Abstract

Femtosecond laser-induced refractive index changes in lithium niobium silicate glass were explored at high repetition rate (300 fs, 500 kHz) by polarized light microscopy, full-wave retardation plate, quantitative birefringence microscopy, and digital holographic microscopy. We found three regimes on energy increase. The first one corresponds to isotropic negative refractive index change (for pulse energy ranging 0.4-0.8 μJ/pulse, 0.6 NA, 5μm/s, 650μm focusing depth in the glass). The second one (0.8-1.2 μJ/pulse) corresponds to birefringence with well-defined slow axis orientation. The third one (above 1.2 μJ/pulse) is related to birefringence direction fluctuation. Interestingly, these regimes are consistent with crystallization ones. In addition, an asymmetric orientational writing effect has been detected on birefringence. These topics extend the possibility of controlling refractive index change in multi-component glasses.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Modifications in lithium niobium silicate glass by femtosecond laser direct writing: morphology, crystallization, and nanostructure

Jing Cao, Léo Mazerolles, Matthieu Lancry, François Brisset, and Bertrand Poumellec
J. Opt. Soc. Am. B 34(1) 160-168 (2017)

Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses

M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, and P. G. Kazansky
Opt. Mater. Express 1(4) 711-723 (2011)

Photoinscription domains for ultrafast laser writing of refractive index changes in BK7 borosilicate crown optical glass

K. Mishchik, A. Ferrer, A. Ruiz de la Cruz, A. Mermillod-Blondin, C. Mauclair, Y. Ouerdane, A. Boukenter, J. Solis, and R. Stoian
Opt. Mater. Express 3(1) 67-85 (2013)

References

  • View by:
  • |
  • |
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [Crossref] [PubMed]
  2. M. Beresna, M. Gecevičius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293–339 (2014).
    [Crossref]
  3. T. T. Fernandez, M. Sakakura, S. M. Eaton, B. Sotillo, J. Siegel, J. Solis, Y. Shimotsuma, and K. Miura, “Bespoke photonic devices using ultrafast laser driven ion migration in glasses,” Prog. Mater. Sci. 94, 68–113 (2018).
    [Crossref]
  4. M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
    [Crossref]
  5. B. Poumellec, M. Lancry, A. Chahid-Erraji, and P. G. Kazansky, “Modification thresholds in femtosecond laser processing of pure silica: review of dependencies on laser parameters [Invited],” Opt. Mater. Express 1(4), 766–782 (2011).
    [Crossref]
  6. M. Vangheluwe, F. Liang, Y. Petit, P. Hée, Y. Ledemi, S. Thomas, E. Fargin, T. Cardinal, Y. Messaddeq, L. Canioni, and R. Vallée, “Enhancement of nanograting formation assisted by silver ions in a sodium gallophosphate glass,” Opt. Lett. 39(19), 5491–5494 (2014).
    [Crossref] [PubMed]
  7. M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, and P. G. Kazansky, “Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses,” Opt. Mater. Express 1(4), 711–723 (2011).
    [Crossref]
  8. C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
    [Crossref]
  9. C. Hnatovsky, R. Taylor, P. Rajeev, E. Simova, V. Bhardwaj, D. Rayner, and P. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
    [Crossref]
  10. S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 104(2), 503–507 (2011).
    [Crossref]
  11. A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005).
    [Crossref]
  12. E. Bricchi, B. G. Klappauf, and P. G. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett. 29(1), 119–121 (2004).
    [Crossref] [PubMed]
  13. R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1-2), 26–46 (2008).
    [Crossref]
  14. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
    [Crossref] [PubMed]
  15. F. Zimmermann, A. Plech, S. Richter, A. Tünnermann, and S. Nolte, “Ultrashort laser pulse induced nanogratings in borosilicate glass,” Appl. Phys. Lett. 104(21), 211107 (2014).
    [Crossref]
  16. S. S. Fedotov, R. Drevinskas, S. V. Lotarev, A. S. Lipatiev, M. Beresna, A. Čerkauskaitė, V. N. Sigaev, and P. G. Kazansky, “Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass,” Appl. Phys. Lett. 108(7), 071905 (2016).
    [Crossref]
  17. R. Osellame, G. Cerullo, and R. Ramponi, Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials (Springer Science & Business Media, 2012), Chap. 1.
  18. A. Cerkauskaite, R. Drevinskas, A. O. Rybaltovskii, and P. G. Kazansky, “Ultrafast laser-induced birefringence in various porosity silica glasses: from fused silica to aerogel,” Opt. Express 25(7), 8011–8021 (2017).
    [Crossref] [PubMed]
  19. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21(24), 2023–2025 (1996).
    [Crossref] [PubMed]
  20. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16(13), 9443–9458 (2008).
    [Crossref] [PubMed]
  21. Y. Yonesaki, K. Miura, R. Araki, K. Fujita, and K. Hirao, “Space-selective precipitation of non-linear optical crystals inside silicate glasses using near-infrared femtosecond laser,” J. Non-Cryst. Solids 351(10-11), 885–892 (2005).
    [Crossref]
  22. K. Miura, J. Qiu, T. Mitsuyu, and K. Hirao, “Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses,” Opt. Lett. 25(6), 408–410 (2000).
    [Crossref] [PubMed]
  23. J. Cao, B. Poumellec, L. Mazerolles, F. Brisset, A.-L. Helbert, S. Surble, X. He, and M. Lancry, “Nanoscale phase separation in lithium niobium silicate glass by femtosecond laser irradiation‎,” J. Am. Ceram. Soc. 100(1), 115–124 (2017).
    [Crossref]
  24. K. Veenhuizen, S. McAnany, D. Nolan, B. Aitken, V. Dierolf, and H. Jain, “Fabrication of graded index single crystal in glass,” Sci. Rep. 7, 44327 (2017).
    [Crossref] [PubMed]
  25. J. Cao, L. Mazerolles, M. Lancry, D. Solas, F. Brisset, and B. Poumellec, “Form birefringence induced in multicomponent glass by femtosecond laser direct writing,” Opt. Lett. 41(12), 2739–2742 (2016).
    [Crossref] [PubMed]
  26. C. Fan, B. Poumellec, R. Desmarchelier, H. Zeng, B. Bourguignon, G. Chen, and M. Lancry, “Asymmetric orientational writing dependence on polarization and direction in Li2O-Nb2O5-SiO2 glass with femtosecond laser irradiation,” Appl. Phys. B 117(2), 737–747 (2014).
    [Crossref]
  27. J. Cao, B. Poumellec, F. Brisset, A.-L. Helbert, and M. Lancry, “Tunable angular-dependent second-harmonic generation in glass by controlling femtosecond laser polarization,” J. Opt. Soc. Am. B 33(4), 741–747 (2016).
    [Crossref]
  28. C. Fan, B. Poumellec, H. Zeng, M. Lancry, W. Yang, B. Bourguignon, and G. Chen, “Directional writing dependence of birefringence in multicomponent silica-based glasses with ultrashort laser irradiation,” J. Laser Micro Nanoeng. 6(2), 158–163 (2011).
    [Crossref]
  29. C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
    [Crossref]
  30. J. Cao, L. Mazerolles, M. Lancry, F. Brisset, and B. Poumellec, “Modifications in lithium niobium silicate glass by femtosecond laser direct writing: morphology, crystallization, and nanostructure,” J. Opt. Soc. Am. B 34(1), 160–168 (2017).
    [Crossref]
  31. P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
    [Crossref]
  32. B. Poumellec, M. Lancry, R. Desmarchelier, E. Hervé, F. Brisset, and J. Poulin, “Asymmetric orientational writing in glass with femtosecond laser irradiation,” Opt. Mater. Express 3(10), 1586–1599 (2013).
    [Crossref]
  33. J. Cao, B. Poumellec, F. Brisset, A.-L. Helbert, and M. Lancry, “Angular dependence of the second harmonic generation induced by femtosecond laser irradiation in silica-based glasses: variation with writing speed and pulse energy,” World J. Nano Sci. Eng. 5(03), 96–106 (2015).
    [Crossref]
  34. L. Bressel, D. de Ligny, C. Sonneville, V. Martinez, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect [Invited],” Opt. Mater. Express 1(4), 605–613 (2011).
    [Crossref]
  35. S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87(21), 213902 (2001).
    [Crossref] [PubMed]
  36. A. Saliminia, N. Nguyen, S. Chin, and R. Vallée, “The influence of self-focusing and filamentation on refractive index modifications in fused silica using intense femtosecond pulses‎,” Opt. Commun. 241(4-6), 529–538 (2004).
    [Crossref]
  37. S. Hendy, “Light scattering in transparent glass ceramics,” Appl. Phys. Lett. 81(7), 1171–1173 (2002).
    [Crossref]
  38. M. Dussauze, E. Fargin, A. Malakho, V. Rodriguez, T. Buffeteau, and F. Adamietz, “Correlation of large SHG responses with structural characterization in borophosphate niobium glasses,” Opt. Mater. 28(12), 1417–1422 (2006).
    [Crossref]
  39. S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357(11-13), 2387–2391 (2011).
    [Crossref]

