Abstract

Microwave I/Q down-converters are frequently used in image-reject super heterodyne receivers, zero intermediate frequency (zero-IF) receivers, and phase/frequency discriminators. However, due to the electronic bottleneck, conventional microwave I/Q mixers face a serious bandwidth limitation, I/Q imbalance, and even-order distortion. In this paper, photonic microwave fundamental and sub-harmonic I/Q down-converters are presented using a polarization division multiplexing dual-parallel Mach-Zehnder modulator (PDM-DPMZM). Thanks to all-optical manipulation, the proposed system features an ultra-wide operating band (7–40 GHz in the fundamental I/Q down-converter, and 10–40 GHz in the sub-harmonic I/Q down-converter) and an excellent I/Q balance (maximum 0.7 dB power imbalance and 1 degree phase imbalance). The conversion gain, noise figure (NF), even-order distortion, and spurious free dynamic range (SFDR) are also improved by LO power optimization and balanced detection. Using the proposed system, a high image rejection ratio is demonstrated for a super heterodyne receiver, and good EVMs over a wide RF power range is demonstrated for a zero-IF receiver. The proposed broadband photonic microwave fundamental and sub-harmonic I/Q down-converters may find potential applications in multi-band satellite, ultra-wideband radar and frequency-agile electronic warfare systems.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
All-optical, ultra-wideband microwave I/Q mixer and image-reject frequency down-converter

Yongsheng Gao, Aijun Wen, Wei Chen, and Xiaoyan Li
Opt. Lett. 42(6) 1105-1108 (2017)

Broadband lower-IF RF receiver based on microwave photonic mixer and Kramers-Kronig detection

Chunjing Yin, Jianqiang Li, Liang Shu, Zhenming Yu, Feifei Yin, Yue Zhou, Yitang Dai, and Kun Xu
Opt. Express 26(20) 26400-26410 (2018)

Bandpass sampling based digital coherent receiver with free-running local oscillator laser for phase-modulated radio-over-fiber links

