Abstract

We demonstrate a real-time scheme for measuring the free spectral range (FSR) of a high-aspect-ratio Si3N4 waveguide ring resonator with a fiber-based hybrid unbalanced Mach–Zehnder modulator (MZM) using an optical single-sideband technique. Resonance-tracking loops were established with the Pound–Drever–Hall technique for locking resonance modes. A relative precision of 3.25 × 10−6 was achieved for a 35-mm waveguide ring resonator with FSR = 1,844,628 kHz and Q = 3.211 × 106. Furthermore, the Si3N4 resonator FSR coefficient of thermal expansion was measured as 16.735±0.002 kHz/°C. This method will provide a flexible photonic interface for realizing advanced photonic systems.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Stabilization of heterogeneous silicon lasers using Pound-Drever-Hall locking to Si3N4 ring resonators

Daryl T. Spencer, Michael L. Davenport, Tin Komljenovic, Sudharsanan Srinivasan, and John E. Bowers
Opt. Express 24(12) 13511-13517 (2016)

Technique for in situ measurement of free spectral range and transverse mode spacing of optical cavities

Alberto Stochino, Koji Arai, and Rana X. Adhikari
Appl. Opt. 51(27) 6571-6577 (2012)

Free spectral range measurement of a fiberized Fabry–Perot etalon with sub-Hz accuracy

Dimitrios Mandridis, Ibrahim Ozdur, Marcus Bagnell, and Peter J. Delfyett
Opt. Express 18(11) 11264-11269 (2010)