2018 (1)

T. T. Fernandez, M. Sakakura, S. M. Eaton, B. Sotillo, J. Siegel, J. Solis, Y. Shimotsuma, and K. Miura, “Bespoke photonic devices using ultrafast laser driven ion migration in glasses,” Prog. Mater. Sci. 94, 68–113 (2018).
[Crossref]

2017 (4)

J. Cao, B. Poumellec, L. Mazerolles, F. Brisset, A.-L. Helbert, S. Surble, X. He, and M. Lancry, “Nanoscale phase separation in lithium niobium silicate glass by femtosecond laser irradiation‎,” J. Am. Ceram. Soc. 100(1), 115–124 (2017).
[Crossref]

K. Veenhuizen, S. McAnany, D. Nolan, B. Aitken, V. Dierolf, and H. Jain, “Fabrication of graded index single crystal in glass,” Sci. Rep. 7, 44327 (2017).
[Crossref] [PubMed]

J. Cao, L. Mazerolles, M. Lancry, F. Brisset, and B. Poumellec, “Modifications in lithium niobium silicate glass by femtosecond laser direct writing: morphology, crystallization, and nanostructure,” J. Opt. Soc. Am. B 34(1), 160–168 (2017).
[Crossref]

A. Cerkauskaite, R. Drevinskas, A. O. Rybaltovskii, and P. G. Kazansky, “Ultrafast laser-induced birefringence in various porosity silica glasses: from fused silica to aerogel,” Opt. Express 25(7), 8011–8021 (2017).
[Crossref] [PubMed]

2016 (4)

J. Cao, B. Poumellec, F. Brisset, A.-L. Helbert, and M. Lancry, “Tunable angular-dependent second-harmonic generation in glass by controlling femtosecond laser polarization,” J. Opt. Soc. Am. B 33(4), 741–747 (2016).
[Crossref]

J. Cao, L. Mazerolles, M. Lancry, D. Solas, F. Brisset, and B. Poumellec, “Form birefringence induced in multicomponent glass by femtosecond laser direct writing,” Opt. Lett. 41(12), 2739–2742 (2016).
[Crossref] [PubMed]

S. S. Fedotov, R. Drevinskas, S. V. Lotarev, A. S. Lipatiev, M. Beresna, A. Čerkauskaitė, V. N. Sigaev, and P. G. Kazansky, “Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass,” Appl. Phys. Lett. 108(7), 071905 (2016).
[Crossref]

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref]

2015 (1)

J. Cao, B. Poumellec, F. Brisset, A.-L. Helbert, and M. Lancry, “Angular dependence of the second harmonic generation induced by femtosecond laser irradiation in silica-based glasses: variation with writing speed and pulse energy,” World J. Nano Sci. Eng. 5(03), 96–106 (2015).
[Crossref]

2014 (4)

M. Vangheluwe, F. Liang, Y. Petit, P. Hée, Y. Ledemi, S. Thomas, E. Fargin, T. Cardinal, Y. Messaddeq, L. Canioni, and R. Vallée, “Enhancement of nanograting formation assisted by silver ions in a sodium gallophosphate glass,” Opt. Lett. 39(19), 5491–5494 (2014).
[Crossref] [PubMed]

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293–339 (2014).
[Crossref]

F. Zimmermann, A. Plech, S. Richter, A. Tünnermann, and S. Nolte, “Ultrashort laser pulse induced nanogratings in borosilicate glass,” Appl. Phys. Lett. 104(21), 211107 (2014).
[Crossref]

C. Fan, B. Poumellec, R. Desmarchelier, H. Zeng, B. Bourguignon, G. Chen, and M. Lancry, “Asymmetric orientational writing dependence on polarization and direction in Li2O-Nb2O5-SiO2 glass with femtosecond laser irradiation,” Appl. Phys. B 117(2), 737–747 (2014).
[Crossref]

2013 (1)

2011 (6)

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect [Invited],” Opt. Mater. Express 1(4), 605–613 (2011).
[Crossref]

M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, and P. G. Kazansky, “Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses,” Opt. Mater. Express 1(4), 711–723 (2011).
[Crossref]

B. Poumellec, M. Lancry, A. Chahid-Erraji, and P. G. Kazansky, “Modification thresholds in femtosecond laser processing of pure silica: review of dependencies on laser parameters [Invited],” Opt. Mater. Express 1(4), 766–782 (2011).
[Crossref]

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357(11-13), 2387–2391 (2011).
[Crossref]

C. Fan, B. Poumellec, H. Zeng, M. Lancry, W. Yang, B. Bourguignon, and G. Chen, “Directional writing dependence of birefringence in multicomponent silica-based glasses with ultrashort laser irradiation,” J. Laser Micro Nanoeng. 6(2), 158–163 (2011).
[Crossref]

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 104(2), 503–507 (2011).
[Crossref]

2008 (2)

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1-2), 26–46 (2008).
[Crossref]

S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16(13), 9443–9458 (2008).
[Crossref] [PubMed]

2007 (1)

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

2006 (2)

M. Dussauze, E. Fargin, A. Malakho, V. Rodriguez, T. Buffeteau, and F. Adamietz, “Correlation of large SHG responses with structural characterization in borophosphate niobium glasses,” Opt. Mater. 28(12), 1417–1422 (2006).
[Crossref]

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
[Crossref]

2005 (3)

C. Hnatovsky, R. Taylor, P. Rajeev, E. Simova, V. Bhardwaj, D. Rayner, and P. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005).
[Crossref]

Y. Yonesaki, K. Miura, R. Araki, K. Fujita, and K. Hirao, “Space-selective precipitation of non-linear optical crystals inside silicate glasses using near-infrared femtosecond laser,” J. Non-Cryst. Solids 351(10-11), 885–892 (2005).
[Crossref]

2004 (2)

E. Bricchi, B. G. Klappauf, and P. G. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett. 29(1), 119–121 (2004).
[Crossref] [PubMed]

A. Saliminia, N. Nguyen, S. Chin, and R. Vallée, “The influence of self-focusing and filamentation on refractive index modifications in fused silica using intense femtosecond pulses‎,” Opt. Commun. 241(4-6), 529–538 (2004).
[Crossref]

2003 (1)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

2002 (1)

S. Hendy, “Light scattering in transparent glass ceramics,” Appl. Phys. Lett. 81(7), 1171–1173 (2002).
[Crossref]

2001 (2)

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87(21), 213902 (2001).
[Crossref] [PubMed]

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

2000 (1)

1996 (2)

Adamietz, F.

