Abstract

In this paper, a new prototypical Scheimpflug lidar capable of detecting the aerosol extinction coefficient and vertical atmospheric transmittance at 1 km above the ground is described. The lidar system operates at 532 nm and can be used to detect aerosol extinction coefficients throughout an entire day. Then, the vertical atmospheric transmittance can be determined from the extinction coefficients with the equation of numerical integration in this area. CCD flat fielding of the image data is used to mitigate the effects of pixel sensitivity variation. An efficient method of two-dimensional wavelet transform according to a local threshold value has been proposed to reduce the Gaussian white noise in the lidar signal. Furthermore, a new iteration method of backscattering ratio based on genetic algorithm is presented to calculate the aerosol extinction coefficient and vertical atmospheric transmittance. Some simulations are performed to reduce the different levels of noise in the simulated signal in order to test the precision of the de-noising method and inversion algorithm. The simulation result shows that the root-mean-square errors of extinction coefficients are all less than 0.02 km−1, and that the relative errors of the atmospheric transmittance between the model and inversion data are below 0.56% for all cases. The feasibility of the instrument and the inversion algorithm have also been verified by an optical experiment. The average relative errors of aerosol extinction coefficients between the Scheimpflug lidar and the conventional backscattering elastic lidar are 3.54% and 2.79% in the full overlap heights of two time points, respectively. This work opens up new possibilities of using a small-scale Scheimpflug lidar system for the remote sensing of atmospheric aerosols.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Atmospheric extinction coefficient retrieval and validation for the single-band Mie-scattering Scheimpflug lidar technique

Liang Mei, Peng Guan, Yang Yang, and Zheng Kong
Opt. Express 25(16) A628-A638 (2017)

Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system

Liang Mei and Mikkel Brydegaard
Opt. Express 23(24) A1613-A1628 (2015)

Implementation of a violet Scheimpflug lidar system for atmospheric aerosol studies

Liang Mei, Zheng Kong, and Peng Guan
Opt. Express 26(6) A260-A274 (2018)

