles prepared by swinging oblique angle deposition,” Langmuir 32(19), 4969–4974 (2016).
[PubMed]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[PubMed]

Cai, L.

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).

Chakravadhanula, V. S. K.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[PubMed]

Chang, Y. C.

Chen, X.

Cheng, C. W.

Cheng, W. L.

C. Ng, L. W. Yap, A. Roberts, W. L. Cheng, and D. E. Gomez, “Black Gold: Broadband, High Absorption of Visible Light for Photochemical Systems,” Adv. Funct. Mater. 27(2), 1604080 (2017).

Cheng, Z.

K. Du, Q. Li, Y. Lyu, J. Ding, Y. Lu, Z. Cheng, and M. Qiu, “Control over Emissivity of Zero-Static-Power Thermal Emitters Based on Phase-Changing Material GST,” Light Sci. Appl. 6(1), e16194 (2017).

Chiu, C. W.

Cui, Y.

Czaplewski, D.

Dai, S.

Deng, H.

Ding, J.

K. Du, Q. Li, Y. Lyu, J. Ding, Y. Lu, Z. Cheng, and M. Qiu, “Control over Emissivity of Zero-Static-Power Thermal Emitters Based on Phase-Changing Material GST,” Light Sci. Appl. 6(1), e16194 (2017).

Dirks, A. G.

A. G. Dirks and H. J. Leamy, “Columnar microstructure in vapor-deposited thin films,” Thin Solid Films 47(3), 219–233 (1977).

Dong, X. X.

L. Zhou, Y. Zhou, Y. F. Zhu, X. X. Dong, B. L. Gao, Y. Z. Wang, and S. Shen, “Broadband bidirectional visible light absorber with wide angular tolerance,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(2), 391–397 (2016).

Du, K.

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε″ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).

K. Du, Q. Li, Y. Lyu, J. Ding, Y. Lu, Z. Cheng, and M. Qiu, “Control over Emissivity of Zero-Static-Power Thermal Emitters Based on Phase-Changing Material GST,” Light Sci. Appl. 6(1), e16194 (2017).

Elbahri, M.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[PubMed]

Fang, N. X.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[PubMed]

Y. Cui, K. H. Fung, J. Xu, S. He, and N. X. Fang, “Multiband plasmonic absorber based on transverse phase resonances,” Opt. Express 20(16), 17552–17559 (2012).
[PubMed]

Faupel, F.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[PubMed]

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[PubMed]

Fu, S. M.

Fu, T.

T. Fu, Y. Qu, T. Wang, G. Wang, Y. Wang, H. Li, J. Li, L. Wang, and Z. Zhang, “Tunable chiroptical response of chiral plasmonic nanostructures fabricated with chiral templates through oblique angle deposition,” J. Phys. Chem. C 121(2), 1299–1304 (2017).

Fu, Y. Q.

Q. Q. Liang, T. S. Wang, Z. W. Lu, Q. Sun, Y. Q. Fu, and W. X. Yu, “Metamaterial-Based Two Dimensional Plasmonic Subwavelength Structures Offer the Broadest Waveband Light Harvesting,” Adv. Opt. Mater. 1(1), 43–49 (2013).

Fung, K. H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[PubMed]

Y. Cui, K. H. Fung, J. Xu, S. He, and N. X. Fang, “Multiband plasmonic absorber based on transverse phase resonances,” Opt. Express 20(16), 17552–17559 (2012).
[PubMed]

Gao, B. L.

L. Zhou, Y. Zhou, Y. F. Zhu, X. X. Dong, B. L. Gao, Y. Z. Wang, and S. Shen, “Broadband bidirectional visible light absorber with wide angular tolerance,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(2), 391–397 (2016).

Gao, J.

Gomez, D. E.

C. Ng, L. W. Yap, A. Roberts, W. L. Cheng, and D. E. Gomez, “Black Gold: Broadband, High Absorption of Visible Light for Photochemical Systems,” Adv. Funct. Mater. 27(2), 1604080 (2017).

Gong, H.