M. Dussauze, E. Fargin, A. Malakho, V. Rodriguez, T. Buffeteau, and F. Adamietz, “Correlation of large SHG responses with structural characterization in borophosphate niobium glasses,” Opt. Mater. 28(12), 1417–1422 (2006).
[Crossref]

Aitken, B.

K. Veenhuizen, S. McAnany, D. Nolan, B. Aitken, V. Dierolf, and H. Jain, “Fabrication of graded index single crystal in glass,” Sci. Rep. 7, 44327 (2017).
[Crossref] [PubMed]

Arai, A.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

Araki, R.

Y. Yonesaki, K. Miura, R. Araki, K. Fujita, and K. Hirao, “Space-selective precipitation of non-linear optical crystals inside silicate glasses using near-infrared femtosecond laser,” J. Non-Cryst. Solids 351(10-11), 885–892 (2005).
[Crossref]

Beresna, M.

S. S. Fedotov, R. Drevinskas, S. V. Lotarev, A. S. Lipatiev, M. Beresna, A. Čerkauskaitė, V. N. Sigaev, and P. G. Kazansky, “Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass,” Appl. Phys. Lett. 108(7), 071905 (2016).
[Crossref]

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293–339 (2014).
[Crossref]

M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, and P. G. Kazansky, “Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses,” Opt. Mater. Express 1(4), 711–723 (2011).
[Crossref]

Bergé, L.

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87(21), 213902 (2001).
[Crossref] [PubMed]

Bhardwaj, V.

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
[Crossref]

C. Hnatovsky, R. Taylor, P. Rajeev, E. Simova, V. Bhardwaj, D. Rayner, and P. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

Bourguignon, B.

C. Fan, B. Poumellec, R. Desmarchelier, H. Zeng, B. Bourguignon, G. Chen, and M. Lancry, “Asymmetric orientational writing dependence on polarization and direction in Li2O-Nb2O5-SiO2 glass with femtosecond laser irradiation,” Appl. Phys. B 117(2), 737–747 (2014).
[Crossref]

C. Fan, B. Poumellec, H. Zeng, M. Lancry, W. Yang, B. Bourguignon, and G. Chen, “Directional writing dependence of birefringence in multicomponent silica-based glasses with ultrashort laser irradiation,” J. Laser Micro Nanoeng. 6(2), 158–163 (2011).
[Crossref]

Bovatsek, J.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

Bressel, L.

Bricchi, E.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

E. Bricchi, B. G. Klappauf, and P. G. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett. 29(1), 119–121 (2004).
[Crossref] [PubMed]

Brisset, F.

J. Cao, L. Mazerolles, M. Lancry, F. Brisset, and B. Poumellec, “Modifications in lithium niobium silicate glass by femtosecond laser direct writing: morphology, crystallization, and nanostructure,” J. Opt. Soc. Am. B 34(1), 160–168 (2017).
[Crossref]

J. Cao, B. Poumellec, L. Mazerolles, F. Brisset, A.-L. Helbert, S. Surble, X. He, and M. Lancry, “Nanoscale phase separation in lithium niobium silicate glass by femtosecond laser irradiation‎,” J. Am. Ceram. Soc. 100(1), 115–124 (2017).
[Crossref]

J. Cao, B. Poumellec, F. Brisset, A.-L. Helbert, and M. Lancry, “Tunable angular-dependent second-harmonic generation in glass by controlling femtosecond laser polarization,” J. Opt. Soc. Am. B 33(4), 741–747 (2016).
[Crossref]

J. Cao, L. Mazerolles, M. Lancry, D. Solas, F. Brisset, and B. Poumellec, “Form birefringence induced in multicomponent glass by femtosecond laser direct writing,” Opt. Lett. 41(12), 2739–2742 (2016).
[Crossref] [PubMed]

J. Cao, B. Poumellec, F. Brisset, A.-L. Helbert, and M. Lancry, “Angular dependence of the second harmonic generation induced by femtosecond laser irradiation in silica-based glasses: variation with writing speed and pulse energy,” World J. Nano Sci. Eng. 5(03), 96–106 (2015).
[Crossref]

B. Poumellec, M. Lancry, R. Desmarchelier, E. Hervé, F. Brisset, and J. Poulin, “Asymmetric orientational writing in glass with femtosecond laser irradiation,” Opt. Mater. Express 3(10), 1586–1599 (2013).
[Crossref]

Brodeur, A.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

Buffeteau, T.

M. Dussauze, E. Fargin, A. Malakho, V. Rodriguez, T. Buffeteau, and F. Adamietz, “Correlation of large SHG responses with structural characterization in borophosphate niobium glasses,” Opt. Mater. 28(12), 1417–1422 (2006).
[Crossref]

Buividas, R.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref]

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect [Invited],” Opt. Mater. Express 1(4), 605–613 (2011).
[Crossref]

Callan, J. P.

Canioni, L.

Cao, J.

J. Cao, L. Mazerolles, M. Lancry, F. Brisset, and B. Poumellec, “Modifications in lithium niobium silicate glass by femtosecond laser direct writing: morphology, crystallization, and nanostructure,” J. Opt. Soc. Am. B 34(1), 160–168 (2017).
[Crossref]

J. Cao, B. Poumellec, L. Mazerolles, F. Brisset, A.-L. Helbert, S. Surble, X. He, and M. Lancry, “Nanoscale phase separation in lithium niobium silicate glass by femtosecond laser irradiation‎,” J. Am. Ceram. Soc. 100(1), 115–124 (2017).
[Crossref]

J. Cao, L. Mazerolles, M. Lancry, D. Solas, F. Brisset, and B. Poumellec, “Form birefringence induced in multicomponent glass by femtosecond laser direct writing,” Opt. Lett. 41(12), 2739–2742 (2016).
[Crossref] [PubMed]

J. Cao, B. Poumellec, F. Brisset, A.-L. Helbert, and M. Lancry, “Tunable angular-dependent second-harmonic generation in glass by controlling femtosecond laser polarization,” J. Opt. Soc. Am. B 33(4), 741–747 (2016).
[Crossref]

J. Cao, B. Poumellec, F. Brisset, A.-L. Helbert, and M. Lancry, “Angular dependence of the second harmonic generation induced by femtosecond laser irradiation in silica-based glasses: variation with writing speed and pulse energy,” World J. Nano Sci. Eng. 5(03), 96–106 (2015).
[Crossref]

Cardinal, T.

Cerkauskaite, A.

A. Cerkauskaite, R. Drevinskas, A. O. Rybaltovskii, and P. G. Kazansky, “Ultrafast laser-induced birefringence in various porosity silica glasses: from fused silica to aerogel,” Opt. Express 25(7), 8011–8021 (2017).
[Crossref] [PubMed]

S. S. Fedotov, R. Drevinskas, S. V. Lotarev, A. S. Lipatiev, M. Beresna, A. Čerkauskaitė, V. N. Sigaev, and P. G. Kazansky, “Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass,” Appl. Phys. Lett. 108(7), 071905 (2016).
[Crossref]

Chahid-Erraji, A.