References

  • View by:
  • |
  • |
  • |

  1. H. T. Liu, L. F. Chen, and L. Su, “Theoretical research of Fernald forward integration method for aerosol backscatter coefficient inversion of airborne atmosphere detecting lidar,” Wuli Xuebao 60(6), 064204 (2011).
  2. W. Gong, F. Y. Mao, and S. L. Song, “Signal simplification and cloud detection with an improved Douglas-Peucker algorithm for single-channel lidar,” Meteorol. Atmos. Phys. 113(1-2), 89–97 (2011).
    [Crossref]
  3. W. Zhu, C. Xu, X. Qian, and H. Wei, “Statistical analysis of the spatial-temporal distribution of aerosol extinction retrieved by micro-pulse lidar in Kashgar, China,” Opt. Express 21(3), 2531–2537 (2013).
    [Crossref] [PubMed]
  4. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20(2), 211–220 (1981).
    [Crossref] [PubMed]
  5. Y. Sasano, “Tropospheric aerosol extinction coefficient profiles derived from scanning lidar measurements over Tsukuba, Japan, from 1990 to 1993,” Appl. Opt. 35(24), 4941–4952 (1996).
    [Crossref] [PubMed]
  6. Q. S. He, C. C. Li, J. Z. Ma, H. Q. Wang, X. L. Yan, J. Lu, Z. R. Liang, and G. M. Qi, “Lidar-observed enhancement of aerosols in the upper troposphere and lower stratosphere over the Tibetan Plateau induced by the Nabro volcano eruption,” Atmos. Chem. Phys. 14(21), 11687–11696 (2014).
    [Crossref]
  7. Y. Sasano, H. Shimizu, N. Takeuchi, and M. Okuda, “Geometrical form factor in the laser radar equation: an experimental determination,” Appl. Opt. 18(23), 3908–3910 (1979).
    [Crossref] [PubMed]
  8. S. W. Dho, Y. J. Park, and H. J. Kong, “Experimental determination of a geometric form factor in a lidar equation for an inhomogeneous atmosphere,” Appl. Opt. 36(24), 6009–6010 (1997).
    [Crossref] [PubMed]
  9. S. Hu, X. Wang, Y. Wu, C. Li, and H. Hu, “Geometrical form factor determination with Raman backscattering signals,” Opt. Lett. 30(14), 1879–1881 (2005).
    [Crossref] [PubMed]
  10. J. Vande Hey, J. Coupland, M. H. Foo, J. Richards, and A. Sandford, “Determination of overlap in lidar systems,” Appl. Opt. 50(30), 5791–5797 (2011).
    [Crossref] [PubMed]
  11. V. A. Kovalev and W. E. Eichinger, Elastic Lidar: Theory, Practice, and Analysis Methods (John Wiley & Sons, 2004), Chap.3.
  12. K. Meki, K. Yamaguchi, X. Li, Y. Saito, T. D. Kawahara, and A. Nomura, “Range-resolved bistatic imaging lidar for the measurement of the lower atmosphere,” Opt. Lett. 21(17), 1318–1320 (1996).
    [Crossref] [PubMed]
  13. J. E. Barnes, S. Bronner, R. Beck, and N. C. Parikh, “Boundary layer scattering measurements with a charge-coupled device camera lidar,” Appl. Opt. 42(15), 2647–2652 (2003).
    [Crossref] [PubMed]
  14. J. E. Barnes, N. C. P. Sharma, and T. B. Kaplan, “Atmospheric aerosol profiling with a bistatic imaging lidar system,” Appl. Opt. 46(15), 2922–2929 (2007).
    [Crossref] [PubMed]
  15. M. Brydegaard, A. Gebru, and S. Svanberg, “Super resolution laser radar with blinking atmospheric particles-application to interacting flying insects,” Prog. Electromagnetics Res. 147, 141–151 (2014).
    [Crossref]
  16. L. Mei and M. Brydegaard, “Continuous-wave differential absorption lidar,” Laser Photonics Rev. 9(6), 629–636 (2015).
    [Crossref]
  17. L. Mei and M. Brydegaard, “Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system,” Opt. Express 23(24), A1613–A1628 (2015).
    [Crossref] [PubMed]
  18. Y. J. Wang, S. X. Hu, J. Zhou, and H. L. Hu, Atmospheric Parameters Measured by Lidar (Science, 2014), Chap.10.
  19. Virtual Photonics Technology Initiative, “Mie Simulator v1.05,” http://www.virtualphotonics.org/software-mie-simulator .
  20. G. D. Sun, L. A. Qin, Z. Cheng, F. He, and Z. H. Hou, “Experimental research of atmospheric visibility measured by imaging lidar,” Infrared. Laser. Eng. 46(10), 1030003 (2017).
    [Crossref]
  21. J. D. Mao, “Noise reduction for lidar returns using local threshold wavelet analysis,” Opt. Quantum Electron. 43(1-5), 59–68 (2012).
    [Crossref]
  22. H. T. Fang and D. S. Huang, “Noise reduction in lidar signal based on discrete wavelet transform,” Opt. Commun. 233(1-3), 67–76 (2004).
    [Crossref]
  23. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23(5), 652–653 (1984).
    [Crossref] [PubMed]
  24. T. Chen, D. C. Wu, B. Liu, K. F. Cao, Z. Z. Wang, G. Y. Bo, L. Yuan, and J. Zhou, “A new method for determining aerosol backscatter coefficient boundary value in the lower troposphere,” Acta Opt. Sin. 30(6), 1531–1536 (2010).
    [Crossref]
  25. Z. Cheng, F. F. Tan, X. Jing, F. He, L. A. Qin, and Z. H. Hou, “Retrieval of C2n profile from differential column image motion lidar using the regularization method,” Chin. Opt. Lett. 15(2), 020101 (2017).
    [Crossref]

2017 (2)

G. D. Sun, L. A. Qin, Z. Cheng, F. He, and Z. H. Hou, “Experimental research of atmospheric visibility measured by imaging lidar,” Infrared. Laser. Eng. 46(10), 1030003 (2017).
[Crossref]

Z. Cheng, F. F. Tan, X. Jing, F. He, L. A. Qin, and Z. H. Hou, “Retrieval of C2n profile from differential column image motion lidar using the regularization method,” Chin. Opt. Lett. 15(2), 020101 (2017).
[Crossref]

2015 (2)

L. Mei and M. Brydegaard, “Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system,” Opt. Express 23(24), A1613–A1628 (2015).
[Crossref] [PubMed]

L. Mei and M. Brydegaard, “Continuous-wave differential absorption lidar,” Laser Photonics Rev. 9(6), 629–636 (2015).
[Crossref]