Minghua Cao, Jianqiang Li, Yitang Dai, Feifei Yin, and Kun Xu
Opt. Express 22(22) 27007-27018 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. Sevenhans, B. Verstraeten, and S. Taraborrelli, “Trends in silicon radio large scale integration: zero IF receiver! Zero I&Q transmitter! Zero discrete passives!” IEEE Commun. Mag. 38(1), 142–147 (2000).
    [Crossref]
  2. S. Vitali, E. Franchi, and A. Gnudi, “RF I/Q downconverter with gain/phase calibration,” IEEE Trans. Circuits Syst., II Express Briefs 54(4), 367–371 (2007).
    [Crossref]
  3. B. Lu, W. Pan, X. Zou, Y. Pan, X. Liu, L. Yan, and B. Luo, “Wideband microwave Doppler frequency shift measurement and direction discrimination using photonic I/Q detection,” J. Lightwave Technol. 34(20), 4639–4645 (2016).
    [Crossref]
  4. H. Gheidi and A. Banai, “Phase-noise measurement of microwave oscillators using phase-shifterless delay-line discriminator,” IEEE Trans. Microw. Theory Tech. 58(2), 468–477 (2010).
    [Crossref]
  5. T. Yamaji, H. Tanimoto, and H. Kokatsu, “A I/Q Active Balanced Harmonic Mixer with IM2 Cancelers and a 45° Phase Shifter,” IEEE J. Solid-State Circuits 33(12), 2240–2246 (1998).
    [Crossref]
  6. C. Middleton, S. Meredith, R. Peach, and R. DeSalvo, “Photonic frequency conversion for wideband RF-to-IF down-conversion and digitization,” in Proc. IEEE Avionics, Fiber-Opt. Photon. Technol. Conf. (AVFOP), pp. 115–116 (2011).
    [Crossref]
  7. E. H. W. Chan and R. A. Minasian, “Microwave photonic downconversion using phase modulators in a sagnac loop interferometer,” IEEE J. Sel. Top Quantum Electron 19(6), 211–218 (2013).
    [Crossref]
  8. Y. Gao, A. Wen, W. Zhang, Y. Wang, and H. Zhang, “Photonic microwave and mm-wave mixer for multichannel fiber transmission,” J. Lightwave Technol. 35(9), 1566–1574 (2017).
    [Crossref]
  9. X. Yi, T. X. H. Huang, and R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Tech. 58(11), 3088–3093 (2010).
    [Crossref]
  10. J. Capmany, D. Domenech, and P. Muñoz, “Silicon graphene waveguide tunable broadband microwave photonics phase shifter,” Opt. Express 22(7), 8094–8100 (2014).
    [Crossref] [PubMed]
  11. W. Liu and J. Yao, “Ultra-wideband microwave photonic phase shifter with a 360° tunable phase shift based on an erbium-ytterbium co-doped linearly chirped FBG,” Opt. Lett. 39(4), 922–924 (2014).
    [Crossref] [PubMed]
  12. V. R. Pagán and T. E. Murphy, “Electro-optic millimeter-wave harmonic downconversion and vector demodulation using cascaded phase modulation and optical filtering,” Opt. Lett. 40(11), 2481–2484 (2015).
    [Crossref] [PubMed]
  13. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  14. R. A. Minasian, E. H. Chan, and X. Yi, “Microwave photonic signal processing,” Opt. Express 21(19), 22918–22936 (2013).
    [Crossref] [PubMed]
  15. J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol. 31(4), 571–586 (2013).
    [Crossref]
  16. X. Zou, B. Lu, W. Pan, L. Yan, A. Stöhr, and J. Yao, “Photonics for microwave measurements,” Laser Photonics Rev. 10(5), 711–734 (2016).
    [Crossref]
  17. T. Jiang, S. Yu, R. Wu, D. Wang, and W. Gu, “Photonic downconversion with tunable wideband phase shift,” Opt. Lett. 41(11), 2640–2643 (2016).
    [Crossref] [PubMed]
  18. T. Jiang, R. Wu, S. Yu, D. Wang, and W. Gu, “Microwave photonic phase-tunable mixer,” Opt. Express 25(4), 4519–4527 (2017).
    [Crossref] [PubMed]
  19. F. Zhang, D. Zhu, and S. Pan, “Photonic-assisted wideband phase noise measurement of microwave signal sources,” Electron. Lett. 51(16), 1272–1274 (2015).
    [Crossref]
  20. S. Pan and J. Yao, “Photonics-based broadband microwave Measurement,” J. Lightwave Technol. 35(16), 3498–3513 (2017).
    [Crossref]
  21. R. Sambaraju, J. Palaci, R. Alemany, V. Polo, and J. L. Corral, “Photonic vector demodulation of 2.5 Gbit/s QAM modulated wireless signals,” in 2008 International Topical Meeting on Microwave Photonics, IEEE, pp. 117–120 (2008).
    [Crossref]
  22. H. Emami and N. Sarkhosh, “Reconfigurable microwave photonic in-phase and quadrature detector for frequency agile radar,” J. Opt. Soc. Am. A 31(6), 1320–1325 (2014).
    [Crossref] [PubMed]
  23. Z. Tang and S. Pan, “Image-reject mixer with large suppression of mixing spurs based on a photonic microwave phase shifter,” J. Lightwave Technol. 34(20), 4729–4735 (2016).
    [Crossref]
  24. J. Zhang, E. H. W. Chan, X. Wang, X. Feng, and B. Guan, “High conversion efficiency photonic microwave mixer with image rejection capability,” IEEE Photonics J. 8(5), 3900411 (2016).
  25. Z. Tang and S. Pan, “A reconfigurable photonic microwave mixer using a 90-degree optical hybrid,” IEEE Trans. Microw. Theory Tech. 64(9), 3017–3025 (2016).
    [Crossref]
  26. J. Li, J. Xiao, X. Song, Y. Zheng, C. Yin, Q. Lv, Y. Fan, F. Yin, Y. Dai, and K. Xu, “Full-band direct-conversion receiver with enhanced port isolation and I/Q phase balance using microwave photonic I/Q mixer,” Chin. Opt. Lett. 15(1), 010014 (2017).
  27. Z. Tang and S. Pan, “Reconfigurable microwave photonic mixer with minimized path separation and large suppression of mixing spurs,” Opt. Lett. 42(1), 33–36 (2017).
    [Crossref] [PubMed]
  28. P. Li, W. Pan, X. Zou, B. Lu, L. Yan, and B. Luo, “Image-free microwave photonic down-conversion approach for fiber-optic antenna remoting,” IEEE J. Quantum Electron. 53(4), 9100208 (2017).
    [Crossref]
  29. J. T. Gallo and J. K. Godshall, “Comparison of series and parallel optical modulators for microwave down-conversion,” IEEE Photonics Technol. Lett. 10(11), 1623–1625 (1998).
    [Crossref]
  30. Y. Gao, A. Wen, Z. Tu, W. Zhang, and L. Lin, “Simultaneously photonic frequency downconversion, multichannel phase shifting, and IQ demodulation for wideband microwave signals,” Opt. Lett. 41(19), 4484–4487 (2016).
    [Crossref] [PubMed]
  31. Y. Gao, A. Wen, W. Chen, and X. Li, “All-optical, ultra-wideband microwave I/Q mixer and image-reject frequency down-converter,” Opt. Lett. 42(6), 1105–1108 (2017).
    [Crossref] [PubMed]
  32. Y. Gao, A. Wen, W. Zhang, W. Jiang, J. Ge, and Y. Fan, “Ultra-Wideband Photonic Microwave I/Q Mixer for Zero-IF Receiver,” IEEE Trans. Microw. Theory Tech. 65(11), 4513–4525 (2017).
    [Crossref]
  33. C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of optical carrier-to-sideband ratio for improving transmission performance in fiber–radio links,” IEEE Trans. Microw. Theory Tech. 54(5), 2181–2187 (2006).
    [Crossref]
  34. J. Zhang, A. N. Hone, and T. E. Darcie, “Phase-modulated microwave-photonic link with optical-phase-locked-loop enhanced interferometric phase detection,” J. Lightwave Technol. 26(15), 2549–2556 (2008).
    [Crossref]
  35. Z. Cao, H. P. A. van den Boom, R. Lu, Q. Wang, E. Tangdiongga, and A. M. J. Koonen, “Angle-of-arrival measurement of a microwave signal using parallel optical delay detector,” IEEE Photonics Technol. Lett. 25(19), 1932–1935 (2013).
    [Crossref]
  36. D. Onori, F. Laghezza, F. Scotti, A. Bogoni, P. Ghelfi, M. Bartocci, A. Zaccaron, A. Tafuto, and A. Albertoni, “A DC offset-free ultra-wideband direct conversion receiver based on photonics,” in Radar Conference, IEEE, pp. 1521–1524 (2017).
  37. A. A. Abidi, “Direct-conversion radio transceivers for digital communications,” IEEE J. Solid-State Circuits 30(12), 1399–1410 (1995).
    [Crossref]
  38. Y. Y. Labs, “Modulator bias controllers,” http://www.yylabs.com/products.php
  39. PlugTech, “Automatic bias control,” http://www.plugtech.hk/main/
  40. M. Martinelli, P. Martelli, and S. M. Pietralunga, “Polarization stabilization in optical communications systems,” J. Lightwave Technol. 24(11), 4172–4183 (2006).
    [Crossref]