Chen, G.

C. Fan, B. Poumellec, R. Desmarchelier, H. Zeng, B. Bourguignon, G. Chen, and M. Lancry, “Asymmetric orientational writing dependence on polarization and direction in Li2O-Nb2O5-SiO2 glass with femtosecond laser irradiation,” Appl. Phys. B 117(2), 737–747 (2014).
[Crossref]

C. Fan, B. Poumellec, H. Zeng, M. Lancry, W. Yang, B. Bourguignon, and G. Chen, “Directional writing dependence of birefringence in multicomponent silica-based glasses with ultrashort laser irradiation,” J. Laser Micro Nanoeng. 6(2), 158–163 (2011).
[Crossref]

Chen, W.-J.

Chin, S.

A. Saliminia, N. Nguyen, S. Chin, and R. Vallée, “The influence of self-focusing and filamentation on refractive index modifications in fused silica using intense femtosecond pulses‎,” Opt. Commun. 241(4-6), 529–538 (2004).
[Crossref]

Corkum, P.

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
[Crossref]

C. Hnatovsky, R. Taylor, P. Rajeev, E. Simova, V. Bhardwaj, D. Rayner, and P. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

Couairon, A.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005).
[Crossref]

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87(21), 213902 (2001).
[Crossref] [PubMed]

Davis, K. M.

de Ligny, D.

Desmarchelier, R.

C. Fan, B. Poumellec, R. Desmarchelier, H. Zeng, B. Bourguignon, G. Chen, and M. Lancry, “Asymmetric orientational writing dependence on polarization and direction in Li2O-Nb2O5-SiO2 glass with femtosecond laser irradiation,” Appl. Phys. B 117(2), 737–747 (2014).
[Crossref]

B. Poumellec, M. Lancry, R. Desmarchelier, E. Hervé, F. Brisset, and J. Poulin, “Asymmetric orientational writing in glass with femtosecond laser irradiation,” Opt. Mater. Express 3(10), 1586–1599 (2013).
[Crossref]

Dierolf, V.

K. Veenhuizen, S. McAnany, D. Nolan, B. Aitken, V. Dierolf, and H. Jain, “Fabrication of graded index single crystal in glass,” Sci. Rep. 7, 44327 (2017).
[Crossref] [PubMed]

Döring, S.

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 104(2), 503–507 (2011).
[Crossref]

Drevinskas, R.

A. Cerkauskaite, R. Drevinskas, A. O. Rybaltovskii, and P. G. Kazansky, “Ultrafast laser-induced birefringence in various porosity silica glasses: from fused silica to aerogel,” Opt. Express 25(7), 8011–8021 (2017).
[Crossref] [PubMed]

S. S. Fedotov, R. Drevinskas, S. V. Lotarev, A. S. Lipatiev, M. Beresna, A. Čerkauskaitė, V. N. Sigaev, and P. G. Kazansky, “Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass,” Appl. Phys. Lett. 108(7), 071905 (2016).
[Crossref]

Dussauze, M.

M. Dussauze, E. Fargin, A. Malakho, V. Rodriguez, T. Buffeteau, and F. Adamietz, “Correlation of large SHG responses with structural characterization in borophosphate niobium glasses,” Opt. Mater. 28(12), 1417–1422 (2006).
[Crossref]

Eaton, S. M.

T. T. Fernandez, M. Sakakura, S. M. Eaton, B. Sotillo, J. Siegel, J. Solis, Y. Shimotsuma, and K. Miura, “Bespoke photonic devices using ultrafast laser driven ion migration in glasses,” Prog. Mater. Sci. 94, 68–113 (2018).
[Crossref]

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357(11-13), 2387–2391 (2011).
[Crossref]

S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16(13), 9443–9458 (2008).
[Crossref] [PubMed]

Fan, C.

C. Fan, B. Poumellec, R. Desmarchelier, H. Zeng, B. Bourguignon, G. Chen, and M. Lancry, “Asymmetric orientational writing dependence on polarization and direction in Li2O-Nb2O5-SiO2 glass with femtosecond laser irradiation,” Appl. Phys. B 117(2), 737–747 (2014).
[Crossref]

C. Fan, B. Poumellec, H. Zeng, M. Lancry, W. Yang, B. Bourguignon, and G. Chen, “Directional writing dependence of birefringence in multicomponent silica-based glasses with ultrashort laser irradiation,” J. Laser Micro Nanoeng. 6(2), 158–163 (2011).
[Crossref]

Fargin, E.

M. Vangheluwe, F. Liang, Y. Petit, P. Hée, Y. Ledemi, S. Thomas, E. Fargin, T. Cardinal, Y. Messaddeq, L. Canioni, and R. Vallée, “Enhancement of nanograting formation assisted by silver ions in a sodium gallophosphate glass,” Opt. Lett. 39(19), 5491–5494 (2014).
[Crossref] [PubMed]

M. Dussauze, E. Fargin, A. Malakho, V. Rodriguez, T. Buffeteau, and F. Adamietz, “Correlation of large SHG responses with structural characterization in borophosphate niobium glasses,” Opt. Mater. 28(12), 1417–1422 (2006).
[Crossref]

Fedotov, S. S.

S. S. Fedotov, R. Drevinskas, S. V. Lotarev, A. S. Lipatiev, M. Beresna, A. Čerkauskaitė, V. N. Sigaev, and P. G. Kazansky, “Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass,” Appl. Phys. Lett. 108(7), 071905 (2016).
[Crossref]

Fernandez, T. T.

T. T. Fernandez, M. Sakakura, S. M. Eaton, B. Sotillo, J. Siegel, J. Solis, Y. Shimotsuma, and K. Miura, “Bespoke photonic devices using ultrafast laser driven ion migration in glasses,” Prog. Mater. Sci. 94, 68–113 (2018).
[Crossref]

Finlay, R. J.

Franco, M.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005).
[Crossref]

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87(21), 213902 (2001).
[Crossref] [PubMed]

Fujita, K.

Y. Yonesaki, K. Miura, R. Araki, K. Fujita, and K. Hirao, “Space-selective precipitation of non-linear optical crystals inside silicate glasses using near-infrared femtosecond laser,” J. Non-Cryst. Solids 351(10-11), 885–892 (2005).
[Crossref]

Gecevicius, M.

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293–339 (2014).
[Crossref]

Glezer, E. N.

Hasegawa, S.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Hayasaki, Y.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref]

He, X.

J. Cao, B. Poumellec, L. Mazerolles, F. Brisset, A.-L. Helbert, S. Surble, X. He, and M. Lancry, “Nanoscale phase separation in lithium niobium silicate glass by femtosecond laser irradiation‎,” J. Am. Ceram. Soc. 100(1), 115–124 (2017).
[Crossref]

Hée, P.

Heinrich, M.

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 104(2), 503–507 (2011).
[Crossref]

Helbert, A.-L.

J. Cao, B. Poumellec, L. Mazerolles, F. Brisset, A.-L. Helbert, S. Surble, X. He, and M. Lancry, “Nanoscale phase separation in lithium niobium silicate glass by femtosecond laser irradiation‎,” J. Am. Ceram. Soc. 100(1), 115–124 (2017).
[Crossref]

J. Cao, B. Poumellec, F. Brisset, A.-L. Helbert, and M. Lancry, “Tunable angular-dependent second-harmonic generation in glass by controlling femtosecond laser polarization,” J. Opt. Soc. Am. B 33(4), 741–747 (2016).
[Crossref]

J. Cao, B. Poumellec, F. Brisset, A.-L. Helbert, and M. Lancry, “Angular dependence of the second harmonic generation induced by femtosecond laser irradiation in silica-based glasses: variation with writing speed and pulse energy,” World J. Nano Sci. Eng. 5(03), 96–106 (2015).
[Crossref]

Hendy, S.