2014 (2)

Q. S. He, C. C. Li, J. Z. Ma, H. Q. Wang, X. L. Yan, J. Lu, Z. R. Liang, and G. M. Qi, “Lidar-observed enhancement of aerosols in the upper troposphere and lower stratosphere over the Tibetan Plateau induced by the Nabro volcano eruption,” Atmos. Chem. Phys. 14(21), 11687–11696 (2014).
[Crossref]

M. Brydegaard, A. Gebru, and S. Svanberg, “Super resolution laser radar with blinking atmospheric particles-application to interacting flying insects,” Prog. Electromagnetics Res. 147, 141–151 (2014).
[Crossref]

2013 (1)

2012 (1)

J. D. Mao, “Noise reduction for lidar returns using local threshold wavelet analysis,” Opt. Quantum Electron. 43(1-5), 59–68 (2012).
[Crossref]

2011 (3)

H. T. Liu, L. F. Chen, and L. Su, “Theoretical research of Fernald forward integration method for aerosol backscatter coefficient inversion of airborne atmosphere detecting lidar,” Wuli Xuebao 60(6), 064204 (2011).

W. Gong, F. Y. Mao, and S. L. Song, “Signal simplification and cloud detection with an improved Douglas-Peucker algorithm for single-channel lidar,” Meteorol. Atmos. Phys. 113(1-2), 89–97 (2011).
[Crossref]

J. Vande Hey, J. Coupland, M. H. Foo, J. Richards, and A. Sandford, “Determination of overlap in lidar systems,” Appl. Opt. 50(30), 5791–5797 (2011).
[Crossref] [PubMed]

2010 (1)

T. Chen, D. C. Wu, B. Liu, K. F. Cao, Z. Z. Wang, G. Y. Bo, L. Yuan, and J. Zhou, “A new method for determining aerosol backscatter coefficient boundary value in the lower troposphere,” Acta Opt. Sin. 30(6), 1531–1536 (2010).
[Crossref]

2007 (1)

2005 (1)

2004 (1)

H. T. Fang and D. S. Huang, “Noise reduction in lidar signal based on discrete wavelet transform,” Opt. Commun. 233(1-3), 67–76 (2004).
[Crossref]

2003 (1)

1997 (1)

1996 (2)

1984 (1)

1981 (1)

1979 (1)

Barnes, J. E.

Beck, R.

Bo, G. Y.

T. Chen, D. C. Wu, B. Liu, K. F. Cao, Z. Z. Wang, G. Y. Bo, L. Yuan, and J. Zhou, “A new method for determining aerosol backscatter coefficient boundary value in the lower troposphere,” Acta Opt. Sin. 30(6), 1531–1536 (2010).
[Crossref]

Bronner, S.

Brydegaard, M.

L. Mei and M. Brydegaard, “Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system,” Opt. Express 23(24), A1613–A1628 (2015).
[Crossref] [PubMed]

L. Mei and M. Brydegaard, “Continuous-wave differential absorption lidar,” Laser Photonics Rev. 9(6), 629–636 (2015).
[Crossref]

M. Brydegaard, A. Gebru, and S. Svanberg, “Super resolution laser radar with blinking atmospheric particles-application to interacting flying insects,” Prog. Electromagnetics Res. 147, 141–151 (2014).
[Crossref]

Cao, K. F.

T. Chen, D. C. Wu, B. Liu, K. F. Cao, Z. Z. Wang, G. Y. Bo, L. Yuan, and J. Zhou, “A new method for determining aerosol backscatter coefficient boundary value in the lower troposphere,” Acta Opt. Sin. 30(6), 1531–1536 (2010).
[Crossref]

Chen, L. F.

H. T. Liu, L. F. Chen, and L. Su, “Theoretical research of Fernald forward integration method for aerosol backscatter coefficient inversion of airborne atmosphere detecting lidar,” Wuli Xuebao 60(6), 064204 (2011).

Chen, T.

T. Chen, D. C. Wu, B. Liu, K. F. Cao, Z. Z. Wang, G. Y. Bo, L. Yuan, and J. Zhou, “A new method for determining aerosol backscatter coefficient boundary value in the lower troposphere,” Acta Opt. Sin. 30(6), 1531–1536 (2010).
[Crossref]

Cheng, Z.