2017 (8)

Y. Gao, A. Wen, W. Zhang, Y. Wang, and H. Zhang, “Photonic microwave and mm-wave mixer for multichannel fiber transmission,” J. Lightwave Technol. 35(9), 1566–1574 (2017).
[Crossref]

T. Jiang, R. Wu, S. Yu, D. Wang, and W. Gu, “Microwave photonic phase-tunable mixer,” Opt. Express 25(4), 4519–4527 (2017).
[Crossref] [PubMed]

S. Pan and J. Yao, “Photonics-based broadband microwave Measurement,” J. Lightwave Technol. 35(16), 3498–3513 (2017).
[Crossref]

J. Li, J. Xiao, X. Song, Y. Zheng, C. Yin, Q. Lv, Y. Fan, F. Yin, Y. Dai, and K. Xu, “Full-band direct-conversion receiver with enhanced port isolation and I/Q phase balance using microwave photonic I/Q mixer,” Chin. Opt. Lett. 15(1), 010014 (2017).

Z. Tang and S. Pan, “Reconfigurable microwave photonic mixer with minimized path separation and large suppression of mixing spurs,” Opt. Lett. 42(1), 33–36 (2017).
[Crossref] [PubMed]

P. Li, W. Pan, X. Zou, B. Lu, L. Yan, and B. Luo, “Image-free microwave photonic down-conversion approach for fiber-optic antenna remoting,” IEEE J. Quantum Electron. 53(4), 9100208 (2017).
[Crossref]

Y. Gao, A. Wen, W. Chen, and X. Li, “All-optical, ultra-wideband microwave I/Q mixer and image-reject frequency down-converter,” Opt. Lett. 42(6), 1105–1108 (2017).
[Crossref] [PubMed]

Y. Gao, A. Wen, W. Zhang, W. Jiang, J. Ge, and Y. Fan, “Ultra-Wideband Photonic Microwave I/Q Mixer for Zero-IF Receiver,” IEEE Trans. Microw. Theory Tech. 65(11), 4513–4525 (2017).
[Crossref]

2016 (7)

2015 (2)

F. Zhang, D. Zhu, and S. Pan, “Photonic-assisted wideband phase noise measurement of microwave signal sources,” Electron. Lett. 51(16), 1272–1274 (2015).
[Crossref]

V. R. Pagán and T. E. Murphy, “Electro-optic millimeter-wave harmonic downconversion and vector demodulation using cascaded phase modulation and optical filtering,” Opt. Lett. 40(11), 2481–2484 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (4)

E. H. W. Chan and R. A. Minasian, “Microwave photonic downconversion using phase modulators in a sagnac loop interferometer,” IEEE J. Sel. Top Quantum Electron 19(6), 211–218 (2013).
[Crossref]

Z. Cao, H. P. A. van den Boom, R. Lu, Q. Wang, E. Tangdiongga, and A. M. J. Koonen, “Angle-of-arrival measurement of a microwave signal using parallel optical delay detector,” IEEE Photonics Technol. Lett. 25(19), 1932–1935 (2013).
[Crossref]

R. A. Minasian, E. H. Chan, and X. Yi, “Microwave photonic signal processing,” Opt. Express 21(19), 22918–22936 (2013).
[Crossref] [PubMed]

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol. 31(4), 571–586 (2013).
[Crossref]

2010 (2)

X. Yi, T. X. H. Huang, and R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Tech. 58(11), 3088–3093 (2010).
[Crossref]

H. Gheidi and A. Banai, “Phase-noise measurement of microwave oscillators using phase-shifterless delay-line discriminator,” IEEE Trans. Microw. Theory Tech. 58(2), 468–477 (2010).
[Crossref]

2009 (1)

2008 (1)

2007 (1)

S. Vitali, E. Franchi, and A. Gnudi, “RF I/Q downconverter with gain/phase calibration,” IEEE Trans. Circuits Syst., II Express Briefs 54(4), 367–371 (2007).
[Crossref]

2006 (2)

M. Martinelli, P. Martelli, and S. M. Pietralunga, “Polarization stabilization in optical communications systems,” J. Lightwave Technol. 24(11), 4172–4183 (2006).
[Crossref]

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of optical carrier-to-sideband ratio for improving transmission performance in fiber–radio links,” IEEE Trans. Microw. Theory Tech. 54(5), 2181–2187 (2006).
[Crossref]