Gui, T.

X. J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagnetics Res. 115, 381–397 (2011).

Han, C.

C. Han, H. M. Leung, and W. Y. Tam, “Chiral metamaterials by shadowing vapor deposition,” J. Opt. 15(7), 072101 (2013).

Han, C. Q.

W. Ingram, C. Q. Han, Q. J. Zhang, and Y. Zhao, “Optimization of Ag-Coated Polystyrene Nanosphere Substrates for Quantitative Surface-Enhanced Raman Spectroscopy Analysis,” J. Phys. Chem. C 119(49), 27639–27648 (2015).

Hao, Y.

He, S.

He, S. L.

He, X. J.

X. J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagnetics Res. 115, 381–397 (2011).

He, Y.

Y. He, K. Lawrence, W. Ingram, and Y. Zhao, “Strong local chiroptical response in racemic patchy silver films: enabling a large-area chiroptical device,” ACS Photonics 2(9), 1246–1252 (2015).

Y. He, G. K. Larsen, W. Ingram, and Y. Zhao, “Tunable three-dimensional helically stacked plasmonic layers on nanosphere monolayers,” Nano Lett. 14(4), 1976–1981 (2014).
[PubMed]

W. Wang, Y. Cui, Y. He, Y. Hao, Y. Lin, X. Tian, T. Ji, and S. He, “Efficient multiband absorber based on one-dimensional periodic metal-dielectric photonic crystal with a reflective substrate,” Opt. Lett. 39(2), 331–334 (2014).
[PubMed]

G. K. Larsen, Y. He, W. Ingram, and Y. Zhao, “Hidden chirality in superficially racemic patchy silver films,” Nano Lett. 13(12), 6228–6232 (2013).
[PubMed]

Hedayati, M. K.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[PubMed]

Hu, X.

J. Yang, X. Hu, X. Li, Z. Liu, Z. Liang, X. Jiang, and J. Zi, “Broadband absorption enhancement in anisotropic metamaterials by mirror reflections,” Phys. Rev. B 80(12), 125103 (2009).

Hu, Z. P.

Y. Zhou, Z. P. Hu, Y. Li, J. Q. Xu, X. S. Tang, and Y. L. Tang, “CsPbBr3 nanocrystal saturable absorber for mode-locking ytterbium fiber laser,” Appl. Phys. Lett. 108(26), 261108 (2016).

Huang, J. Y.

Huang, W.

Huang, Y.

Ingram, W.

W. Ingram, C. Q. Han, Q. J. Zhang, and Y. Zhao, “Optimization of Ag-Coated Polystyrene Nanosphere Substrates for Quantitative Surface-Enhanced Raman Spectroscopy Analysis,” J. Phys. Chem. C 119(49), 27639–27648 (2015).

Y. He, K. Lawrence, W. Ingram, and Y. Zhao, “Strong local chiroptical response in racemic patchy silver films: enabling a large-area chiroptical device,” ACS Photonics 2(9), 1246–1252 (2015).

Y. He, G. K. Larsen, W. Ingram, and Y. Zhao, “Tunable three-dimensional helically stacked plasmonic layers on nanosphere monolayers,” Nano Lett. 14(4), 1976–1981 (2014).
[PubMed]

G. K. Larsen, Y. He, W. Ingram, and Y. Zhao, “Hidden chirality in superficially racemic patchy silver films,” Nano Lett. 13(12), 6228–6232 (2013).
[PubMed]

Javaherirahim, M.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[PubMed]

Ji, T.

Jiang, X.

J. Yang, X. Hu, X. Li, Z. Liu, Z. Liang, X. Jiang, and J. Zi, “Broadband absorption enhancement in anisotropic metamaterials by mirror reflections,” Phys. Rev. B 80(12), 125103 (2009).

Jiang, Z. H.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[PubMed]

Jin, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[PubMed]

Y. Q. Ye, Y. Jin, and S. L. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498–504 (2010).

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[PubMed]

Kempa, K.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[PubMed]

Kildishev, A. V.