G. D. Sun, L. A. Qin, Z. Cheng, F. He, and Z. H. Hou, “Experimental research of atmospheric visibility measured by imaging lidar,” Infrared. Laser. Eng. 46(10), 1030003 (2017).
[Crossref]

Z. Cheng, F. F. Tan, X. Jing, F. He, L. A. Qin, and Z. H. Hou, “Retrieval of C2n profile from differential column image motion lidar using the regularization method,” Chin. Opt. Lett. 15(2), 020101 (2017).
[Crossref]

Coupland, J.

Dho, S. W.

Fang, H. T.

H. T. Fang and D. S. Huang, “Noise reduction in lidar signal based on discrete wavelet transform,” Opt. Commun. 233(1-3), 67–76 (2004).
[Crossref]

Fernald, F. G.

Foo, M. H.

Gebru, A.

M. Brydegaard, A. Gebru, and S. Svanberg, “Super resolution laser radar with blinking atmospheric particles-application to interacting flying insects,” Prog. Electromagnetics Res. 147, 141–151 (2014).
[Crossref]

Gong, W.

W. Gong, F. Y. Mao, and S. L. Song, “Signal simplification and cloud detection with an improved Douglas-Peucker algorithm for single-channel lidar,” Meteorol. Atmos. Phys. 113(1-2), 89–97 (2011).
[Crossref]

He, F.

G. D. Sun, L. A. Qin, Z. Cheng, F. He, and Z. H. Hou, “Experimental research of atmospheric visibility measured by imaging lidar,” Infrared. Laser. Eng. 46(10), 1030003 (2017).
[Crossref]

Z. Cheng, F. F. Tan, X. Jing, F. He, L. A. Qin, and Z. H. Hou, “Retrieval of C2n profile from differential column image motion lidar using the regularization method,” Chin. Opt. Lett. 15(2), 020101 (2017).
[Crossref]

He, Q. S.

Q. S. He, C. C. Li, J. Z. Ma, H. Q. Wang, X. L. Yan, J. Lu, Z. R. Liang, and G. M. Qi, “Lidar-observed enhancement of aerosols in the upper troposphere and lower stratosphere over the Tibetan Plateau induced by the Nabro volcano eruption,” Atmos. Chem. Phys. 14(21), 11687–11696 (2014).
[Crossref]

Hou, Z. H.

G. D. Sun, L. A. Qin, Z. Cheng, F. He, and Z. H. Hou, “Experimental research of atmospheric visibility measured by imaging lidar,” Infrared. Laser. Eng. 46(10), 1030003 (2017).
[Crossref]

Z. Cheng, F. F. Tan, X. Jing, F. He, L. A. Qin, and Z. H. Hou, “Retrieval of C2n profile from differential column image motion lidar using the regularization method,” Chin. Opt. Lett. 15(2), 020101 (2017).
[Crossref]

Hu, H.

Hu, S.

Huang, D. S.

H. T. Fang and D. S. Huang, “Noise reduction in lidar signal based on discrete wavelet transform,” Opt. Commun. 233(1-3), 67–76 (2004).
[Crossref]

Jing, X.

Kaplan, T. B.

Kawahara, T. D.

Klett, J. D.

Kong, H. J.

Li, C.

Li, C. C.

Q. S. He, C. C. Li, J. Z. Ma, H. Q. Wang, X. L. Yan, J. Lu, Z. R. Liang, and G. M. Qi, “Lidar-observed enhancement of aerosols in the upper troposphere and lower stratosphere over the Tibetan Plateau induced by the Nabro volcano eruption,” Atmos. Chem. Phys. 14(21), 11687–11696 (2014).
[Crossref]

Li, X.

Liang, Z. R.

Q. S. He, C. C. Li, J. Z. Ma, H. Q. Wang, X. L. Yan, J. Lu, Z. R. Liang, and G. M. Qi, “Lidar-observed enhancement of aerosols in the upper troposphere and lower stratosphere over the Tibetan Plateau induced by the Nabro volcano eruption,” Atmos. Chem. Phys. 14(21), 11687–11696 (2014).
[Crossref]

Liu, B.

T. Chen, D. C. Wu, B. Liu, K. F. Cao, Z. Z. Wang, G. Y. Bo, L. Yuan, and J. Zhou, “A new method for determining aerosol backscatter coefficient boundary value in the lower troposphere,” Acta Opt. Sin. 30(6), 1531–1536 (2010).
[Crossref]

Liu, H. T.