2000 (1)

J. Sevenhans, B. Verstraeten, and S. Taraborrelli, “Trends in silicon radio large scale integration: zero IF receiver! Zero I&Q transmitter! Zero discrete passives!” IEEE Commun. Mag. 38(1), 142–147 (2000).
[Crossref]

1998 (2)

T. Yamaji, H. Tanimoto, and H. Kokatsu, “A I/Q Active Balanced Harmonic Mixer with IM2 Cancelers and a 45° Phase Shifter,” IEEE J. Solid-State Circuits 33(12), 2240–2246 (1998).
[Crossref]

J. T. Gallo and J. K. Godshall, “Comparison of series and parallel optical modulators for microwave down-conversion,” IEEE Photonics Technol. Lett. 10(11), 1623–1625 (1998).
[Crossref]

1995 (1)

A. A. Abidi, “Direct-conversion radio transceivers for digital communications,” IEEE J. Solid-State Circuits 30(12), 1399–1410 (1995).
[Crossref]

Abidi, A. A.

A. A. Abidi, “Direct-conversion radio transceivers for digital communications,” IEEE J. Solid-State Circuits 30(12), 1399–1410 (1995).
[Crossref]

Albertoni, A.

D. Onori, F. Laghezza, F. Scotti, A. Bogoni, P. Ghelfi, M. Bartocci, A. Zaccaron, A. Tafuto, and A. Albertoni, “A DC offset-free ultra-wideband direct conversion receiver based on photonics,” in Radar Conference, IEEE, pp. 1521–1524 (2017).

Alemany, R.

R. Sambaraju, J. Palaci, R. Alemany, V. Polo, and J. L. Corral, “Photonic vector demodulation of 2.5 Gbit/s QAM modulated wireless signals,” in 2008 International Topical Meeting on Microwave Photonics, IEEE, pp. 117–120 (2008).
[Crossref]

Attygalle, M.

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of optical carrier-to-sideband ratio for improving transmission performance in fiber–radio links,” IEEE Trans. Microw. Theory Tech. 54(5), 2181–2187 (2006).
[Crossref]

Banai, A.

H. Gheidi and A. Banai, “Phase-noise measurement of microwave oscillators using phase-shifterless delay-line discriminator,” IEEE Trans. Microw. Theory Tech. 58(2), 468–477 (2010).
[Crossref]

Bartocci, M.

D. Onori, F. Laghezza, F. Scotti, A. Bogoni, P. Ghelfi, M. Bartocci, A. Zaccaron, A. Tafuto, and A. Albertoni, “A DC offset-free ultra-wideband direct conversion receiver based on photonics,” in Radar Conference, IEEE, pp. 1521–1524 (2017).

Bogoni, A.

D. Onori, F. Laghezza, F. Scotti, A. Bogoni, P. Ghelfi, M. Bartocci, A. Zaccaron, A. Tafuto, and A. Albertoni, “A DC offset-free ultra-wideband direct conversion receiver based on photonics,” in Radar Conference, IEEE, pp. 1521–1524 (2017).

Cao, Z.

Z. Cao, H. P. A. van den Boom, R. Lu, Q. Wang, E. Tangdiongga, and A. M. J. Koonen, “Angle-of-arrival measurement of a microwave signal using parallel optical delay detector,” IEEE Photonics Technol. Lett. 25(19), 1932–1935 (2013).
[Crossref]

Capmany, J.

Chan, E. H.

Chan, E. H. W.

J. Zhang, E. H. W. Chan, X. Wang, X. Feng, and B. Guan, “High conversion efficiency photonic microwave mixer with image rejection capability,” IEEE Photonics J. 8(5), 3900411 (2016).

E. H. W. Chan and R. A. Minasian, “Microwave photonic downconversion using phase modulators in a sagnac loop interferometer,” IEEE J. Sel. Top Quantum Electron 19(6), 211–218 (2013).
[Crossref]

Chen, W.

Corral, J. L.

R. Sambaraju, J. Palaci, R. Alemany, V. Polo, and J. L. Corral, “Photonic vector demodulation of 2.5 Gbit/s QAM modulated wireless signals,” in 2008 International Topical Meeting on Microwave Photonics, IEEE, pp. 117–120 (2008).
[Crossref]

Dai, Y.

Darcie, T. E.

Domenech, D.

Emami, H.

Fan, Y.

J. Li, J. Xiao, X. Song, Y. Zheng, C. Yin, Q. Lv, Y. Fan, F. Yin, Y. Dai, and K. Xu, “Full-band direct-conversion receiver with enhanced port isolation and I/Q phase balance using microwave photonic I/Q mixer,” Chin. Opt. Lett. 15(1), 010014 (2017).

Y. Gao, A. Wen, W. Zhang, W. Jiang, J. Ge, and Y. Fan, “Ultra-Wideband Photonic Microwave I/Q Mixer for Zero-IF Receiver,” IEEE Trans. Microw. Theory Tech. 65(11), 4513–4525 (2017).
[Crossref]

Feng, X.

J. Zhang, E. H. W. Chan, X. Wang, X. Feng, and B. Guan, “High conversion efficiency photonic microwave mixer with image rejection capability,” IEEE Photonics J. 8(5), 3900411 (2016).