E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett. 95(4), 041106 (2009).

Lai, J.

Lai, K. T.

Larsen, G. K.

Y. He, G. K. Larsen, W. Ingram, and Y. Zhao, “Tunable three-dimensional helically stacked plasmonic layers on nanosphere monolayers,” Nano Lett. 14(4), 1976–1981 (2014).
[PubMed]

G. K. Larsen, Y. He, W. Ingram, and Y. Zhao, “Hidden chirality in superficially racemic patchy silver films,” Nano Lett. 13(12), 6228–6232 (2013).
[PubMed]

Lawrence, K.

Y. He, K. Lawrence, W. Ingram, and Y. Zhao, “Strong local chiroptical response in racemic patchy silver films: enabling a large-area chiroptical device,” ACS Photonics 2(9), 1246–1252 (2015).

Leamy, H. J.

A. G. Dirks and H. J. Leamy, “Columnar microstructure in vapor-deposited thin films,” Thin Solid Films 47(3), 219–233 (1977).

Lee, S. T.

K. Q. Peng and S. T. Lee, “Silicon nanowires for photovoltaic solar energy conversion,” Adv. Mater. 23(2), 198–215 (2011).
[PubMed]

Leung, H. M.

C. Han, H. M. Leung, and W. Y. Tam, “Chiral metamaterials by shadowing vapor deposition,” J. Opt. 15(7), 072101 (2013).

Li, H.

T. Fu, Y. Qu, T. Wang, G. Wang, Y. Wang, H. Li, J. Li, L. Wang, and Z. Zhang, “Tunable chiroptical response of chiral plasmonic nanostructures fabricated with chiral templates through oblique angle deposition,” J. Phys. Chem. C 121(2), 1299–1304 (2017).

Li, J.

T. Fu, Y. Qu, T. Wang, G. Wang, Y. Wang, H. Li, J. Li, L. Wang, and Z. Zhang, “Tunable chiroptical response of chiral plasmonic nanostructures fabricated with chiral templates through oblique angle deposition,” J. Phys. Chem. C 121(2), 1299–1304 (2017).

Li, Q.

K. Du, Q. Li, Y. Lyu, J. Ding, Y. Lu, Z. Cheng, and M. Qiu, “Control over Emissivity of Zero-Static-Power Thermal Emitters Based on Phase-Changing Material GST,” Light Sci. Appl. 6(1), e16194 (2017).

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε″ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).

X. Chen, H. Gong, S. Dai, D. Zhao, Y. Yang, Q. Li, and M. Qiu, “Near-infrared broadband absorber with film-coupled multilayer nanorods,” Opt. Lett. 38(13), 2247–2249 (2013).
[PubMed]

Li, X.

T. Wu, J. Lai, S. Wang, X. Li, and Y. Huang, “UV-visible broadband wide-angle polarization-insensitive absorber based on metal groove structures with multiple depths,” Appl. Opt. 56(21), 5844–5848 (2017).
[PubMed]

J. Yang, X. Hu, X. Li, Z. Liu, Z. Liang, X. Jiang, and J. Zi, “Broadband absorption enhancement in anisotropic metamaterials by mirror reflections,” Phys. Rev. B 80(12), 125103 (2009).

Li, Y.

Y. Zhou, Z. P. Hu, Y. Li, J. Q. Xu, X. S. Tang, and Y. L. Tang, “CsPbBr3 nanocrystal saturable absorber for mode-locking ytterbium fiber laser,” Appl. Phys. Lett. 108(26), 261108 (2016).

Li, Z.

Liang, Q. Q.

Q. Q. Liang, T. S. Wang, Z. W. Lu, Q. Sun, Y. Q. Fu, and W. X. Yu, “Metamaterial-Based Two Dimensional Plasmonic Subwavelength Structures Offer the Broadest Waveband Light Harvesting,” Adv. Opt. Mater. 1(1), 43–49 (2013).

Liang, Z.