References

  • View by:
  • |
  • |
  • |

  1. D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), 1–12 (2012).
    [Crossref]
  2. W. Loh, A. A. S. Green, F. N. Baynes, D. C. Cole, F. J. Quinlan, H. Lee, K. J. Vahala, S. B. Papp, and S. A. Diddams, “Dual-microcavity narrow-linewidth Brillouin laser,” Optica 2(3), 225–232 (2015).
    [Crossref]
  3. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
    [Crossref] [PubMed]
  4. M. C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express 19(12), 11740–11745 (2011).
    [Crossref] [PubMed]
  5. M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photonics Rev. 8(5), 667–686 (2014).
    [Crossref]
  6. Y. H. D. Lee and M. Lipson, “Back-End Deposited Silicon Photonics for Monolithic Integration on CMOS,” IEEE J. Sel. Top. Quantum Electron. 19(2), 8200207 (2013).
    [Crossref]
  7. W. Liang, V. S. Ilchenko, A. A. Savchenkov, E. Dale, D. Eliyahu, A. B. Matsko, and L. Maleki, “Resonant microphotonic gyroscope,” Optica 4(1), 114–117 (2017).
    [Crossref]
  8. J. Wang, L. Feng, Q. Wang, X. Wang, and H. Jiao, “Reduction of angle random walk by in-phase triangular phase modulation technique for resonator integrated optic gyro,” Opt. Express 24(5), 5463–5468 (2016).
    [Crossref] [PubMed]
  9. J. Zhang, H. Ma, H. Li, and Z. Jin, “Single-polarization fiber-pigtailed high-finesse silica waveguide ring resonator for a resonant micro-optic gyroscope,” Opt. Lett. 42(18), 3658–3661 (2017).
    [Crossref] [PubMed]
  10. D. T. Spencer, M. L. Davenport, T. Komljenovic, S. Srinivasan, and J. E. Bowers, “Stabilization of heterogeneous silicon lasers using Pound-Drever-Hall locking to Si3N4 ring resonators,” Opt. Express 24(12), 13511–13517 (2016).
    [Crossref] [PubMed]
  11. L. Feng, J. Wang, Y. Zhi, Y. Tang, Q. Wang, H. Li, and W. Wang, “Transmissive resonator optic gyro based on silica waveguide ring resonator,” Opt. Express 22(22), 27565–27575 (2014).
    [Crossref] [PubMed]
  12. D. Mandridis, I. Ozdur, M. Bagnell, and P. J. Delfyett, “Free spectral range measurement of a fiberized Fabry-Perot etalon with sub-Hz accuracy,” Opt. Express 18(11), 11264–11269 (2010).
    [Crossref] [PubMed]
  13. M. Thorpe, R. Jones, K. Moll, J. Ye, and R. Lalezari, “Precise measurements of optical cavity dispersion and mirror coating properties via femtosecond combs,” Opt. Express 13(3), 882–888 (2005).
    [Crossref] [PubMed]
  14. A. Schliesser, C. Gohle, T. Udem, and T. W. Hänsch, “Complete characterization of a broadband high-finesse cavity using an optical frequency comb,” Opt. Express 14(13), 5975–5983 (2006).
    [Crossref] [PubMed]
  15. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent Multiheterodyne Spectroscopy Using Stabilized Optical Frequency Combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
    [Crossref] [PubMed]
  16. I. Pupeza, X. Gu, E. Fill, T. Eidam, J. Limpert, A. Tünnermann, F. Krausz, and T. Udem, “Highly sensitive dispersion measurement of a high-power passive optical resonator using spatial-spectral interferometry,” Opt. Express 18(25), 26184–26195 (2010).
    [Crossref] [PubMed]
  17. P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3(9), 529–533 (2009).
    [Crossref]
  18. J. Li, H. Lee, K. Y. Yang, and K. J. Vahala, “Sideband spectroscopy and dispersion measurement in microcavities,” Opt. Express 20(24), 26337–26344 (2012).
    [Crossref] [PubMed]
  19. J. Wu, M. Smiciklas, L. K. Strandjord, T. Qiu, W. Ho, and G. A. Sanders, “Resonator fiber optic gyro with high backscatter-error suppression using two independent phase-locked lasers,” Proc. SPIE 9634, 96341O (2015).
    [Crossref]
  20. J. Li, X. Yi, H. Lee, S. A. Diddams, and K. J. Vahala, “Electro-optical frequency division and stable microwave synthesis,” Science 345(6194), 309–313 (2014).
    [Crossref] [PubMed]
  21. M. Izutsu, S. Shikama, and T. Sueta, “Integrated Optical SSB Modulator/Frequency Shifter,” IEEE J. Quantum Electron. 17(11), 2225–2227 (1981).
    [Crossref]
  22. H. P. Lo and H. Takesue, “Precise tuning of single-photon frequency using an optical single sideband modulator,” Optica 4(8), 919–923 (2017).
    [Crossref]
  23. W. T. Wang, J. G. Liu, H. K. Mei, and N. H. Zhu, “Phase-coherent orthogonally polarized optical single sideband modulation with arbitrarily tunable optical carrier-to-sideband ratio,” Opt. Express 24(1), 388–399 (2016).
    [Crossref] [PubMed]
  24. R. Carroll, C. D. Coccoli, D. Cardarelli, and G. T. Coate, “The Passive Resonator Fiber Optic Gyro and Comparison to the Interferometer Fiber Gyro,” Proc. SPIE 719, 169–177 (1986).
    [Crossref]
  25. T. J. Kaiser, D. Cardarelli, and J. Walsh, “Experimental Developments in the RFOG,” Proc. SPIE 1367, 121–126 (1990).
    [Crossref]
  26. H. Ma, Z. He, and K. Hotate, “Reduction of Backscattering Induced Noise by Carrier Suppression in Waveguide-Type Optical Ring Resonator Gyro,” J. Lightwave Technol. 29(1), 85–90 (2011).
    [Crossref]
  27. A. Arbabi, Y. M. Kang, and L. L. Goddard, “Analysis and Design of a Microring Inline Single Wavelength Reflector,” in 2010 Frontiers in Optics(FiO) Conf., 2010), pp. FThQ3.
  28. J. Wang, L. Feng, Q. Wang, H. Jiao, and X. Wang, “Suppression of backreflection error in resonator integrated optic gyro by the phase difference traversal method,” Opt. Lett. 41(7), 1586–1589 (2016).
    [Crossref] [PubMed]
  29. “Chapter 9,” in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, M. Abramowitz and I. A. Stegun. eds. (National Bureau of Standards Applied Mathematics Series. 55, New York, 1964), p. 355.
  30. L. L. Wang and T. Kowalcyzk, “A Versatile Bias Control Technique for Any-Point Locking in Lithium Niobate Mach–Zehnder Modulators,” J. Lightwave Technol. 28(11), 1703–1706 (2010).
    [Crossref]
  31. E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
    [Crossref]
  32. J. F. Bauters, M. J. R. Heck, D. Dai, J. S. Barton, D. J. Blumenthal, and J. E. Bowers, “Ultralow-Loss Planar Si3N4 Waveguide Polarizers,” IEEE Photonics J. 5(1), 6600207 (2013).
    [Crossref]
  33. H. Jiao, L. Feng, K. Wang, N. Liu, and Z. Yang, “Analysis of polarization noise in transmissive single-beam-splitter resonator optic gyro based on hollow-core photonic-crystal fiber,” Opt. Express 25(22), 27806–27817 (2017).
    [Crossref] [PubMed]
  34. J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011).
    [Crossref] [PubMed]
  35. D. Dai, Z. Wang, J. F. Bauters, M.-C. Tien, M. J. R. Heck, D. J. Blumenthal, and J. E. Bowers, “Polarization characteristics of low-loss nano-core buried optical waveguides and directional couplers,” in IEEE International Conference on Group IV Photonics, (IEEE, 2010), pp. 260–262.
    [Crossref]
  36. H. Liu, J. Yang, L. Feng, and Q. Wang, “Experiment research of the temperature characteristics of transmissive silica waveguide ring resonator,” Proc. SPIE 10244, 1024411 (2017).
    [Crossref]
  37. “Minimax principle,” in Encyclopedia of Mathematics, M. Hazewinkel. ed. (Springer, 1994).
  38. J. P. Epping, D. Marchenko, A. Leinse, R. Mateman, M. Hoekman, L. Wevers, E. J. Klein, C. G. H. Roeloffzen, M. Dekkers, and R. G. Heideman, “Ultra-low-power stress-optics modulator for microwave photonics,” Proc. SPIE 10106, 101060F (2017).
  39. A. Arbabi and L. L. Goddard, “Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiOx using microring resonances,” Opt. Lett. 38(19), 3878–3881 (2013).
    [Crossref] [PubMed]
  40. M. Nakazawa, K. Kikuchi, and T. Miyazaki, High Spectral Density Optical Communication Technologies (Springer Berlin Heidelberg, 2010).