Franchi, E.

S. Vitali, E. Franchi, and A. Gnudi, “RF I/Q downconverter with gain/phase calibration,” IEEE Trans. Circuits Syst., II Express Briefs 54(4), 367–371 (2007).
[Crossref]

Gallo, J. T.

J. T. Gallo and J. K. Godshall, “Comparison of series and parallel optical modulators for microwave down-conversion,” IEEE Photonics Technol. Lett. 10(11), 1623–1625 (1998).
[Crossref]

Gao, Y.

Gasulla, I.

Ge, J.

Y. Gao, A. Wen, W. Zhang, W. Jiang, J. Ge, and Y. Fan, “Ultra-Wideband Photonic Microwave I/Q Mixer for Zero-IF Receiver,” IEEE Trans. Microw. Theory Tech. 65(11), 4513–4525 (2017).
[Crossref]

Gheidi, H.

H. Gheidi and A. Banai, “Phase-noise measurement of microwave oscillators using phase-shifterless delay-line discriminator,” IEEE Trans. Microw. Theory Tech. 58(2), 468–477 (2010).
[Crossref]

Ghelfi, P.

D. Onori, F. Laghezza, F. Scotti, A. Bogoni, P. Ghelfi, M. Bartocci, A. Zaccaron, A. Tafuto, and A. Albertoni, “A DC offset-free ultra-wideband direct conversion receiver based on photonics,” in Radar Conference, IEEE, pp. 1521–1524 (2017).

Gnudi, A.

S. Vitali, E. Franchi, and A. Gnudi, “RF I/Q downconverter with gain/phase calibration,” IEEE Trans. Circuits Syst., II Express Briefs 54(4), 367–371 (2007).
[Crossref]

Godshall, J. K.

J. T. Gallo and J. K. Godshall, “Comparison of series and parallel optical modulators for microwave down-conversion,” IEEE Photonics Technol. Lett. 10(11), 1623–1625 (1998).
[Crossref]

Gu, W.

Guan, B.

J. Zhang, E. H. W. Chan, X. Wang, X. Feng, and B. Guan, “High conversion efficiency photonic microwave mixer with image rejection capability,” IEEE Photonics J. 8(5), 3900411 (2016).

Hone, A. N.

Huang, T. X. H.

X. Yi, T. X. H. Huang, and R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Tech. 58(11), 3088–3093 (2010).
[Crossref]

Jiang, T.

Jiang, W.

Y. Gao, A. Wen, W. Zhang, W. Jiang, J. Ge, and Y. Fan, “Ultra-Wideband Photonic Microwave I/Q Mixer for Zero-IF Receiver,” IEEE Trans. Microw. Theory Tech. 65(11), 4513–4525 (2017).
[Crossref]

Kokatsu, H.

T. Yamaji, H. Tanimoto, and H. Kokatsu, “A I/Q Active Balanced Harmonic Mixer with IM2 Cancelers and a 45° Phase Shifter,” IEEE J. Solid-State Circuits 33(12), 2240–2246 (1998).
[Crossref]

Koonen, A. M. J.

Z. Cao, H. P. A. van den Boom, R. Lu, Q. Wang, E. Tangdiongga, and A. M. J. Koonen, “Angle-of-arrival measurement of a microwave signal using parallel optical delay detector,” IEEE Photonics Technol. Lett. 25(19), 1932–1935 (2013).
[Crossref]

Laghezza, F.

D. Onori, F. Laghezza, F. Scotti, A. Bogoni, P. Ghelfi, M. Bartocci, A. Zaccaron, A. Tafuto, and A. Albertoni, “A DC offset-free ultra-wideband direct conversion receiver based on photonics,” in Radar Conference, IEEE, pp. 1521–1524 (2017).

Li, J.

Li, P.

P. Li, W. Pan, X. Zou, B. Lu, L. Yan, and B. Luo, “Image-free microwave photonic down-conversion approach for fiber-optic antenna remoting,” IEEE J. Quantum Electron. 53(4), 9100208 (2017).
[Crossref]

Li, X.

Lim, C.

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of optical carrier-to-sideband ratio for improving transmission performance in fiber–radio links,” IEEE Trans. Microw. Theory Tech. 54(5), 2181–2187 (2006).
[Crossref]

Lin, L.

Liu, W.

Liu, X.

Lloret, J.

Lu, B.

P. Li, W. Pan, X. Zou, B. Lu, L. Yan, and B. Luo, “Image-free microwave photonic down-conversion approach for fiber-optic antenna remoting,” IEEE J. Quantum Electron. 53(4), 9100208 (2017).
[Crossref]

X. Zou, B. Lu, W. Pan, L. Yan, A. Stöhr, and J. Yao, “Photonics for microwave measurements,” Laser Photonics Rev. 10(5), 711–734 (2016).
[Crossref]

B. Lu, W. Pan, X. Zou, Y. Pan, X. Liu, L. Yan, and B. Luo, “Wideband microwave Doppler frequency shift measurement and direction discrimination using photonic I/Q detection,” J. Lightwave Technol. 34(20), 4639–4645 (2016).
[Crossref]

Lu, R.