J. Yang, X. Hu, X. Li, Z. Liu, Z. Liang, X. Jiang, and J. Zi, “Broadband absorption enhancement in anisotropic metamaterials by mirror reflections,” Phys. Rev. B 80(12), 125103 (2009).

Lin, A.

Lin, Y.

Liu, D.

D. Liu, H. Yu, Z. Yang, and Y. D. Yuan, “Ultrathin planar broadband absorber through effective medium design,” Nano Res. 9(8), 2354–2363 (2016).

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[PubMed]

Liu, Z.

J. Yang, X. Hu, X. Li, Z. Liu, Z. Liang, X. Jiang, and J. Zi, “Broadband absorption enhancement in anisotropic metamaterials by mirror reflections,” Phys. Rev. B 80(12), 125103 (2009).

Lu, J.

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).

Lu, Y.

K. Du, Q. Li, Y. Lyu, J. Ding, Y. Lu, Z. Cheng, and M. Qiu, “Control over Emissivity of Zero-Static-Power Thermal Emitters Based on Phase-Changing Material GST,” Light Sci. Appl. 6(1), e16194 (2017).

Lu, Z. W.

Q. Q. Liang, T. S. Wang, Z. W. Lu, Q. Sun, Y. Q. Fu, and W. X. Yu, “Metamaterial-Based Two Dimensional Plasmonic Subwavelength Structures Offer the Broadest Waveband Light Harvesting,” Adv. Opt. Mater. 1(1), 43–49 (2013).

Lyu, Y.

K. Du, Q. Li, Y. Lyu, J. Ding, Y. Lu, Z. Cheng, and M. Qiu, “Control over Emissivity of Zero-Static-Power Thermal Emitters Based on Phase-Changing Material GST,” Light Sci. Appl. 6(1), e16194 (2017).

Ma, H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[PubMed]

Mayer, T. S.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[PubMed]

Mozooni, B.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[PubMed]

Narimanov, E. E.

E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett. 95(4), 041106 (2009).

Ng, C.

C. Ng, L. W. Yap, A. Roberts, W. L. Cheng, and D. E. Gomez, “Black Gold: Broadband, High Absorption of Visible Light for Photochemical Systems,” Adv. Funct. Mater. 27(2), 1604080 (2017).

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[PubMed]

Pan, M.

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε″ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).

Parashar, P.

Paudel, T.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[PubMed]

Peng, K. Q.

K. Q. Peng and S. T. Lee, “Silicon nanowires for photovoltaic solar energy conversion,” Adv. Mater. 23(2), 198–215 (2011).
[PubMed]

Qiu, M.

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε″ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).

K. Du, Q. Li, Y. Lyu, J. Ding, Y. Lu, Z. Cheng, and M. Qiu, “Control over Emissivity of Zero-Static-Power Thermal Emitters Based on Phase-Changing Material GST,” Light Sci. Appl. 6(1), e16194 (2017).

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).

X. Chen, H. Gong, S. Dai, D. Zhao, Y. Yang, Q. Li, and M. Qiu, “Near-infrared broadband absorber with film-coupled multilayer nanorods,” Opt. Lett. 38(13), 2247–2249 (2013).
[PubMed]

Qu, Y.

T. Fu, Y. Qu, T. Wang, G. Wang, Y. Wang, H. Li, J. Li, L. Wang, and Z. Zhang, “Tunable chiroptical response of chiral plasmonic nanostructures fabricated with chiral templates through oblique angle deposition,” J. Phys. Chem. C 121(2), 1299–1304 (2017).

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε″ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).

Ren, Z.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[PubMed]

Roberts, A.

C. Ng, L. W. Yap, A. Roberts, W. L. Cheng, and D. E. Gomez, “Black Gold: Broadband, High Absorption of Visible Light for Photochemical Systems,” Adv. Funct. Mater. 27(2), 1604080 (2017).

Rosenmann, D.

Rung, D.

Shen, S.

L. Zhou, Y. Zhou, Y. F. Zhu, X. X. Dong, B. L. Gao, Y. Z. Wang, and S. Shen, “Broadband bidirectional visible light absorber with wide angular tolerance,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(2), 391–397 (2016).