2017 (6)

2016 (4)

2015 (2)

W. Loh, A. A. S. Green, F. N. Baynes, D. C. Cole, F. J. Quinlan, H. Lee, K. J. Vahala, S. B. Papp, and S. A. Diddams, “Dual-microcavity narrow-linewidth Brillouin laser,” Optica 2(3), 225–232 (2015).
[Crossref]

J. Wu, M. Smiciklas, L. K. Strandjord, T. Qiu, W. Ho, and G. A. Sanders, “Resonator fiber optic gyro with high backscatter-error suppression using two independent phase-locked lasers,” Proc. SPIE 9634, 96341O (2015).
[Crossref]

2014 (3)

J. Li, X. Yi, H. Lee, S. A. Diddams, and K. J. Vahala, “Electro-optical frequency division and stable microwave synthesis,” Science 345(6194), 309–313 (2014).
[Crossref] [PubMed]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photonics Rev. 8(5), 667–686 (2014).
[Crossref]

L. Feng, J. Wang, Y. Zhi, Y. Tang, Q. Wang, H. Li, and W. Wang, “Transmissive resonator optic gyro based on silica waveguide ring resonator,” Opt. Express 22(22), 27565–27575 (2014).
[Crossref] [PubMed]

2013 (3)

Y. H. D. Lee and M. Lipson, “Back-End Deposited Silicon Photonics for Monolithic Integration on CMOS,” IEEE J. Sel. Top. Quantum Electron. 19(2), 8200207 (2013).
[Crossref]

A. Arbabi and L. L. Goddard, “Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiOx using microring resonances,” Opt. Lett. 38(19), 3878–3881 (2013).
[Crossref] [PubMed]

J. F. Bauters, M. J. R. Heck, D. Dai, J. S. Barton, D. J. Blumenthal, and J. E. Bowers, “Ultralow-Loss Planar Si3N4 Waveguide Polarizers,” IEEE Photonics J. 5(1), 6600207 (2013).
[Crossref]

2012 (2)

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), 1–12 (2012).
[Crossref]

J. Li, H. Lee, K. Y. Yang, and K. J. Vahala, “Sideband spectroscopy and dispersion measurement in microcavities,” Opt. Express 20(24), 26337–26344 (2012).
[Crossref] [PubMed]

2011 (4)

2010 (3)

2009 (1)

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3(9), 529–533 (2009).
[Crossref]

2008 (1)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent Multiheterodyne Spectroscopy Using Stabilized Optical Frequency Combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

2006 (1)

2005 (1)

2001 (1)

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[Crossref]

1990 (1)

T. J. Kaiser, D. Cardarelli, and J. Walsh, “Experimental Developments in the RFOG,” Proc. SPIE 1367, 121–126 (1990).
[Crossref]

1986 (1)

R. Carroll, C. D. Coccoli, D. Cardarelli, and G. T. Coate, “The Passive Resonator Fiber Optic Gyro and Comparison to the Interferometer Fiber Gyro,” Proc. SPIE 719, 169–177 (1986).
[Crossref]

1981 (1)

M. Izutsu, S. Shikama, and T. Sueta, “Integrated Optical SSB Modulator/Frequency Shifter,” IEEE J. Quantum Electron. 17(11), 2225–2227 (1981).
[Crossref]

Arbabi, A.

Arcizet, O.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3(9), 529–533 (2009).
[Crossref]

Bagnell, M.

Barton, J. S.

J. F. Bauters, M. J. R. Heck, D. Dai, J. S. Barton, D. J. Blumenthal, and J. E. Bowers, “Ultralow-Loss Planar Si3N4 Waveguide Polarizers,” IEEE Photonics J. 5(1), 6600207 (2013).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011).
[Crossref] [PubMed]

Bauters, J.

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), 1–12 (2012).
[Crossref]

Bauters, J. F.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photonics Rev. 8(5), 667–686 (2014).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. Dai, J. S. Barton, D. J. Blumenthal, and J. E. Bowers, “Ultralow-Loss Planar Si3N4 Waveguide Polarizers,” IEEE Photonics J. 5(1), 6600207 (2013).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011).
[Crossref] [PubMed]

D. Dai, Z. Wang, J. F. Bauters, M.-C. Tien, M. J. R. Heck, D. J. Blumenthal, and J. E. Bowers, “Polarization characteristics of low-loss nano-core buried optical waveguides and directional couplers,” in IEEE International Conference on Group IV Photonics, (IEEE, 2010), pp. 260–262.
[Crossref]

Baynes, F. N.

Black, E. D.

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[Crossref]

Blumenthal, D. J.

J. F. Bauters, M. J. R. Heck, D. Dai, J. S. Barton, D. J. Blumenthal, and J. E. Bowers, “Ultralow-Loss Planar Si3N4 Waveguide Polarizers,” IEEE Photonics J. 5(1), 6600207 (2013).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011).
[Crossref] [PubMed]

D. Dai, Z. Wang, J. F. Bauters, M.-C. Tien, M. J. R. Heck, D. J. Blumenthal, and J. E. Bowers, “Polarization characteristics of low-loss nano-core buried optical waveguides and directional couplers,” in IEEE International Conference on Group IV Photonics, (IEEE, 2010), pp. 260–262.
[Crossref]

Bowers, J. E.

D. T. Spencer, M. L. Davenport, T. Komljenovic, S. Srinivasan, and J. E. Bowers, “Stabilization of heterogeneous silicon lasers using Pound-Drever-Hall locking to Si3N4 ring resonators,” Opt. Express 24(12), 13511–13517 (2016).
[Crossref] [PubMed]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photonics Rev. 8(5), 667–686 (2014).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. Dai, J. S. Barton, D. J. Blumenthal, and J. E. Bowers, “Ultralow-Loss Planar Si3N4 Waveguide Polarizers,” IEEE Photonics J. 5(1), 6600207 (2013).
[Crossref]

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), 1–12 (2012).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011).
[Crossref] [PubMed]

M. C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express 19(12), 11740–11745 (2011).
[Crossref] [PubMed]

D. Dai, Z. Wang, J. F. Bauters, M.-C. Tien, M. J. R. Heck, D. J. Blumenthal, and J. E. Bowers, “Polarization characteristics of low-loss nano-core buried optical waveguides and directional couplers,” in IEEE International Conference on Group IV Photonics, (IEEE, 2010), pp. 260–262.
[Crossref]

Cardarelli, D.