Z. Cao, H. P. A. van den Boom, R. Lu, Q. Wang, E. Tangdiongga, and A. M. J. Koonen, “Angle-of-arrival measurement of a microwave signal using parallel optical delay detector,” IEEE Photonics Technol. Lett. 25(19), 1932–1935 (2013).
[Crossref]

Luo, B.

P. Li, W. Pan, X. Zou, B. Lu, L. Yan, and B. Luo, “Image-free microwave photonic down-conversion approach for fiber-optic antenna remoting,” IEEE J. Quantum Electron. 53(4), 9100208 (2017).
[Crossref]

B. Lu, W. Pan, X. Zou, Y. Pan, X. Liu, L. Yan, and B. Luo, “Wideband microwave Doppler frequency shift measurement and direction discrimination using photonic I/Q detection,” J. Lightwave Technol. 34(20), 4639–4645 (2016).
[Crossref]

Lv, Q.

Martelli, P.

Martinelli, M.

Minasian, R. A.

R. A. Minasian, E. H. Chan, and X. Yi, “Microwave photonic signal processing,” Opt. Express 21(19), 22918–22936 (2013).
[Crossref] [PubMed]

E. H. W. Chan and R. A. Minasian, “Microwave photonic downconversion using phase modulators in a sagnac loop interferometer,” IEEE J. Sel. Top Quantum Electron 19(6), 211–218 (2013).
[Crossref]

X. Yi, T. X. H. Huang, and R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Tech. 58(11), 3088–3093 (2010).
[Crossref]

Mora, J.

Muñoz, P.

Murphy, T. E.

Nirmalathas, A.

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of optical carrier-to-sideband ratio for improving transmission performance in fiber–radio links,” IEEE Trans. Microw. Theory Tech. 54(5), 2181–2187 (2006).
[Crossref]

Novak, D.

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of optical carrier-to-sideband ratio for improving transmission performance in fiber–radio links,” IEEE Trans. Microw. Theory Tech. 54(5), 2181–2187 (2006).
[Crossref]

Onori, D.

D. Onori, F. Laghezza, F. Scotti, A. Bogoni, P. Ghelfi, M. Bartocci, A. Zaccaron, A. Tafuto, and A. Albertoni, “A DC offset-free ultra-wideband direct conversion receiver based on photonics,” in Radar Conference, IEEE, pp. 1521–1524 (2017).

Pagán, V. R.

Palaci, J.

R. Sambaraju, J. Palaci, R. Alemany, V. Polo, and J. L. Corral, “Photonic vector demodulation of 2.5 Gbit/s QAM modulated wireless signals,” in 2008 International Topical Meeting on Microwave Photonics, IEEE, pp. 117–120 (2008).
[Crossref]

Pan, S.

Pan, W.

P. Li, W. Pan, X. Zou, B. Lu, L. Yan, and B. Luo, “Image-free microwave photonic down-conversion approach for fiber-optic antenna remoting,” IEEE J. Quantum Electron. 53(4), 9100208 (2017).
[Crossref]

X. Zou, B. Lu, W. Pan, L. Yan, A. Stöhr, and J. Yao, “Photonics for microwave measurements,” Laser Photonics Rev. 10(5), 711–734 (2016).
[Crossref]

B. Lu, W. Pan, X. Zou, Y. Pan, X. Liu, L. Yan, and B. Luo, “Wideband microwave Doppler frequency shift measurement and direction discrimination using photonic I/Q detection,” J. Lightwave Technol. 34(20), 4639–4645 (2016).
[Crossref]

Pan, Y.

Pietralunga, S. M.

Polo, V.

R. Sambaraju, J. Palaci, R. Alemany, V. Polo, and J. L. Corral, “Photonic vector demodulation of 2.5 Gbit/s QAM modulated wireless signals,” in 2008 International Topical Meeting on Microwave Photonics, IEEE, pp. 117–120 (2008).
[Crossref]

Sales, S.

Sambaraju, R.

R. Sambaraju, J. Palaci, R. Alemany, V. Polo, and J. L. Corral, “Photonic vector demodulation of 2.5 Gbit/s QAM modulated wireless signals,” in 2008 International Topical Meeting on Microwave Photonics, IEEE, pp. 117–120 (2008).
[Crossref]

Sancho, J.

Sarkhosh, N.

Scotti, F.

D. Onori, F. Laghezza, F. Scotti, A. Bogoni, P. Ghelfi, M. Bartocci, A. Zaccaron, A. Tafuto, and A. Albertoni, “A DC offset-free ultra-wideband direct conversion receiver based on photonics,” in Radar Conference, IEEE, pp. 1521–1524 (2017).

Sevenhans, J.

J. Sevenhans, B. Verstraeten, and S. Taraborrelli, “Trends in silicon radio large scale integration: zero IF receiver! Zero I&Q transmitter! Zero discrete passives!” IEEE Commun. Mag. 38(1), 142–147 (2000).
[Crossref]

Song, X.

Stöhr, A.

X. Zou, B. Lu, W. Pan, L. Yan, A. Stöhr, and J. Yao, “Photonics for microwave measurements,” Laser Photonics Rev. 10(5), 711–734 (2016).
[Crossref]

Tafuto, A.

D. Onori, F. Laghezza, F. Scotti, A. Bogoni, P. Ghelfi, M. Bartocci, A. Zaccaron, A. Tafuto, and A. Albertoni, “A DC offset-free ultra-wideband direct conversion receiver based on photonics,” in Radar Conference, IEEE, pp. 1521–1524 (2017).