Shih, M. H.

Stan, L.

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[PubMed]

Strunkus, T.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[PubMed]

Sun, Q.

Q. Q. Liang, T. S. Wang, Z. W. Lu, Q. Sun, Y. Q. Fu, and W. X. Yu, “Metamaterial-Based Two Dimensional Plasmonic Subwavelength Structures Offer the Broadest Waveband Light Harvesting,” Adv. Opt. Mater. 1(1), 43–49 (2013).

Sun, T.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[PubMed]

Tam, W. Y.

C. Han, H. M. Leung, and W. Y. Tam, “Chiral metamaterials by shadowing vapor deposition,” J. Opt. 15(7), 072101 (2013).

Tang, X. S.

Y. Zhou, Z. P. Hu, Y. Li, J. Q. Xu, X. S. Tang, and Y. L. Tang, “CsPbBr3 nanocrystal saturable absorber for mode-locking ytterbium fiber laser,” Appl. Phys. Lett. 108(26), 261108 (2016).

Tang, Y. L.

Y. Zhou, Z. P. Hu, Y. Li, J. Q. Xu, X. S. Tang, and Y. L. Tang, “CsPbBr3 nanocrystal saturable absorber for mode-locking ytterbium fiber laser,” Appl. Phys. Lett. 108(26), 261108 (2016).

Tavassolizadeh, A.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[PubMed]

Tian, J.

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε″ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).

Tian, X.

Toor, F.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[PubMed]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[PubMed]

Wang, G.

T. Fu, Y. Qu, T. Wang, G. Wang, Y. Wang, H. Li, J. Li, L. Wang, and Z. Zhang, “Tunable chiroptical response of chiral plasmonic nanostructures fabricated with chiral templates through oblique angle deposition,” J. Phys. Chem. C 121(2), 1299–1304 (2017).

Wang, J.

X. J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagnetics Res. 115, 381–397 (2011).

Wang, L.

T. Fu, Y. Qu, T. Wang, G. Wang, Y. Wang, H. Li, J. Li, L. Wang, and Z. Zhang, “Tunable chiroptical response of chiral plasmonic nanostructures fabricated with chiral templates through oblique angle deposition,” J. Phys. Chem. C 121(2), 1299–1304 (2017).

Wang, S.

Wang, T.

T. Fu, Y. Qu, T. Wang, G. Wang, Y. Wang, H. Li, J. Li, L. Wang, and Z. Zhang, “Tunable chiroptical response of chiral plasmonic nanostructures fabricated with chiral templates through oblique angle deposition,” J. Phys. Chem. C 121(2), 1299–1304 (2017).

Wang, T. S.

Q. Q. Liang, T. S. Wang, Z. W. Lu, Q. Sun, Y. Q. Fu, and W. X. Yu, “Metamaterial-Based Two Dimensional Plasmonic Subwavelength Structures Offer the Broadest Waveband Light Harvesting,” Adv. Opt. Mater. 1(1), 43–49 (2013).

Wang, W.

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε″ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).

W. Wang, Y. Cui, Y. He, Y. Hao, Y. Lin, X. Tian, T. Ji, and S. He, “Efficient multiband absorber based on one-dimensional periodic metal-dielectric photonic crystal with a reflective substrate,” Opt. Lett. 39(2), 331–334 (2014).
[PubMed]

Wang, Y.

T. Fu, Y. Qu, T. Wang, G. Wang, Y. Wang, H. Li, J. Li, L. Wang, and Z. Zhang, “Tunable chiroptical response of chiral plasmonic nanostructures fabricated with chiral templates through oblique angle deposition,” J. Phys. Chem. C 121(2), 1299–1304 (2017).

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[PubMed]

X. J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagnetics Res. 115, 381–397 (2011).

Wang, Y. Z.

L. Zhou, Y. Zhou, Y. F. Zhu, X. X. Dong, B. L. Gao, Y. Z. Wang, and S. Shen, “Broadband bidirectional visible light absorber with wide angular tolerance,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(2), 391–397 (2016).