T. J. Kaiser, D. Cardarelli, and J. Walsh, “Experimental Developments in the RFOG,” Proc. SPIE 1367, 121–126 (1990).
[Crossref]

R. Carroll, C. D. Coccoli, D. Cardarelli, and G. T. Coate, “The Passive Resonator Fiber Optic Gyro and Comparison to the Interferometer Fiber Gyro,” Proc. SPIE 719, 169–177 (1986).
[Crossref]

Carroll, R.

R. Carroll, C. D. Coccoli, D. Cardarelli, and G. T. Coate, “The Passive Resonator Fiber Optic Gyro and Comparison to the Interferometer Fiber Gyro,” Proc. SPIE 719, 169–177 (1986).
[Crossref]

Coate, G. T.

R. Carroll, C. D. Coccoli, D. Cardarelli, and G. T. Coate, “The Passive Resonator Fiber Optic Gyro and Comparison to the Interferometer Fiber Gyro,” Proc. SPIE 719, 169–177 (1986).
[Crossref]

Coccoli, C. D.

R. Carroll, C. D. Coccoli, D. Cardarelli, and G. T. Coate, “The Passive Resonator Fiber Optic Gyro and Comparison to the Interferometer Fiber Gyro,” Proc. SPIE 719, 169–177 (1986).
[Crossref]

Coddington, I.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent Multiheterodyne Spectroscopy Using Stabilized Optical Frequency Combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Cole, D. C.

Dai, D.

J. F. Bauters, M. J. R. Heck, D. Dai, J. S. Barton, D. J. Blumenthal, and J. E. Bowers, “Ultralow-Loss Planar Si3N4 Waveguide Polarizers,” IEEE Photonics J. 5(1), 6600207 (2013).
[Crossref]

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), 1–12 (2012).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011).
[Crossref] [PubMed]

D. Dai, Z. Wang, J. F. Bauters, M.-C. Tien, M. J. R. Heck, D. J. Blumenthal, and J. E. Bowers, “Polarization characteristics of low-loss nano-core buried optical waveguides and directional couplers,” in IEEE International Conference on Group IV Photonics, (IEEE, 2010), pp. 260–262.
[Crossref]

Dale, E.

Davenport, M. L.

D. T. Spencer, M. L. Davenport, T. Komljenovic, S. Srinivasan, and J. E. Bowers, “Stabilization of heterogeneous silicon lasers using Pound-Drever-Hall locking to Si3N4 ring resonators,” Opt. Express 24(12), 13511–13517 (2016).
[Crossref] [PubMed]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photonics Rev. 8(5), 667–686 (2014).
[Crossref]

Dekkers, M.

J. P. Epping, D. Marchenko, A. Leinse, R. Mateman, M. Hoekman, L. Wevers, E. J. Klein, C. G. H. Roeloffzen, M. Dekkers, and R. G. Heideman, “Ultra-low-power stress-optics modulator for microwave photonics,” Proc. SPIE 10106, 101060F (2017).

Del’Haye, P.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3(9), 529–533 (2009).
[Crossref]

Delfyett, P. J.

Diddams, S. A.

W. Loh, A. A. S. Green, F. N. Baynes, D. C. Cole, F. J. Quinlan, H. Lee, K. J. Vahala, S. B. Papp, and S. A. Diddams, “Dual-microcavity narrow-linewidth Brillouin laser,” Optica 2(3), 225–232 (2015).
[Crossref]

J. Li, X. Yi, H. Lee, S. A. Diddams, and K. J. Vahala, “Electro-optical frequency division and stable microwave synthesis,” Science 345(6194), 309–313 (2014).
[Crossref] [PubMed]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

Eidam, T.

Eliyahu, D.

Epping, J. P.

J. P. Epping, D. Marchenko, A. Leinse, R. Mateman, M. Hoekman, L. Wevers, E. J. Klein, C. G. H. Roeloffzen, M. Dekkers, and R. G. Heideman, “Ultra-low-power stress-optics modulator for microwave photonics,” Proc. SPIE 10106, 101060F (2017).

Feng, L.

Fill, E.

Goddard, L. L.

Gohle, C.

Gorodetsky, M. L.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3(9), 529–533 (2009).
[Crossref]

Green, A. A. S.

Gu, X.

Hänsch, T. W.

He, Z.

Heck, M. J. R.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photonics Rev. 8(5), 667–686 (2014).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. Dai, J. S. Barton, D. J. Blumenthal, and J. E. Bowers, “Ultralow-Loss Planar Si3N4 Waveguide Polarizers,” IEEE Photonics J. 5(1), 6600207 (2013).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011).
[Crossref] [PubMed]

D. Dai, Z. Wang, J. F. Bauters, M.-C. Tien, M. J. R. Heck, D. J. Blumenthal, and J. E. Bowers, “Polarization characteristics of low-loss nano-core buried optical waveguides and directional couplers,” in IEEE International Conference on Group IV Photonics, (IEEE, 2010), pp. 260–262.
[Crossref]

Heideman, R. G.