S. Hendy, “Light scattering in transparent glass ceramics,” Appl. Phys. Lett. 81(7), 1171–1173 (2002).
[Crossref]

Her, T. H.

Herman, P. R.

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357(11-13), 2387–2391 (2011).
[Crossref]

S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16(13), 9443–9458 (2008).
[Crossref] [PubMed]

Hervé, E.

Hirao, K.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

Y. Yonesaki, K. Miura, R. Araki, K. Fujita, and K. Hirao, “Space-selective precipitation of non-linear optical crystals inside silicate glasses using near-infrared femtosecond laser,” J. Non-Cryst. Solids 351(10-11), 885–892 (2005).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

K. Miura, J. Qiu, T. Mitsuyu, and K. Hirao, “Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses,” Opt. Lett. 25(6), 408–410 (2000).
[Crossref] [PubMed]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[Crossref] [PubMed]

Hnatovsky, C.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1-2), 26–46 (2008).
[Crossref]

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
[Crossref]

C. Hnatovsky, R. Taylor, P. Rajeev, E. Simova, V. Bhardwaj, D. Rayner, and P. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

Ho, S.

Huang, L.

Jain, H.

K. Veenhuizen, S. McAnany, D. Nolan, B. Aitken, V. Dierolf, and H. Jain, “Fabrication of graded index single crystal in glass,” Sci. Rep. 7, 44327 (2017).
[Crossref] [PubMed]

Juodkazis, S.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref]

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect [Invited],” Opt. Mater. Express 1(4), 605–613 (2011).
[Crossref]

Kazansky, P. G.

A. Cerkauskaite, R. Drevinskas, A. O. Rybaltovskii, and P. G. Kazansky, “Ultrafast laser-induced birefringence in various porosity silica glasses: from fused silica to aerogel,” Opt. Express 25(7), 8011–8021 (2017).
[Crossref] [PubMed]

S. S. Fedotov, R. Drevinskas, S. V. Lotarev, A. S. Lipatiev, M. Beresna, A. Čerkauskaitė, V. N. Sigaev, and P. G. Kazansky, “Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass,” Appl. Phys. Lett. 108(7), 071905 (2016).
[Crossref]

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293–339 (2014).
[Crossref]

B. Poumellec, M. Lancry, A. Chahid-Erraji, and P. G. Kazansky, “Modification thresholds in femtosecond laser processing of pure silica: review of dependencies on laser parameters [Invited],” Opt. Mater. Express 1(4), 766–782 (2011).
[Crossref]

M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, and P. G. Kazansky, “Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses,” Opt. Mater. Express 1(4), 711–723 (2011).
[Crossref]

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

E. Bricchi, B. G. Klappauf, and P. G. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett. 29(1), 119–121 (2004).
[Crossref] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Klappauf, B. G.

Lancry, M.

J. Cao, L. Mazerolles, M. Lancry, F. Brisset, and B. Poumellec, “Modifications in lithium niobium silicate glass by femtosecond laser direct writing: morphology, crystallization, and nanostructure,” J. Opt. Soc. Am. B 34(1), 160–168 (2017).
[Crossref]

J. Cao, B. Poumellec, L. Mazerolles, F. Brisset, A.-L. Helbert, S. Surble, X. He, and M. Lancry, “Nanoscale phase separation in lithium niobium silicate glass by femtosecond laser irradiation‎,” J. Am. Ceram. Soc. 100(1), 115–124 (2017).
[Crossref]

J. Cao, B. Poumellec, F. Brisset, A.-L. Helbert, and M. Lancry, “Tunable angular-dependent second-harmonic generation in glass by controlling femtosecond laser polarization,” J. Opt. Soc. Am. B 33(4), 741–747 (2016).
[Crossref]

J. Cao, L. Mazerolles, M. Lancry, D. Solas, F. Brisset, and B. Poumellec, “Form birefringence induced in multicomponent glass by femtosecond laser direct writing,” Opt. Lett. 41(12), 2739–2742 (2016).
[Crossref] [PubMed]

J. Cao, B. Poumellec, F. Brisset, A.-L. Helbert, and M. Lancry, “Angular dependence of the second harmonic generation induced by femtosecond laser irradiation in silica-based glasses: variation with writing speed and pulse energy,” World J. Nano Sci. Eng. 5(03), 96–106 (2015).
[Crossref]

C. Fan, B. Poumellec, R. Desmarchelier, H. Zeng, B. Bourguignon, G. Chen, and M. Lancry, “Asymmetric orientational writing dependence on polarization and direction in Li2O-Nb2O5-SiO2 glass with femtosecond laser irradiation,” Appl. Phys. B 117(2), 737–747 (2014).
[Crossref]

B. Poumellec, M. Lancry, R. Desmarchelier, E. Hervé, F. Brisset, and J. Poulin, “Asymmetric orientational writing in glass with femtosecond laser irradiation,” Opt. Mater. Express 3(10), 1586–1599 (2013).
[Crossref]

B. Poumellec, M. Lancry, A. Chahid-Erraji, and P. G. Kazansky, “Modification thresholds in femtosecond laser processing of pure silica: review of dependencies on laser parameters [Invited],” Opt. Mater. Express 1(4), 766–782 (2011).
[Crossref]

M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, and P. G. Kazansky, “Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses,” Opt. Mater. Express 1(4), 711–723 (2011).
[Crossref]

C. Fan, B. Poumellec, H. Zeng, M. Lancry, W. Yang, B. Bourguignon, and G. Chen, “Directional writing dependence of birefringence in multicomponent silica-based glasses with ultrashort laser irradiation,” J. Laser Micro Nanoeng. 6(2), 158–163 (2011).
[Crossref]

Ledemi, Y.

Li, J.

Liang, F.

Lipatiev, A. S.

S. S. Fedotov, R. Drevinskas, S. V. Lotarev, A. S. Lipatiev, M. Beresna, A. Čerkauskaitė, V. N. Sigaev, and P. G. Kazansky, “Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass,” Appl. Phys. Lett. 108(7), 071905 (2016).
[Crossref]

Lotarev, S. V.

S. S. Fedotov, R. Drevinskas, S. V. Lotarev, A. S. Lipatiev, M. Beresna, A. Čerkauskaitė, V. N. Sigaev, and P. G. Kazansky, “Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass,” Appl. Phys. Lett. 108(7), 071905 (2016).
[Crossref]

Malakho, A.

M. Dussauze, E. Fargin, A. Malakho, V. Rodriguez, T. Buffeteau, and F. Adamietz, “Correlation of large SHG responses with structural characterization in borophosphate niobium glasses,” Opt. Mater. 28(12), 1417–1422 (2006).
[Crossref]

Malinauskas, M.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Martinez, V.

Mazerolles, L.

Mazur, E.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21(24), 2023–2025 (1996).
[Crossref] [PubMed]

McAnany, S.

K. Veenhuizen, S. McAnany, D. Nolan, B. Aitken, V. Dierolf, and H. Jain, “Fabrication of graded index single crystal in glass,” Sci. Rep. 7, 44327 (2017).
[Crossref] [PubMed]

Messaddeq, Y.

Milosavljevic, M.

Mitsuyu, T.

Miura, K.