Werner, D. H.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[PubMed]

Wu, Q.

X. J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagnetics Res. 115, 381–397 (2011).

Wu, T.

Xu, J.

Y. Cui, K. H. Fung, J. Xu, S. He, and N. X. Fang, “Multiband plasmonic absorber based on transverse phase resonances,” Opt. Express 20(16), 17552–17559 (2012).
[PubMed]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[PubMed]

Xu, J. Q.

Y. Zhou, Z. P. Hu, Y. Li, J. Q. Xu, X. S. Tang, and Y. L. Tang, “CsPbBr3 nanocrystal saturable absorber for mode-locking ytterbium fiber laser,” Appl. Phys. Lett. 108(26), 261108 (2016).

Yang, J.

J. Yang, X. Hu, X. Li, Z. Liu, Z. Liang, X. Jiang, and J. Zi, “Broadband absorption enhancement in anisotropic metamaterials by mirror reflections,” Phys. Rev. B 80(12), 125103 (2009).

Yang, X.

Yang, Y.

Yang, Z.

D. Liu, H. Yu, Z. Yang, and Y. D. Yuan, “Ultrathin planar broadband absorber through effective medium design,” Nano Res. 9(8), 2354–2363 (2016).

Yap, L. W.

C. Ng, L. W. Yap, A. Roberts, W. L. Cheng, and D. E. Gomez, “Black Gold: Broadband, High Absorption of Visible Light for Photochemical Systems,” Adv. Funct. Mater. 27(2), 1604080 (2017).

Ye, H.

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε″ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).

Ye, Y. Q.

Yu, H.

D. Liu, H. Yu, Z. Yang, and Y. D. Yuan, “Ultrathin planar broadband absorber through effective medium design,” Nano Res. 9(8), 2354–2363 (2016).

Yu, W. X.

Q. Q. Liang, T. S. Wang, Z. W. Lu, Q. Sun, Y. Q. Fu, and W. X. Yu, “Metamaterial-Based Two Dimensional Plasmonic Subwavelength Structures Offer the Broadest Waveband Light Harvesting,” Adv. Opt. Mater. 1(1), 43–49 (2013).

Yuan, Y. D.

D. Liu, H. Yu, Z. Yang, and Y. D. Yuan, “Ultrathin planar broadband absorber through effective medium design,” Nano Res. 9(8), 2354–2363 (2016).

Yun, S.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[PubMed]

Zaporojtchenko, V.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[PubMed]

Zhang, Q. J.

W. Ingram, C. Q. Han, Q. J. Zhang, and Y. Zhao, “Optimization of Ag-Coated Polystyrene Nanosphere Substrates for Quantitative Surface-Enhanced Raman Spectroscopy Analysis,” J. Phys. Chem. C 119(49), 27639–27648 (2015).

Zhang, Y.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[PubMed]

Zhang, Z.

T. Fu, Y. Qu, T. Wang, G. Wang, Y. Wang, H. Li, J. Li, L. Wang, and Z. Zhang, “Tunable chiroptical response of chiral plasmonic nanostructures fabricated with chiral templates through oblique angle deposition,” J. Phys. Chem. C 121(2), 1299–1304 (2017).

Zhao, D.

Zhao, Y.

L. Bradley and Y. Zhao, “Uniform plasmonic response of colloidal Ag patchy particles prepared by swinging oblique angle deposition,” Langmuir 32(19), 4969–4974 (2016).
[PubMed]

Y. He, K. Lawrence, W. Ingram, and Y. Zhao, “Strong local chiroptical response in racemic patchy silver films: enabling a large-area chiroptical device,” ACS Photonics 2(9), 1246–1252 (2015).

W. Ingram, C. Q. Han, Q. J. Zhang, and Y. Zhao, “Optimization of Ag-Coated Polystyrene Nanosphere Substrates for Quantitative Surface-Enhanced Raman Spectroscopy Analysis,” J. Phys. Chem. C 119(49), 27639–27648 (2015).