J. P. Epping, D. Marchenko, A. Leinse, R. Mateman, M. Hoekman, L. Wevers, E. J. Klein, C. G. H. Roeloffzen, M. Dekkers, and R. G. Heideman, “Ultra-low-power stress-optics modulator for microwave photonics,” Proc. SPIE 10106, 101060F (2017).

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011).
[Crossref] [PubMed]

Ho, W.

J. Wu, M. Smiciklas, L. K. Strandjord, T. Qiu, W. Ho, and G. A. Sanders, “Resonator fiber optic gyro with high backscatter-error suppression using two independent phase-locked lasers,” Proc. SPIE 9634, 96341O (2015).
[Crossref]

Hoekman, M.

J. P. Epping, D. Marchenko, A. Leinse, R. Mateman, M. Hoekman, L. Wevers, E. J. Klein, C. G. H. Roeloffzen, M. Dekkers, and R. G. Heideman, “Ultra-low-power stress-optics modulator for microwave photonics,” Proc. SPIE 10106, 101060F (2017).

Holzwarth, R.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3(9), 529–533 (2009).
[Crossref]

Hotate, K.

Ilchenko, V. S.

Izutsu, M.

M. Izutsu, S. Shikama, and T. Sueta, “Integrated Optical SSB Modulator/Frequency Shifter,” IEEE J. Quantum Electron. 17(11), 2225–2227 (1981).
[Crossref]

Jiao, H.

Jin, Z.

John, D.

Jones, R.

Kaiser, T. J.

T. J. Kaiser, D. Cardarelli, and J. Walsh, “Experimental Developments in the RFOG,” Proc. SPIE 1367, 121–126 (1990).
[Crossref]

Kippenberg, T. J.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3(9), 529–533 (2009).
[Crossref]

Klein, E. J.

J. P. Epping, D. Marchenko, A. Leinse, R. Mateman, M. Hoekman, L. Wevers, E. J. Klein, C. G. H. Roeloffzen, M. Dekkers, and R. G. Heideman, “Ultra-low-power stress-optics modulator for microwave photonics,” Proc. SPIE 10106, 101060F (2017).

Komljenovic, T.

Kowalcyzk, T.

Krausz, F.

Kromer, H.

Lalezari, R.

Lee, H.

Lee, Y. H. D.

Y. H. D. Lee and M. Lipson, “Back-End Deposited Silicon Photonics for Monolithic Integration on CMOS,” IEEE J. Sel. Top. Quantum Electron. 19(2), 8200207 (2013).
[Crossref]

Leinse, A.

J. P. Epping, D. Marchenko, A. Leinse, R. Mateman, M. Hoekman, L. Wevers, E. J. Klein, C. G. H. Roeloffzen, M. Dekkers, and R. G. Heideman, “Ultra-low-power stress-optics modulator for microwave photonics,” Proc. SPIE 10106, 101060F (2017).

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011).
[Crossref] [PubMed]

Li, H.

Li, J.

J. Li, X. Yi, H. Lee, S. A. Diddams, and K. J. Vahala, “Electro-optical frequency division and stable microwave synthesis,” Science 345(6194), 309–313 (2014).
[Crossref] [PubMed]

J. Li, H. Lee, K. Y. Yang, and K. J. Vahala, “Sideband spectroscopy and dispersion measurement in microcavities,” Opt. Express 20(24), 26337–26344 (2012).
[Crossref] [PubMed]

Liang, W.

Limpert, J.

Lipson, M.

Y. H. D. Lee and M. Lipson, “Back-End Deposited Silicon Photonics for Monolithic Integration on CMOS,” IEEE J. Sel. Top. Quantum Electron. 19(2), 8200207 (2013).
[Crossref]

Liu, H.

H. Liu, J. Yang, L. Feng, and Q. Wang, “Experiment research of the temperature characteristics of transmissive silica waveguide ring resonator,” Proc. SPIE 10244, 1024411 (2017).
[Crossref]

Liu, J. G.

Liu, N.

Lo, H. P.

Loh, W.

Ma, H.

Maleki, L.

Mandridis, D.

Marchenko, D.

J. P. Epping, D. Marchenko, A. Leinse, R. Mateman, M. Hoekman, L. Wevers, E. J. Klein, C. G. H. Roeloffzen, M. Dekkers, and R. G. Heideman, “Ultra-low-power stress-optics modulator for microwave photonics,” Proc. SPIE 10106, 101060F (2017).

Mateman, R.

J. P. Epping, D. Marchenko, A. Leinse, R. Mateman, M. Hoekman, L. Wevers, E. J. Klein, C. G. H. Roeloffzen, M. Dekkers, and R. G. Heideman, “Ultra-low-power stress-optics modulator for microwave photonics,” Proc. SPIE 10106, 101060F (2017).

Matsko, A. B.

Mei, H. K.

Mizumoto, T.

Moll, K.

Newbury, N. R.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent Multiheterodyne Spectroscopy Using Stabilized Optical Frequency Combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Ozdur, I.

Papp, S. B.

Pintus, P.

Pupeza, I.

Qiu, T.

J. Wu, M. Smiciklas, L. K. Strandjord, T. Qiu, W. Ho, and G. A. Sanders, “Resonator fiber optic gyro with high backscatter-error suppression using two independent phase-locked lasers,” Proc. SPIE 9634, 96341O (2015).
[Crossref]

Quinlan, F. J.

Roeloffzen, C. G. H.

J. P. Epping, D. Marchenko, A. Leinse, R. Mateman, M. Hoekman, L. Wevers, E. J. Klein, C. G. H. Roeloffzen, M. Dekkers, and R. G. Heideman, “Ultra-low-power stress-optics modulator for microwave photonics,” Proc. SPIE 10106, 101060F (2017).