Tang, Z.

Tangdiongga, E.

Z. Cao, H. P. A. van den Boom, R. Lu, Q. Wang, E. Tangdiongga, and A. M. J. Koonen, “Angle-of-arrival measurement of a microwave signal using parallel optical delay detector,” IEEE Photonics Technol. Lett. 25(19), 1932–1935 (2013).
[Crossref]

Tanimoto, H.

T. Yamaji, H. Tanimoto, and H. Kokatsu, “A I/Q Active Balanced Harmonic Mixer with IM2 Cancelers and a 45° Phase Shifter,” IEEE J. Solid-State Circuits 33(12), 2240–2246 (1998).
[Crossref]

Taraborrelli, S.

J. Sevenhans, B. Verstraeten, and S. Taraborrelli, “Trends in silicon radio large scale integration: zero IF receiver! Zero I&Q transmitter! Zero discrete passives!” IEEE Commun. Mag. 38(1), 142–147 (2000).
[Crossref]

Tu, Z.

van den Boom, H. P. A.

Z. Cao, H. P. A. van den Boom, R. Lu, Q. Wang, E. Tangdiongga, and A. M. J. Koonen, “Angle-of-arrival measurement of a microwave signal using parallel optical delay detector,” IEEE Photonics Technol. Lett. 25(19), 1932–1935 (2013).
[Crossref]

Verstraeten, B.

J. Sevenhans, B. Verstraeten, and S. Taraborrelli, “Trends in silicon radio large scale integration: zero IF receiver! Zero I&Q transmitter! Zero discrete passives!” IEEE Commun. Mag. 38(1), 142–147 (2000).
[Crossref]

Vitali, S.

S. Vitali, E. Franchi, and A. Gnudi, “RF I/Q downconverter with gain/phase calibration,” IEEE Trans. Circuits Syst., II Express Briefs 54(4), 367–371 (2007).
[Crossref]

Wang, D.

Wang, Q.

Z. Cao, H. P. A. van den Boom, R. Lu, Q. Wang, E. Tangdiongga, and A. M. J. Koonen, “Angle-of-arrival measurement of a microwave signal using parallel optical delay detector,” IEEE Photonics Technol. Lett. 25(19), 1932–1935 (2013).
[Crossref]

Wang, X.

J. Zhang, E. H. W. Chan, X. Wang, X. Feng, and B. Guan, “High conversion efficiency photonic microwave mixer with image rejection capability,” IEEE Photonics J. 8(5), 3900411 (2016).

Wang, Y.

Waterhouse, R.

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of optical carrier-to-sideband ratio for improving transmission performance in fiber–radio links,” IEEE Trans. Microw. Theory Tech. 54(5), 2181–2187 (2006).
[Crossref]

Wen, A.

Wu, R.

Xiao, J.

Xu, K.

Yamaji, T.

T. Yamaji, H. Tanimoto, and H. Kokatsu, “A I/Q Active Balanced Harmonic Mixer with IM2 Cancelers and a 45° Phase Shifter,” IEEE J. Solid-State Circuits 33(12), 2240–2246 (1998).
[Crossref]

Yan, L.

P. Li, W. Pan, X. Zou, B. Lu, L. Yan, and B. Luo, “Image-free microwave photonic down-conversion approach for fiber-optic antenna remoting,” IEEE J. Quantum Electron. 53(4), 9100208 (2017).
[Crossref]

X. Zou, B. Lu, W. Pan, L. Yan, A. Stöhr, and J. Yao, “Photonics for microwave measurements,” Laser Photonics Rev. 10(5), 711–734 (2016).
[Crossref]

B. Lu, W. Pan, X. Zou, Y. Pan, X. Liu, L. Yan, and B. Luo, “Wideband microwave Doppler frequency shift measurement and direction discrimination using photonic I/Q detection,” J. Lightwave Technol. 34(20), 4639–4645 (2016).
[Crossref]

Yao, J.

Yi, X.

R. A. Minasian, E. H. Chan, and X. Yi, “Microwave photonic signal processing,” Opt. Express 21(19), 22918–22936 (2013).
[Crossref] [PubMed]

X. Yi, T. X. H. Huang, and R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Tech. 58(11), 3088–3093 (2010).
[Crossref]

Yin, C.

Yin, F.

Yu, S.

Zaccaron, A.

D. Onori, F. Laghezza, F. Scotti, A. Bogoni, P. Ghelfi, M. Bartocci, A. Zaccaron, A. Tafuto, and A. Albertoni, “A DC offset-free ultra-wideband direct conversion receiver based on photonics,” in Radar Conference, IEEE, pp. 1521–1524 (2017).

Zhang, F.

F. Zhang, D. Zhu, and S. Pan, “Photonic-assisted wideband phase noise measurement of microwave signal sources,” Electron. Lett. 51(16), 1272–1274 (2015).
[Crossref]

Zhang, H.

Zhang, J.

J. Zhang, E. H. W. Chan, X. Wang, X. Feng, and B. Guan, “High conversion efficiency photonic microwave mixer with image rejection capability,” IEEE Photonics J. 8(5), 3900411 (2016).