T. T. Fernandez, M. Sakakura, S. M. Eaton, B. Sotillo, J. Siegel, J. Solis, Y. Shimotsuma, and K. Miura, “Bespoke photonic devices using ultrafast laser driven ion migration in glasses,” Prog. Mater. Sci. 94, 68–113 (2018).
[Crossref]

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

Y. Yonesaki, K. Miura, R. Araki, K. Fujita, and K. Hirao, “Space-selective precipitation of non-linear optical crystals inside silicate glasses using near-infrared femtosecond laser,” J. Non-Cryst. Solids 351(10-11), 885–892 (2005).
[Crossref]

K. Miura, J. Qiu, T. Mitsuyu, and K. Hirao, “Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses,” Opt. Lett. 25(6), 408–410 (2000).
[Crossref] [PubMed]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[Crossref] [PubMed]

Mizeikis, V.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref]

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect [Invited],” Opt. Mater. Express 1(4), 605–613 (2011).
[Crossref]

Mysyrowicz, A.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005).
[Crossref]

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87(21), 213902 (2001).
[Crossref] [PubMed]

Ng, M. L.

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357(11-13), 2387–2391 (2011).
[Crossref]

S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16(13), 9443–9458 (2008).
[Crossref] [PubMed]

Nguyen, N.

A. Saliminia, N. Nguyen, S. Chin, and R. Vallée, “The influence of self-focusing and filamentation on refractive index modifications in fused silica using intense femtosecond pulses‎,” Opt. Commun. 241(4-6), 529–538 (2004).
[Crossref]

Nolan, D.

K. Veenhuizen, S. McAnany, D. Nolan, B. Aitken, V. Dierolf, and H. Jain, “Fabrication of graded index single crystal in glass,” Sci. Rep. 7, 44327 (2017).
[Crossref] [PubMed]

Nolte, S.

F. Zimmermann, A. Plech, S. Richter, A. Tünnermann, and S. Nolte, “Ultrashort laser pulse induced nanogratings in borosilicate glass,” Appl. Phys. Lett. 104(21), 211107 (2014).
[Crossref]

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 104(2), 503–507 (2011).
[Crossref]

Osellame, R.

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357(11-13), 2387–2391 (2011).
[Crossref]

Petit, Y.

Plech, A.

F. Zimmermann, A. Plech, S. Richter, A. Tünnermann, and S. Nolte, “Ultrashort laser pulse induced nanogratings in borosilicate glass,” Appl. Phys. Lett. 104(21), 211107 (2014).
[Crossref]

Poulin, J.

Poumellec, B.

J. Cao, L. Mazerolles, M. Lancry, F. Brisset, and B. Poumellec, “Modifications in lithium niobium silicate glass by femtosecond laser direct writing: morphology, crystallization, and nanostructure,” J. Opt. Soc. Am. B 34(1), 160–168 (2017).
[Crossref]

J. Cao, B. Poumellec, L. Mazerolles, F. Brisset, A.-L. Helbert, S. Surble, X. He, and M. Lancry, “Nanoscale phase separation in lithium niobium silicate glass by femtosecond laser irradiation‎,” J. Am. Ceram. Soc. 100(1), 115–124 (2017).
[Crossref]

J. Cao, L. Mazerolles, M. Lancry, D. Solas, F. Brisset, and B. Poumellec, “Form birefringence induced in multicomponent glass by femtosecond laser direct writing,” Opt. Lett. 41(12), 2739–2742 (2016).
[Crossref] [PubMed]

J. Cao, B. Poumellec, F. Brisset, A.-L. Helbert, and M. Lancry, “Tunable angular-dependent second-harmonic generation in glass by controlling femtosecond laser polarization,” J. Opt. Soc. Am. B 33(4), 741–747 (2016).
[Crossref]

J. Cao, B. Poumellec, F. Brisset, A.-L. Helbert, and M. Lancry, “Angular dependence of the second harmonic generation induced by femtosecond laser irradiation in silica-based glasses: variation with writing speed and pulse energy,” World J. Nano Sci. Eng. 5(03), 96–106 (2015).
[Crossref]

C. Fan, B. Poumellec, R. Desmarchelier, H. Zeng, B. Bourguignon, G. Chen, and M. Lancry, “Asymmetric orientational writing dependence on polarization and direction in Li2O-Nb2O5-SiO2 glass with femtosecond laser irradiation,” Appl. Phys. B 117(2), 737–747 (2014).
[Crossref]

B. Poumellec, M. Lancry, R. Desmarchelier, E. Hervé, F. Brisset, and J. Poulin, “Asymmetric orientational writing in glass with femtosecond laser irradiation,” Opt. Mater. Express 3(10), 1586–1599 (2013).
[Crossref]

B. Poumellec, M. Lancry, A. Chahid-Erraji, and P. G. Kazansky, “Modification thresholds in femtosecond laser processing of pure silica: review of dependencies on laser parameters [Invited],” Opt. Mater. Express 1(4), 766–782 (2011).
[Crossref]

M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, and P. G. Kazansky, “Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses,” Opt. Mater. Express 1(4), 711–723 (2011).
[Crossref]

C. Fan, B. Poumellec, H. Zeng, M. Lancry, W. Yang, B. Bourguignon, and G. Chen, “Directional writing dependence of birefringence in multicomponent silica-based glasses with ultrashort laser irradiation,” J. Laser Micro Nanoeng. 6(2), 158–163 (2011).
[Crossref]

Prade, B.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005).
[Crossref]

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87(21), 213902 (2001).
[Crossref] [PubMed]

Qiu, J.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

K. Miura, J. Qiu, T. Mitsuyu, and K. Hirao, “Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses,” Opt. Lett. 25(6), 408–410 (2000).
[Crossref] [PubMed]

Rajeev, P.

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
[Crossref]

C. Hnatovsky, R. Taylor, P. Rajeev, E. Simova, V. Bhardwaj, D. Rayner, and P. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

Rayner, D.

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
[Crossref]

C. Hnatovsky, R. Taylor, P. Rajeev, E. Simova, V. Bhardwaj, D. Rayner, and P. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

Richter, S.

F. Zimmermann, A. Plech, S. Richter, A. Tünnermann, and S. Nolte, “Ultrashort laser pulse induced nanogratings in borosilicate glass,” Appl. Phys. Lett. 104(21), 211107 (2014).
[Crossref]

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 104(2), 503–507 (2011).
[Crossref]

Rodriguez, V.

M. Dussauze, E. Fargin, A. Malakho, V. Rodriguez, T. Buffeteau, and F. Adamietz, “Correlation of large SHG responses with structural characterization in borophosphate niobium glasses,” Opt. Mater. 28(12), 1417–1422 (2006).
[Crossref]

Rybaltovskii, A. O.

Sakakura, M.

T. T. Fernandez, M. Sakakura, S. M. Eaton, B. Sotillo, J. Siegel, J. Solis, Y. Shimotsuma, and K. Miura, “Bespoke photonic devices using ultrafast laser driven ion migration in glasses,” Prog. Mater. Sci. 94, 68–113 (2018).
[Crossref]

Saliminia, A.

A. Saliminia, N. Nguyen, S. Chin, and R. Vallée, “The influence of self-focusing and filamentation on refractive index modifications in fused silica using intense femtosecond pulses‎,” Opt. Commun. 241(4-6), 529–538 (2004).
[Crossref]

Schaffer, C. B.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

Shimotsuma, Y.

T. T. Fernandez, M. Sakakura, S. M. Eaton, B. Sotillo, J. Siegel, J. Solis, Y. Shimotsuma, and K. Miura, “Bespoke photonic devices using ultrafast laser driven ion migration in glasses,” Prog. Mater. Sci. 94, 68–113 (2018).
[Crossref]

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Siegel, J.