Sanders, G. A.

J. Wu, M. Smiciklas, L. K. Strandjord, T. Qiu, W. Ho, and G. A. Sanders, “Resonator fiber optic gyro with high backscatter-error suppression using two independent phase-locked lasers,” Proc. SPIE 9634, 96341O (2015).
[Crossref]

Savchenkov, A. A.

Schliesser, A.

Shikama, S.

M. Izutsu, S. Shikama, and T. Sueta, “Integrated Optical SSB Modulator/Frequency Shifter,” IEEE J. Quantum Electron. 17(11), 2225–2227 (1981).
[Crossref]

Smiciklas, M.

J. Wu, M. Smiciklas, L. K. Strandjord, T. Qiu, W. Ho, and G. A. Sanders, “Resonator fiber optic gyro with high backscatter-error suppression using two independent phase-locked lasers,” Proc. SPIE 9634, 96341O (2015).
[Crossref]

Spencer, D. T.

D. T. Spencer, M. L. Davenport, T. Komljenovic, S. Srinivasan, and J. E. Bowers, “Stabilization of heterogeneous silicon lasers using Pound-Drever-Hall locking to Si3N4 ring resonators,” Opt. Express 24(12), 13511–13517 (2016).
[Crossref] [PubMed]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photonics Rev. 8(5), 667–686 (2014).
[Crossref]

Srinivasan, S.

Strandjord, L. K.

J. Wu, M. Smiciklas, L. K. Strandjord, T. Qiu, W. Ho, and G. A. Sanders, “Resonator fiber optic gyro with high backscatter-error suppression using two independent phase-locked lasers,” Proc. SPIE 9634, 96341O (2015).
[Crossref]

Sueta, T.

M. Izutsu, S. Shikama, and T. Sueta, “Integrated Optical SSB Modulator/Frequency Shifter,” IEEE J. Quantum Electron. 17(11), 2225–2227 (1981).
[Crossref]

Swann, W. C.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent Multiheterodyne Spectroscopy Using Stabilized Optical Frequency Combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Takesue, H.

Tang, Y.

Thorpe, M.

Tien, M. C.

Tien, M.-C.

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011).
[Crossref] [PubMed]

D. Dai, Z. Wang, J. F. Bauters, M.-C. Tien, M. J. R. Heck, D. J. Blumenthal, and J. E. Bowers, “Polarization characteristics of low-loss nano-core buried optical waveguides and directional couplers,” in IEEE International Conference on Group IV Photonics, (IEEE, 2010), pp. 260–262.
[Crossref]

Tünnermann, A.

Udem, T.

Vahala, K. J.

Walsh, J.

T. J. Kaiser, D. Cardarelli, and J. Walsh, “Experimental Developments in the RFOG,” Proc. SPIE 1367, 121–126 (1990).
[Crossref]

Wang, J.

Wang, K.

Wang, L. L.

Wang, Q.

Wang, W.

Wang, W. T.

Wang, X.

Wang, Z.

D. Dai, Z. Wang, J. F. Bauters, M.-C. Tien, M. J. R. Heck, D. J. Blumenthal, and J. E. Bowers, “Polarization characteristics of low-loss nano-core buried optical waveguides and directional couplers,” in IEEE International Conference on Group IV Photonics, (IEEE, 2010), pp. 260–262.
[Crossref]

Wevers, L.

J. P. Epping, D. Marchenko, A. Leinse, R. Mateman, M. Hoekman, L. Wevers, E. J. Klein, C. G. H. Roeloffzen, M. Dekkers, and R. G. Heideman, “Ultra-low-power stress-optics modulator for microwave photonics,” Proc. SPIE 10106, 101060F (2017).

Wu, J.

J. Wu, M. Smiciklas, L. K. Strandjord, T. Qiu, W. Ho, and G. A. Sanders, “Resonator fiber optic gyro with high backscatter-error suppression using two independent phase-locked lasers,” Proc. SPIE 9634, 96341O (2015).
[Crossref]

Yang, J.

H. Liu, J. Yang, L. Feng, and Q. Wang, “Experiment research of the temperature characteristics of transmissive silica waveguide ring resonator,” Proc. SPIE 10244, 1024411 (2017).
[Crossref]

Yang, K. Y.

Yang, Z.

Ye, J.

Yi, X.

J. Li, X. Yi, H. Lee, S. A. Diddams, and K. J. Vahala, “Electro-optical frequency division and stable microwave synthesis,” Science 345(6194), 309–313 (2014).
[Crossref] [PubMed]

Zhang, J.

Zhi, Y.

Zhu, N. H.