Y. He, G. K. Larsen, W. Ingram, and Y. Zhao, “Tunable three-dimensional helically stacked plasmonic layers on nanosphere monolayers,” Nano Lett. 14(4), 1976–1981 (2014).
[PubMed]

G. K. Larsen, Y. He, W. Ingram, and Y. Zhao, “Hidden chirality in superficially racemic patchy silver films,” Nano Lett. 13(12), 6228–6232 (2013).
[PubMed]

Zhong, Y. K.

Zhou, L.

L. Zhou, Y. Zhou, Y. F. Zhu, X. X. Dong, B. L. Gao, Y. Z. Wang, and S. Shen, “Broadband bidirectional visible light absorber with wide angular tolerance,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(2), 391–397 (2016).

Zhou, Y.

L. Zhou, Y. Zhou, Y. F. Zhu, X. X. Dong, B. L. Gao, Y. Z. Wang, and S. Shen, “Broadband bidirectional visible light absorber with wide angular tolerance,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(2), 391–397 (2016).

Y. Zhou, Z. P. Hu, Y. Li, J. Q. Xu, X. S. Tang, and Y. L. Tang, “CsPbBr3 nanocrystal saturable absorber for mode-locking ytterbium fiber laser,” Appl. Phys. Lett. 108(26), 261108 (2016).

Zhu, Y. F.

L. Zhou, Y. Zhou, Y. F. Zhu, X. X. Dong, B. L. Gao, Y. Z. Wang, and S. Shen, “Broadband bidirectional visible light absorber with wide angular tolerance,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(2), 391–397 (2016).

Zi, J.

J. Yang, X. Hu, X. Li, Z. Liu, Z. Liang, X. Jiang, and J. Zi, “Broadband absorption enhancement in anisotropic metamaterials by mirror reflections,” Phys. Rev. B 80(12), 125103 (2009).

ACS Nano (1)

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[PubMed]

ACS Photonics (1)

Y. He, K. Lawrence, W. Ingram, and Y. Zhao, “Strong local chiroptical response in racemic patchy silver films: enabling a large-area chiroptical device,” ACS Photonics 2(9), 1246–1252 (2015).

Adv. Funct. Mater. (1)

C. Ng, L. W. Yap, A. Roberts, W. L. Cheng, and D. E. Gomez, “Black Gold: Broadband, High Absorption of Visible Light for Photochemical Systems,” Adv. Funct. Mater. 27(2), 1604080 (2017).

Adv. Mater. (2)

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[PubMed]

K. Q. Peng and S. T. Lee, “Silicon nanowires for photovoltaic solar energy conversion,” Adv. Mater. 23(2), 198–215 (2011).
[PubMed]

Adv. Opt. Mater. (1)

Q. Q. Liang, T. S. Wang, Z. W. Lu, Q. Sun, Y. Q. Fu, and W. X. Yu, “Metamaterial-Based Two Dimensional Plasmonic Subwavelength Structures Offer the Broadest Waveband Light Harvesting,” Adv. Opt. Mater. 1(1), 43–49 (2013).

Appl. Opt. (1)

Appl. Phys. Lett. (3)

E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett. 95(4), 041106 (2009).

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε″ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).

Y. Zhou, Z. P. Hu, Y. Li, J. Q. Xu, X. S. Tang, and Y. L. Tang, “CsPbBr3 nanocrystal saturable absorber for mode-locking ytterbium fiber laser,” Appl. Phys. Lett. 108(26), 261108 (2016).

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

L. Zhou, Y. Zhou, Y. F. Zhu, X. X. Dong, B. L. Gao, Y. Z. Wang, and S. Shen, “Broadband bidirectional visible light absorber with wide angular tolerance,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(2), 391–397 (2016).

J. Opt. (1)

C. Han, H. M. Leung, and W. Y. Tam, “Chiral metamaterials by shadowing vapor deposition,” J. Opt. 15(7), 072101 (2013).

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (2)

W. Ingram, C. Q. Han, Q. J. Zhang, and Y. Zhao, “Optimization of Ag-Coated Polystyrene Nanosphere Substrates for Quantitative Surface-Enhanced Raman Spectroscopy Analysis,” J. Phys. Chem. C 119(49), 27639–27648 (2015).