T. T. Fernandez, M. Sakakura, S. M. Eaton, B. Sotillo, J. Siegel, J. Solis, Y. Shimotsuma, and K. Miura, “Bespoke photonic devices using ultrafast laser driven ion migration in glasses,” Prog. Mater. Sci. 94, 68–113 (2018).
[Crossref]

Sigaev, V. N.

S. S. Fedotov, R. Drevinskas, S. V. Lotarev, A. S. Lipatiev, M. Beresna, A. Čerkauskaitė, V. N. Sigaev, and P. G. Kazansky, “Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass,” Appl. Phys. Lett. 108(7), 071905 (2016).
[Crossref]

Simova, E.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1-2), 26–46 (2008).
[Crossref]

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
[Crossref]

C. Hnatovsky, R. Taylor, P. Rajeev, E. Simova, V. Bhardwaj, D. Rayner, and P. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

Solas, D.

Solis, J.

T. T. Fernandez, M. Sakakura, S. M. Eaton, B. Sotillo, J. Siegel, J. Solis, Y. Shimotsuma, and K. Miura, “Bespoke photonic devices using ultrafast laser driven ion migration in glasses,” Prog. Mater. Sci. 94, 68–113 (2018).
[Crossref]

Sonneville, C.

Sotillo, B.

T. T. Fernandez, M. Sakakura, S. M. Eaton, B. Sotillo, J. Siegel, J. Solis, Y. Shimotsuma, and K. Miura, “Bespoke photonic devices using ultrafast laser driven ion migration in glasses,” Prog. Mater. Sci. 94, 68–113 (2018).
[Crossref]

Sudrie, L.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005).
[Crossref]

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87(21), 213902 (2001).
[Crossref] [PubMed]

Sugimoto, N.

Surble, S.

J. Cao, B. Poumellec, L. Mazerolles, F. Brisset, A.-L. Helbert, S. Surble, X. He, and M. Lancry, “Nanoscale phase separation in lithium niobium silicate glass by femtosecond laser irradiation‎,” J. Am. Ceram. Soc. 100(1), 115–124 (2017).
[Crossref]

Taylor, R.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1-2), 26–46 (2008).
[Crossref]

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
[Crossref]

C. Hnatovsky, R. Taylor, P. Rajeev, E. Simova, V. Bhardwaj, D. Rayner, and P. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

Thomas, S.

Tünnermann, A.

F. Zimmermann, A. Plech, S. Richter, A. Tünnermann, and S. Nolte, “Ultrashort laser pulse induced nanogratings in borosilicate glass,” Appl. Phys. Lett. 104(21), 211107 (2014).
[Crossref]

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 104(2), 503–507 (2011).
[Crossref]

Tzortzakis, S.

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87(21), 213902 (2001).
[Crossref] [PubMed]

Vallée, R.

M. Vangheluwe, F. Liang, Y. Petit, P. Hée, Y. Ledemi, S. Thomas, E. Fargin, T. Cardinal, Y. Messaddeq, L. Canioni, and R. Vallée, “Enhancement of nanograting formation assisted by silver ions in a sodium gallophosphate glass,” Opt. Lett. 39(19), 5491–5494 (2014).
[Crossref] [PubMed]

A. Saliminia, N. Nguyen, S. Chin, and R. Vallée, “The influence of self-focusing and filamentation on refractive index modifications in fused silica using intense femtosecond pulses‎,” Opt. Commun. 241(4-6), 529–538 (2004).
[Crossref]

Vangheluwe, M.

Veenhuizen, K.

K. Veenhuizen, S. McAnany, D. Nolan, B. Aitken, V. Dierolf, and H. Jain, “Fabrication of graded index single crystal in glass,” Sci. Rep. 7, 44327 (2017).
[Crossref] [PubMed]

Yang, W.

C. Fan, B. Poumellec, H. Zeng, M. Lancry, W. Yang, B. Bourguignon, and G. Chen, “Directional writing dependence of birefringence in multicomponent silica-based glasses with ultrashort laser irradiation,” J. Laser Micro Nanoeng. 6(2), 158–163 (2011).
[Crossref]

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

Yonesaki, Y.

Y. Yonesaki, K. Miura, R. Araki, K. Fujita, and K. Hirao, “Space-selective precipitation of non-linear optical crystals inside silicate glasses using near-infrared femtosecond laser,” J. Non-Cryst. Solids 351(10-11), 885–892 (2005).
[Crossref]

Zeng, H.

C. Fan, B. Poumellec, R. Desmarchelier, H. Zeng, B. Bourguignon, G. Chen, and M. Lancry, “Asymmetric orientational writing dependence on polarization and direction in Li2O-Nb2O5-SiO2 glass with femtosecond laser irradiation,” Appl. Phys. B 117(2), 737–747 (2014).
[Crossref]

C. Fan, B. Poumellec, H. Zeng, M. Lancry, W. Yang, B. Bourguignon, and G. Chen, “Directional writing dependence of birefringence in multicomponent silica-based glasses with ultrashort laser irradiation,” J. Laser Micro Nanoeng. 6(2), 158–163 (2011).
[Crossref]

Zhang, H.

Zimmermann, F.

F. Zimmermann, A. Plech, S. Richter, A. Tünnermann, and S. Nolte, “Ultrashort laser pulse induced nanogratings in borosilicate glass,” Appl. Phys. Lett. 104(21), 211107 (2014).
[Crossref]

Žukauskas, A.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Adv. Opt. Photonics (1)

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293–339 (2014).
[Crossref]

Appl. Phys. B (1)

C. Fan, B. Poumellec, R. Desmarchelier, H. Zeng, B. Bourguignon, G. Chen, and M. Lancry, “Asymmetric orientational writing dependence on polarization and direction in Li2O-Nb2O5-SiO2 glass with femtosecond laser irradiation,” Appl. Phys. B 117(2), 737–747 (2014).
[Crossref]

Appl. Phys. Lett. (5)

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

C. Hnatovsky, R. Taylor, P. Rajeev, E. Simova, V. Bhardwaj, D. Rayner, and P. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

F. Zimmermann, A. Plech, S. Richter, A. Tünnermann, and S. Nolte, “Ultrashort laser pulse induced nanogratings in borosilicate glass,” Appl. Phys. Lett. 104(21), 211107 (2014).
[Crossref]

S. S. Fedotov, R. Drevinskas, S. V. Lotarev, A. S. Lipatiev, M. Beresna, A. Čerkauskaitė, V. N. Sigaev, and P. G. Kazansky, “Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass,” Appl. Phys. Lett. 108(7), 071905 (2016).
[Crossref]

S. Hendy, “Light scattering in transparent glass ceramics,” Appl. Phys. Lett. 81(7), 1171–1173 (2002).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 104(2), 503–507 (2011).
[Crossref]

C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, and P. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 47–61 (2006).
[Crossref]

J. Am. Ceram. Soc. (1)

J. Cao, B. Poumellec, L. Mazerolles, F. Brisset, A.-L. Helbert, S. Surble, X. He, and M. Lancry, “Nanoscale phase separation in lithium niobium silicate glass by femtosecond laser irradiation‎,” J. Am. Ceram. Soc. 100(1), 115–124 (2017).
[Crossref]