Am. J. Phys. (1)

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Izutsu, S. Shikama, and T. Sueta, “Integrated Optical SSB Modulator/Frequency Shifter,” IEEE J. Quantum Electron. 17(11), 2225–2227 (1981).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. H. D. Lee and M. Lipson, “Back-End Deposited Silicon Photonics for Monolithic Integration on CMOS,” IEEE J. Sel. Top. Quantum Electron. 19(2), 8200207 (2013).
[Crossref]

IEEE Photonics J. (1)

J. F. Bauters, M. J. R. Heck, D. Dai, J. S. Barton, D. J. Blumenthal, and J. E. Bowers, “Ultralow-Loss Planar Si3N4 Waveguide Polarizers,” IEEE Photonics J. 5(1), 6600207 (2013).
[Crossref]

J. Lightwave Technol. (2)

Laser Photonics Rev. (1)

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photonics Rev. 8(5), 667–686 (2014).
[Crossref]

Light Sci. Appl. (1)

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), 1–12 (2012).
[Crossref]

Nat. Photonics (1)

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3(9), 529–533 (2009).
[Crossref]

Opt. Express (12)

J. Li, H. Lee, K. Y. Yang, and K. J. Vahala, “Sideband spectroscopy and dispersion measurement in microcavities,” Opt. Express 20(24), 26337–26344 (2012).
[Crossref] [PubMed]

D. T. Spencer, M. L. Davenport, T. Komljenovic, S. Srinivasan, and J. E. Bowers, “Stabilization of heterogeneous silicon lasers using Pound-Drever-Hall locking to Si3N4 ring resonators,” Opt. Express 24(12), 13511–13517 (2016).
[Crossref] [PubMed]

L. Feng, J. Wang, Y. Zhi, Y. Tang, Q. Wang, H. Li, and W. Wang, “Transmissive resonator optic gyro based on silica waveguide ring resonator,” Opt. Express 22(22), 27565–27575 (2014).
[Crossref] [PubMed]

D. Mandridis, I. Ozdur, M. Bagnell, and P. J. Delfyett, “Free spectral range measurement of a fiberized Fabry-Perot etalon with sub-Hz accuracy,” Opt. Express 18(11), 11264–11269 (2010).
[Crossref] [PubMed]

M. Thorpe, R. Jones, K. Moll, J. Ye, and R. Lalezari, “Precise measurements of optical cavity dispersion and mirror coating properties via femtosecond combs,” Opt. Express 13(3), 882–888 (2005).
[Crossref] [PubMed]

A. Schliesser, C. Gohle, T. Udem, and T. W. Hänsch, “Complete characterization of a broadband high-finesse cavity using an optical frequency comb,” Opt. Express 14(13), 5975–5983 (2006).
[Crossref] [PubMed]

M. C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express 19(12), 11740–11745 (2011).
[Crossref] [PubMed]

J. Wang, L. Feng, Q. Wang, X. Wang, and H. Jiao, “Reduction of angle random walk by in-phase triangular phase modulation technique for resonator integrated optic gyro,” Opt. Express 24(5), 5463–5468 (2016).
[Crossref] [PubMed]

W. T. Wang, J. G. Liu, H. K. Mei, and N. H. Zhu, “Phase-coherent orthogonally polarized optical single sideband modulation with arbitrarily tunable optical carrier-to-sideband ratio,” Opt. Express 24(1), 388–399 (2016).
[Crossref] [PubMed]

I. Pupeza, X. Gu, E. Fill, T. Eidam, J. Limpert, A. Tünnermann, F. Krausz, and T. Udem, “Highly sensitive dispersion measurement of a high-power passive optical resonator using spatial-spectral interferometry,” Opt. Express 18(25), 26184–26195 (2010).
[Crossref] [PubMed]

H. Jiao, L. Feng, K. Wang, N. Liu, and Z. Yang, “Analysis of polarization noise in transmissive single-beam-splitter resonator optic gyro based on hollow-core photonic-crystal fiber,” Opt. Express 25(22), 27806–27817 (2017).
[Crossref] [PubMed]

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011).
[Crossref] [PubMed]

Opt. Lett. (3)

Optica (3)

Phys. Rev. Lett. (1)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent Multiheterodyne Spectroscopy Using Stabilized Optical Frequency Combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Proc. SPIE (5)

J. Wu, M. Smiciklas, L. K. Strandjord, T. Qiu, W. Ho, and G. A. Sanders, “Resonator fiber optic gyro with high backscatter-error suppression using two independent phase-locked lasers,” Proc. SPIE 9634, 96341O (2015).
[Crossref]

R. Carroll, C. D. Coccoli, D. Cardarelli, and G. T. Coate, “The Passive Resonator Fiber Optic Gyro and Comparison to the Interferometer Fiber Gyro,” Proc. SPIE 719, 169–177 (1986).
[Crossref]

T. J. Kaiser, D. Cardarelli, and J. Walsh, “Experimental Developments in the RFOG,” Proc. SPIE 1367, 121–126 (1990).
[Crossref]

H. Liu, J. Yang, L. Feng, and Q. Wang, “Experiment research of the temperature characteristics of transmissive silica waveguide ring resonator,” Proc. SPIE 10244, 1024411 (2017).
[Crossref]

J. P. Epping, D. Marchenko, A. Leinse, R. Mateman, M. Hoekman, L. Wevers, E. J. Klein, C. G. H. Roeloffzen, M. Dekkers, and R. G. Heideman, “Ultra-low-power stress-optics modulator for microwave photonics,” Proc. SPIE 10106, 101060F (2017).

Science (2)

J. Li, X. Yi, H. Lee, S. A. Diddams, and K. J. Vahala, “Electro-optical frequency division and stable microwave synthesis,” Science 345(6194), 309–313 (2014).
[Crossref] [PubMed]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

Other (5)

“Minimax principle,” in Encyclopedia of Mathematics, M. Hazewinkel. ed. (Springer, 1994).

D. Dai, Z. Wang, J. F. Bauters, M.-C. Tien, M. J. R. Heck, D. J. Blumenthal, and J. E. Bowers, “Polarization characteristics of low-loss nano-core buried optical waveguides and directional couplers,” in IEEE International Conference on Group IV Photonics, (IEEE, 2010), pp. 260–262.
[Crossref]

“Chapter 9,” in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, M. Abramowitz and I. A. Stegun. eds. (National Bureau of Standards Applied Mathematics Series. 55, New York, 1964), p. 355.