T. Fu, Y. Qu, T. Wang, G. Wang, Y. Wang, H. Li, J. Li, L. Wang, and Z. Zhang, “Tunable chiroptical response of chiral plasmonic nanostructures fabricated with chiral templates through oblique angle deposition,” J. Phys. Chem. C 121(2), 1299–1304 (2017).

Langmuir (1)

L. Bradley and Y. Zhao, “Uniform plasmonic response of colloidal Ag patchy particles prepared by swinging oblique angle deposition,” Langmuir 32(19), 4969–4974 (2016).
[PubMed]

Laser Photonics Rev. (1)

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).

Light Sci. Appl. (1)

K. Du, Q. Li, Y. Lyu, J. Ding, Y. Lu, Z. Cheng, and M. Qiu, “Control over Emissivity of Zero-Static-Power Thermal Emitters Based on Phase-Changing Material GST,” Light Sci. Appl. 6(1), e16194 (2017).

Nano Lett. (4)

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[PubMed]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[PubMed]

G. K. Larsen, Y. He, W. Ingram, and Y. Zhao, “Hidden chirality in superficially racemic patchy silver films,” Nano Lett. 13(12), 6228–6232 (2013).
[PubMed]

Y. He, G. K. Larsen, W. Ingram, and Y. Zhao, “Tunable three-dimensional helically stacked plasmonic layers on nanosphere monolayers,” Nano Lett. 14(4), 1976–1981 (2014).
[PubMed]

Nano Res. (1)

D. Liu, H. Yu, Z. Yang, and Y. D. Yuan, “Ultrathin planar broadband absorber through effective medium design,” Nano Res. 9(8), 2354–2363 (2016).

Nat. Commun. (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[PubMed]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. B (1)

J. Yang, X. Hu, X. Li, Z. Liu, Z. Liang, X. Jiang, and J. Zi, “Broadband absorption enhancement in anisotropic metamaterials by mirror reflections,” Phys. Rev. B 80(12), 125103 (2009).

Phys. Rev. Lett. (1)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[PubMed]

Prog. Electromagnetics Res. (1)

X. J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagnetics Res. 115, 381–397 (2011).

Thin Solid Films (1)

A. G. Dirks and H. J. Leamy, “Columnar microstructure in vapor-deposited thin films,” Thin Solid Films 47(3), 219–233 (1977).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Illustration of the HCP lattice of a colloidal domain, showing the definitions of the polar and azimuthal angles, θ and φ. (b) Illustration of seven deposition steps:① Ag, SiO2, Δ φ = 0°, ② Ag, SiO2, Δ φ = 65°, ③ Ag, SiO2, Δ φ = 130°, ④ Ag, SiO2, Δ φ = 195°, ⑤ Ag, SiO2, Δ φ = 260°, ⑥ Ag, SiO2, Δ φ = 325°, and ⑦ Ag, SiO2, Δ φ = 390°. (c) Top-view figures at each step of the expected structures.
Fig. 2
Fig. 2 (a-g) SEM images showing the various morphologies of the coatings for seven step depositions. (h) TEM images of SPLs on the d = 750 nm spheres.
Fig. 3
Fig. 3 Absorption as a function of number of deposition N for (a) 750 nm, (b) 500 nm, and (c) 300 nm PS spheres, respectively. (d) Absorption (N = 7) as a function of wavelength for d = 1000 nm, 750 nm, 500 nm, and 300 nm PS spheres.
Fig. 4
Fig. 4 (a) Integrated absorption Aint integrated over the wavelength range from 350 nm to 850 nm as a function of number of deposition for the sphere diameters of d = 300 nm, 500 nm, 750 nm and 1000nm, respectively. (b) Integrated absorption Aint (N = 7) integrated over the wavelength range from 350 nm to 850 nm as a function of size of PS spheres.

Metrics