H. T. Liu, L. F. Chen, and L. Su, “Theoretical research of Fernald forward integration method for aerosol backscatter coefficient inversion of airborne atmosphere detecting lidar,” Wuli Xuebao 60(6), 064204 (2011).

Lu, J.

Q. S. He, C. C. Li, J. Z. Ma, H. Q. Wang, X. L. Yan, J. Lu, Z. R. Liang, and G. M. Qi, “Lidar-observed enhancement of aerosols in the upper troposphere and lower stratosphere over the Tibetan Plateau induced by the Nabro volcano eruption,” Atmos. Chem. Phys. 14(21), 11687–11696 (2014).
[Crossref]

Ma, J. Z.

Q. S. He, C. C. Li, J. Z. Ma, H. Q. Wang, X. L. Yan, J. Lu, Z. R. Liang, and G. M. Qi, “Lidar-observed enhancement of aerosols in the upper troposphere and lower stratosphere over the Tibetan Plateau induced by the Nabro volcano eruption,” Atmos. Chem. Phys. 14(21), 11687–11696 (2014).
[Crossref]

Mao, F. Y.

W. Gong, F. Y. Mao, and S. L. Song, “Signal simplification and cloud detection with an improved Douglas-Peucker algorithm for single-channel lidar,” Meteorol. Atmos. Phys. 113(1-2), 89–97 (2011).
[Crossref]

Mao, J. D.

J. D. Mao, “Noise reduction for lidar returns using local threshold wavelet analysis,” Opt. Quantum Electron. 43(1-5), 59–68 (2012).
[Crossref]

Mei, L.

L. Mei and M. Brydegaard, “Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system,” Opt. Express 23(24), A1613–A1628 (2015).
[Crossref] [PubMed]

L. Mei and M. Brydegaard, “Continuous-wave differential absorption lidar,” Laser Photonics Rev. 9(6), 629–636 (2015).
[Crossref]

Meki, K.

Nomura, A.

Okuda, M.

Parikh, N. C.

Park, Y. J.

Qi, G. M.

Q. S. He, C. C. Li, J. Z. Ma, H. Q. Wang, X. L. Yan, J. Lu, Z. R. Liang, and G. M. Qi, “Lidar-observed enhancement of aerosols in the upper troposphere and lower stratosphere over the Tibetan Plateau induced by the Nabro volcano eruption,” Atmos. Chem. Phys. 14(21), 11687–11696 (2014).
[Crossref]

Qian, X.

Qin, L. A.

Z. Cheng, F. F. Tan, X. Jing, F. He, L. A. Qin, and Z. H. Hou, “Retrieval of C2n profile from differential column image motion lidar using the regularization method,” Chin. Opt. Lett. 15(2), 020101 (2017).
[Crossref]

G. D. Sun, L. A. Qin, Z. Cheng, F. He, and Z. H. Hou, “Experimental research of atmospheric visibility measured by imaging lidar,” Infrared. Laser. Eng. 46(10), 1030003 (2017).
[Crossref]

Richards, J.

Saito, Y.

Sandford, A.

Sasano, Y.

Sharma, N. C. P.

Shimizu, H.

Song, S. L.

W. Gong, F. Y. Mao, and S. L. Song, “Signal simplification and cloud detection with an improved Douglas-Peucker algorithm for single-channel lidar,” Meteorol. Atmos. Phys. 113(1-2), 89–97 (2011).
[Crossref]

Su, L.

H. T. Liu, L. F. Chen, and L. Su, “Theoretical research of Fernald forward integration method for aerosol backscatter coefficient inversion of airborne atmosphere detecting lidar,” Wuli Xuebao 60(6), 064204 (2011).

Sun, G. D.

G. D. Sun, L. A. Qin, Z. Cheng, F. He, and Z. H. Hou, “Experimental research of atmospheric visibility measured by imaging lidar,” Infrared. Laser. Eng. 46(10), 1030003 (2017).
[Crossref]

Svanberg, S.

M. Brydegaard, A. Gebru, and S. Svanberg, “Super resolution laser radar with blinking atmospheric particles-application to interacting flying insects,” Prog. Electromagnetics Res. 147, 141–151 (2014).
[Crossref]

Takeuchi, N.