J. Laser Micro Nanoeng. (1)

C. Fan, B. Poumellec, H. Zeng, M. Lancry, W. Yang, B. Bourguignon, and G. Chen, “Directional writing dependence of birefringence in multicomponent silica-based glasses with ultrashort laser irradiation,” J. Laser Micro Nanoeng. 6(2), 158–163 (2011).
[Crossref]

J. Non-Cryst. Solids (2)

Y. Yonesaki, K. Miura, R. Araki, K. Fujita, and K. Hirao, “Space-selective precipitation of non-linear optical crystals inside silicate glasses using near-infrared femtosecond laser,” J. Non-Cryst. Solids 351(10-11), 885–892 (2005).
[Crossref]

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357(11-13), 2387–2391 (2011).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Photonics Rev. (1)

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1-2), 26–46 (2008).
[Crossref]

Light Sci. Appl. (1)

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Meas. Sci. Technol. (1)

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

Opt. Commun. (1)

A. Saliminia, N. Nguyen, S. Chin, and R. Vallée, “The influence of self-focusing and filamentation on refractive index modifications in fused silica using intense femtosecond pulses‎,” Opt. Commun. 241(4-6), 529–538 (2004).
[Crossref]

Opt. Express (2)

Opt. Lett. (6)

Opt. Mater. (1)

M. Dussauze, E. Fargin, A. Malakho, V. Rodriguez, T. Buffeteau, and F. Adamietz, “Correlation of large SHG responses with structural characterization in borophosphate niobium glasses,” Opt. Mater. 28(12), 1417–1422 (2006).
[Crossref]

Opt. Mater. Express (4)

Phys. Rev. B (1)

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005).
[Crossref]

Phys. Rev. Lett. (2)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87(21), 213902 (2001).
[Crossref] [PubMed]

Prog. Mater. Sci. (1)

T. T. Fernandez, M. Sakakura, S. M. Eaton, B. Sotillo, J. Siegel, J. Solis, Y. Shimotsuma, and K. Miura, “Bespoke photonic devices using ultrafast laser driven ion migration in glasses,” Prog. Mater. Sci. 94, 68–113 (2018).
[Crossref]

Sci. Rep. (1)

K. Veenhuizen, S. McAnany, D. Nolan, B. Aitken, V. Dierolf, and H. Jain, “Fabrication of graded index single crystal in glass,” Sci. Rep. 7, 44327 (2017).
[Crossref] [PubMed]

World J. Nano Sci. Eng. (1)

J. Cao, B. Poumellec, F. Brisset, A.-L. Helbert, and M. Lancry, “Angular dependence of the second harmonic generation induced by femtosecond laser irradiation in silica-based glasses: variation with writing speed and pulse energy,” World J. Nano Sci. Eng. 5(03), 96–106 (2015).
[Crossref]

Other (1)

R. Osellame, G. Cerullo, and R. Ramponi, Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials (Springer Science & Business Media, 2012), Chap. 1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Irradiated lines taken by natural light microscopy (transmission mode) at varying pulse energy: a) 0.4 to 2.2 μJ/pulse and the magnified images at b) 0.8, c) 1.0, d) 1.4, and e) 2.0 μJ/pulse. Two lines in each energy group with different writing orientations, marked by the cyan arrows. Other parameters: 33Li2O-33Nb2O5-34SiO2 (mol%), 1030 nm, 300 fs, 500 kHz, NA = 0.6, focus depth 650 μm in glass, 5 μm/s, laser polarization direction is parallel to scanning direction. The distance between each line is 50 µm. The color of the background (orange) is due to the incandescent source of the microscope.
Fig. 2
Fig. 2 Images of irradiated lines taken between crossed polarizers: a) parallel or perpendicular and b) diagonal position with respect to the polarizers. Other parameters: 33Li2O-33Nb2O5-34SiO2 (mol%), 1030 nm, 300 fs, 500 kHz, NA = 0.6, focus depth 650 μm in glass, 5 μm/s, two lines in each energy group with different writing orientations, marked by the cyan arrows, writing laser polarization direction is illustrated by E. The distance between each line is 50 µm. In the left image, the lines with pulse energy 0.4, 0.6, and 0.8 μJ/pulse are not visible; in the right image, the lines with pulse energy 0.4 and 0.6 μJ/pulse are not visible.
Fig. 3
Fig. 3 Images taken between crossed polarizers (A and P, respectively) and full-wave retardation plate (λ, double-headed arrow indicates slow optical axis of the retardation plate, 45° of the polarizer axis) with the irradiated lines oriented at a) −45° and b) 45°. Other parameters: 33Li2O-33Nb2O5-34SiO2 (mol%), 1030 nm, 300 fs, 500 kHz, NA = 0.6, focus depth 650 μm in glass, 5 μm/s, laser polarization direction is illustrated by E. Thera are two lines in each energy group with different writing orientations, marked by the cyan arrows. The distance between each line is 50 µm.
Fig. 4
Fig. 4 fs laser-induced birefringence of irradiated lines in LNS glass by quantitative birefringence microscopy, varying pulse energy (two lines in each energy group with different writing orientations, marked by the cyan arrows): a) retardance amplitude image (up) and the retardance value along the red line marked in figure b (down), and the corresponding b) slow axis direction mapping (up) and the slow axis angle along the red line marked in figure b (down). Magnified images for c) 0.8, d) 1.0 and e) 1.2 μJ/pulse. Other parameters: 33Li2O-33Nb2O5-34SiO2 (mol%), 1030 nm, 300 fs, 500 kHz, NA = 0.6, focus depth 650 μm in glass, 5 μm/s, laser polarization direction (illustrated by E) is parallel to writing direction. The distance between each line is 50 µm.
Fig. 5
Fig. 5 Digital holographic microscopy images of irradiated lines: profiles of the averaged phase difference between the glass matrix and irradiated lines along the scanning direction at different pulse energies and writing directions (-X or + X, indicated in each picture). Other parameters: 33Li2O-33Nb2O5-34SiO2 (mol%), 1030 nm, 300 fs, 500 kHz, NA = 0.6, focus depth 650 μm in glass, 5 μm/s, laser polarization direction is parallel to writing direction. The distance between each line is 50 µm.
Fig. 6
Fig. 6 Normalized SHG intensity as a function of the probing laser polarization angle (each written line was normalized at the largest SHG intensity). The variable parameters are pulse energy and writing orientation (i.e. along X in the + or - orientation). Other parameters: 33Li2O-33Nb2O5-34SiO2 (mol%), 1030 nm, 300 fs, 500 kHz, NA = 0.6, focus depth 650 μm in glass, 5 μm/s, laser polarization direction is parallel to writing direction (i.e. X direction).
Fig. 7
Fig. 7 Structure of the laser trace by SEM (after HF treatment): SEM images for a) 0.4, b) 0.6, c) 0.8, and f) 2.0 µJ/pulse. Mapping of crystal directions deduced from EBSD for d) 0.8, e) 1.4, and g) 2.0 µJ/pulse. The mapping of the crystal directions codes crystal direction along the writing laser polarization direction. The color coding (inset at the right bottom) is based on R3c space group, LiNbO3. Other parameters: 33Li2O-33Nb2O5-34SiO2 (mol%), 1030 nm, 300 fs, 500 kHz, NA = 0.6, focus depth 650 μm in glass, 5 μm/s, laser polarization direction is parallel to writing direction.

Tables (1)

Tables Icon

Table 1 Comparison of the refractive index change in LNS glasses by fs laser irradiation

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Anisotropy magnitude = SH G max SH G min SH G max +SH G min
B= R t =| n a n b |
Δϕ= 2π λ DHM t( n ¯ n 0 ) , n ¯ = ( n a + n b ) 2

Metrics