A. Arbabi, Y. M. Kang, and L. L. Goddard, “Analysis and Design of a Microring Inline Single Wavelength Reflector,” in 2010 Frontiers in Optics(FiO) Conf., 2010), pp. FThQ3.

M. Nakazawa, K. Kikuchi, and T. Miyazaki, High Spectral Density Optical Communication Technologies (Springer Berlin Heidelberg, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic diagram of the real-time FSR-tracking system. Top: structure of the hybrid unbalanced MZM; Bottom: experimental system setup. (TNLF laser, tunable narrow-linewidth fiber laser; MZM, Mach–Zehnder modulator; HC, hybrid coupler; PD, photodetector; PM, phase modulator; WRR, chip-based waveguide ring resonator; C1, C2, evanescent wave couplers; Demod, demodulation module; RTL, resonance-tracking loop; err. @ Ω1, 2, PDH error signals at Ω1, 2; ADC, analog-to-digital converter; DAC, digital-to-analog converter; DPLO, digital-controlled phase-locked oscillator; FPGA, field-programmable gate array.)
Fig. 2
Fig. 2 (a) WRR resonance modes for propagating lasers. Three resonance modes are separated by 1 FSR; (b) and (c) show the simplified spectra of the master and slave lights at point ③, respectively.
Fig. 3
Fig. 3 (a) Plot of the Bessel function of the first kind, J n ( β ), for integer orders n = 0, 1, 3, 5; (b) The intensity of the OSSB electric fields at point ② with the relative optical phases φ Ch and φ P set as π and π/2, respectively.
Fig. 4
Fig. 4 Simulations of the demodulated PDH error signals at Ω 2 from PD. (a) Quadrature, (b)in-phase, where Δ ω OSSB refers to the difference between the OSSB light frequency and the intrinsic resonance mode of WRR.
Fig. 5
Fig. 5 (a) Fiber-coupled Si3N4 WRR (the red dashed line outlines the ring resonator); (b) Illustration of the cross-section of the Si3N4 waveguide.
Fig. 6
Fig. 6 Resonance signal plot of the Si3N4 WRR. The data is obtained by OSSB sweeping with a step frequency of 5MHz.
Fig. 7
Fig. 7 The frequency spectra of signals detected by PD1 when the master light was locked at mode1 of the WRR (RBW = 3 kHz). A Rohde & Schwarz signal and spectrum analyzer was used in the measurement. (a) to (d) show the different states of the tracking process. (a) Only Ω1 used in the system. Unwanted sidebands appeared at the side of Ω1. (b) Ω1 and Ω2 with their harmonic components. (c) ΩFD introduced to the system after (b). (d) The master and slave light locked at their respective resonance modes.
Fig. 8
Fig. 8 (a) Measurement of FSR at 26.8 °C; (b) Data of each temperature points from 31.6 to 78.8 °C.
Fig. 9
Fig. 9 (a) Plot of FSR vs. temperature of the Si3N4 WRR with the least squares regression line (green line) and 95% confidence limits (red dashed lines). (b) Standard deviation of the measured FSRs at different temperatures.

Tables (2)

Tables Icon

Table 1 Parameters of Materials and the WRR Sample

Tables Icon

Table 2 Sensitivities of FSR

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E master = e iωt α master ( 1κ )[ m= n= i n+m J n ( β PM ) J m ( β PM ) e i( n Ω 1 +m Ω FD )t ]
E slave = e iωt e i ϕ GP α slave κ m= n= [ i m J n ( β OSSB ) J m ( β PM ) e i( n ω OSSB +m Ω 2 )t ( e iπ + ( 1 ) n )( 1+ i n e i π 2 ) ]
P drop = n= m= P master( n,m ) ( ω ) e i( Ω 1 t ) + n= m= P slave( n,m ) ( ω, ω OSSB ) e i( Ω 2 t ) + P beat_ Ω 1 ( ω, ω OSSB , ϕ GP ) e i( Ω 1 t ) + P beat_ Ω 2 ( ω, ω OSSB , ϕ GP ) e i( Ω 2 t ) +( remainder and higher order terms )
P master( n,m ) ( ω ) α master 2 ( 1κ ) 2 J n ( β PM ) J n+1 ( β PM ) J m 2 ( β PM ) P slave( n,m ) ( ω, ω OSSB ) α slave 2 κ 2 J n 2 ( β OSSB ) J m ( β PM ) J m+1 ( β PM ) ( 1+ ( 1 ) n ) 2 ( 1+ i ( n1 ) )( 1+ i n1 ) P beat_ Ω 1 ( ω, ω OSSB , ϕ GP ) α slave α master κ( 1κ ) J 0 ( β OSSB ) J 1 ( β PM ) [ J 0 2 ( β PM ) ε OSSB ][ e i ϕ GP ( 1+i ) e i ϕ GP ( 1i ) ] P beat_ Ω 2 ( ω, ω OSSB , ϕ GP ) α slave α master κ( 1κ ) J 0 ( β OSSB ) J 1 ( β PM ) [ J 0 2 ( β PM ) ε OSSB ][ e i ϕ GP ( 1+i )+ e i ϕ GP ( 1i ) ]
ρ FSR = FSR T = FSR n core n core T + FSR n clad n clad T + FSR R R( 1 R R T )
y=16.735× 10 3 x+1.8451× 10 9

Metrics