Tan, F. F.

Vande Hey, J.

Wang, H. Q.

Q. S. He, C. C. Li, J. Z. Ma, H. Q. Wang, X. L. Yan, J. Lu, Z. R. Liang, and G. M. Qi, “Lidar-observed enhancement of aerosols in the upper troposphere and lower stratosphere over the Tibetan Plateau induced by the Nabro volcano eruption,” Atmos. Chem. Phys. 14(21), 11687–11696 (2014).
[Crossref]

Wang, X.

Wang, Z. Z.

T. Chen, D. C. Wu, B. Liu, K. F. Cao, Z. Z. Wang, G. Y. Bo, L. Yuan, and J. Zhou, “A new method for determining aerosol backscatter coefficient boundary value in the lower troposphere,” Acta Opt. Sin. 30(6), 1531–1536 (2010).
[Crossref]

Wei, H.

Wu, D. C.

T. Chen, D. C. Wu, B. Liu, K. F. Cao, Z. Z. Wang, G. Y. Bo, L. Yuan, and J. Zhou, “A new method for determining aerosol backscatter coefficient boundary value in the lower troposphere,” Acta Opt. Sin. 30(6), 1531–1536 (2010).
[Crossref]

Wu, Y.

Xu, C.

Yamaguchi, K.

Yan, X. L.

Q. S. He, C. C. Li, J. Z. Ma, H. Q. Wang, X. L. Yan, J. Lu, Z. R. Liang, and G. M. Qi, “Lidar-observed enhancement of aerosols in the upper troposphere and lower stratosphere over the Tibetan Plateau induced by the Nabro volcano eruption,” Atmos. Chem. Phys. 14(21), 11687–11696 (2014).
[Crossref]

Yuan, L.

T. Chen, D. C. Wu, B. Liu, K. F. Cao, Z. Z. Wang, G. Y. Bo, L. Yuan, and J. Zhou, “A new method for determining aerosol backscatter coefficient boundary value in the lower troposphere,” Acta Opt. Sin. 30(6), 1531–1536 (2010).
[Crossref]

Zhou, J.

T. Chen, D. C. Wu, B. Liu, K. F. Cao, Z. Z. Wang, G. Y. Bo, L. Yuan, and J. Zhou, “A new method for determining aerosol backscatter coefficient boundary value in the lower troposphere,” Acta Opt. Sin. 30(6), 1531–1536 (2010).
[Crossref]

Zhu, W.

Acta Opt. Sin. (1)

T. Chen, D. C. Wu, B. Liu, K. F. Cao, Z. Z. Wang, G. Y. Bo, L. Yuan, and J. Zhou, “A new method for determining aerosol backscatter coefficient boundary value in the lower troposphere,” Acta Opt. Sin. 30(6), 1531–1536 (2010).
[Crossref]

Appl. Opt. (8)

Atmos. Chem. Phys. (1)

Q. S. He, C. C. Li, J. Z. Ma, H. Q. Wang, X. L. Yan, J. Lu, Z. R. Liang, and G. M. Qi, “Lidar-observed enhancement of aerosols in the upper troposphere and lower stratosphere over the Tibetan Plateau induced by the Nabro volcano eruption,” Atmos. Chem. Phys. 14(21), 11687–11696 (2014).
[Crossref]

Chin. Opt. Lett. (1)

Infrared. Laser. Eng. (1)

G. D. Sun, L. A. Qin, Z. Cheng, F. He, and Z. H. Hou, “Experimental research of atmospheric visibility measured by imaging lidar,” Infrared. Laser. Eng. 46(10), 1030003 (2017).
[Crossref]

Laser Photonics Rev. (1)

L. Mei and M. Brydegaard, “Continuous-wave differential absorption lidar,” Laser Photonics Rev. 9(6), 629–636 (2015).
[Crossref]

Meteorol. Atmos. Phys. (1)

W. Gong, F. Y. Mao, and S. L. Song, “Signal simplification and cloud detection with an improved Douglas-Peucker algorithm for single-channel lidar,” Meteorol. Atmos. Phys. 113(1-2), 89–97 (2011).
[Crossref]

Opt. Commun. (1)

H. T. Fang and D. S. Huang, “Noise reduction in lidar signal based on discrete wavelet transform,” Opt. Commun. 233(1-3), 67–76 (2004).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

J. D. Mao, “Noise reduction for lidar returns using local threshold wavelet analysis,” Opt. Quantum Electron. 43(1-5), 59–68 (2012).
[Crossref]

Prog. Electromagnetics Res. (1)

M. Brydegaard, A. Gebru, and S. Svanberg, “Super resolution laser radar with blinking atmospheric particles-application to interacting flying insects,” Prog. Electromagnetics Res. 147, 141–151 (2014).
[Crossref]

Wuli Xuebao (1)

H. T. Liu, L. F. Chen, and L. Su, “Theoretical research of Fernald forward integration method for aerosol backscatter coefficient inversion of airborne atmosphere detecting lidar,” Wuli Xuebao 60(6), 064204 (2011).

Other (3)

V. A. Kovalev and W. E. Eichinger, Elastic Lidar: Theory, Practice, and Analysis Methods (John Wiley & Sons, 2004), Chap.3.

Y. J. Wang, S. X. Hu, J. Zhou, and H. L. Hu, Atmospheric Parameters Measured by Lidar (Science, 2014), Chap.10.

Virtual Photonics Technology Initiative, “Mie Simulator v1.05,” http://www.virtualphotonics.org/software-mie-simulator .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Scheimpflug lidar system schematic.
Fig. 2
Fig. 2 Specific value between collecting light and backscattering light with scattering angle increase.
Fig. 3
Fig. 3 Schematic of two-layer wavelet decomposition.
Fig. 4
Fig. 4 (a)Pixel-distance relationship; (b) Resolution-distance relationship.
Fig. 5
Fig. 5 Ideal curves of lidar signal and aerosol extinction coefficient.
Fig. 6
Fig. 6 (a), (b), (c), and (d) are noised and de-noising signals under different noise levels with counts of 400, 800,1200, and 1600 in the row direction, respectively.
Fig. 7
Fig. 7 Extinction coefficient retrieval profiles with error bars and corresponding to RMSEs based on 30 successive cases under different noise levels (a) 400 counts; (b) 800 counts; (c) 1200 counts; (d) 1600 counts.
Fig. 8
Fig. 8 Comparison between model transmittance and retrieved transmittance.
Fig. 9
Fig. 9 Corrected signals corresponding to height profiles (a) measured at 21:00 on 18 July 2017; (b) measured at 22:00 on 18 July 2017.
Fig. 10
Fig. 10 Aerosol extinction coefficient determined by conventional lidar and Scheimpflug lidar (a) measured at 21:00 on 18 July 2017; (b) measured at 22:00 on 18 July 2017.
Fig. 11
Fig. 11 Time-range map of range-square-corrected backscattering signal (a) measured on 17 July 2017; (b) measured on 18 July 2017.
Fig. 12
Fig. 12 Time-range map of atmospheric extinction coefficients (a) measured on 17 July 2017; (b) measured on 18 July 2017.
Fig. 13
Fig. 13 Atmospheric transmittance measured by Scheimpflug lidar (a) measured on 17 July 2017; (b) measured on 18 July 2017.

Tables (3)

Tables Icon

Table 1 Two models of particles in Hefei

Tables Icon

Table 2 Instrument parameters

Tables Icon

Table 3 SNRs and the enhancement factor for four cases studied

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

E r = E 0 KA T z T r [ β a (z)+ β m (z)] r 2 dz.
E r = E 0 KA T z 2 [ β a (z)+ β m (z)] z 2 dz.
dz= z 2 D dθ,
dθ=2arctan( d 2f ),
T z =exp{ 0 z [α(z') ]dz'}.
th=δ 2log(n) .
f(x)= A 0 exp( (x A 1 ) 2 /(2 A 2 2 ))+ A 3 .
R(λ,z)= β(λ,z) β m (λ,z) =1+ β a (λ,z) β m (λ,z) .
P( z c ) z c 2 α( z c ) {τ[α( z c )]+ {τ[α( z c )]} 2 +...}= z 0 z c P(z) z 2 dz.
RE= |UV| V .
RMSE( z j )= ( 1 N i=1 N ( α in ( z ij ) α tr ( z ij )) 2 ) 1/2 .
β m (λ,z)=1.54× 10 3 exp( z 7 ) ( 532 λ ) 4 ,
α m (λ,z)= 8π 3 β m (λ,z).

Metrics