J. Zhang, A. N. Hone, and T. E. Darcie, “Phase-modulated microwave-photonic link with optical-phase-locked-loop enhanced interferometric phase detection,” J. Lightwave Technol. 26(15), 2549–2556 (2008).
[Crossref]

Zhang, W.

Zheng, Y.

Zhu, D.

F. Zhang, D. Zhu, and S. Pan, “Photonic-assisted wideband phase noise measurement of microwave signal sources,” Electron. Lett. 51(16), 1272–1274 (2015).
[Crossref]

Zou, X.

P. Li, W. Pan, X. Zou, B. Lu, L. Yan, and B. Luo, “Image-free microwave photonic down-conversion approach for fiber-optic antenna remoting,” IEEE J. Quantum Electron. 53(4), 9100208 (2017).
[Crossref]

X. Zou, B. Lu, W. Pan, L. Yan, A. Stöhr, and J. Yao, “Photonics for microwave measurements,” Laser Photonics Rev. 10(5), 711–734 (2016).
[Crossref]

B. Lu, W. Pan, X. Zou, Y. Pan, X. Liu, L. Yan, and B. Luo, “Wideband microwave Doppler frequency shift measurement and direction discrimination using photonic I/Q detection,” J. Lightwave Technol. 34(20), 4639–4645 (2016).
[Crossref]

Chin. Opt. Lett. (1)

Electron. Lett. (1)

F. Zhang, D. Zhu, and S. Pan, “Photonic-assisted wideband phase noise measurement of microwave signal sources,” Electron. Lett. 51(16), 1272–1274 (2015).
[Crossref]

IEEE Commun. Mag. (1)

J. Sevenhans, B. Verstraeten, and S. Taraborrelli, “Trends in silicon radio large scale integration: zero IF receiver! Zero I&Q transmitter! Zero discrete passives!” IEEE Commun. Mag. 38(1), 142–147 (2000).
[Crossref]

IEEE J. Quantum Electron. (1)

P. Li, W. Pan, X. Zou, B. Lu, L. Yan, and B. Luo, “Image-free microwave photonic down-conversion approach for fiber-optic antenna remoting,” IEEE J. Quantum Electron. 53(4), 9100208 (2017).
[Crossref]

IEEE J. Sel. Top Quantum Electron (1)

E. H. W. Chan and R. A. Minasian, “Microwave photonic downconversion using phase modulators in a sagnac loop interferometer,” IEEE J. Sel. Top Quantum Electron 19(6), 211–218 (2013).
[Crossref]

IEEE J. Solid-State Circuits (2)

T. Yamaji, H. Tanimoto, and H. Kokatsu, “A I/Q Active Balanced Harmonic Mixer with IM2 Cancelers and a 45° Phase Shifter,” IEEE J. Solid-State Circuits 33(12), 2240–2246 (1998).
[Crossref]

A. A. Abidi, “Direct-conversion radio transceivers for digital communications,” IEEE J. Solid-State Circuits 30(12), 1399–1410 (1995).
[Crossref]

IEEE Photonics J. (1)

J. Zhang, E. H. W. Chan, X. Wang, X. Feng, and B. Guan, “High conversion efficiency photonic microwave mixer with image rejection capability,” IEEE Photonics J. 8(5), 3900411 (2016).

IEEE Photonics Technol. Lett. (2)

J. T. Gallo and J. K. Godshall, “Comparison of series and parallel optical modulators for microwave down-conversion,” IEEE Photonics Technol. Lett. 10(11), 1623–1625 (1998).
[Crossref]

Z. Cao, H. P. A. van den Boom, R. Lu, Q. Wang, E. Tangdiongga, and A. M. J. Koonen, “Angle-of-arrival measurement of a microwave signal using parallel optical delay detector,” IEEE Photonics Technol. Lett. 25(19), 1932–1935 (2013).
[Crossref]

IEEE Trans. Circuits Syst., II Express Briefs (1)

S. Vitali, E. Franchi, and A. Gnudi, “RF I/Q downconverter with gain/phase calibration,” IEEE Trans. Circuits Syst., II Express Briefs 54(4), 367–371 (2007).
[Crossref]

IEEE Trans. Microw. Theory Tech. (5)

X. Yi, T. X. H. Huang, and R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Tech. 58(11), 3088–3093 (2010).
[Crossref]

H. Gheidi and A. Banai, “Phase-noise measurement of microwave oscillators using phase-shifterless delay-line discriminator,” IEEE Trans. Microw. Theory Tech. 58(2), 468–477 (2010).
[Crossref]

Y. Gao, A. Wen, W. Zhang, W. Jiang, J. Ge, and Y. Fan, “Ultra-Wideband Photonic Microwave I/Q Mixer for Zero-IF Receiver,” IEEE Trans. Microw. Theory Tech. 65(11), 4513–4525 (2017).
[Crossref]

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of optical carrier-to-sideband ratio for improving transmission performance in fiber–radio links,” IEEE Trans. Microw. Theory Tech. 54(5), 2181–2187 (2006).
[Crossref]

Z. Tang and S. Pan, “A reconfigurable photonic microwave mixer using a 90-degree optical hybrid,” IEEE Trans. Microw. Theory Tech. 64(9), 3017–3025 (2016).
[Crossref]

J. Lightwave Technol. (8)

J. Opt. Soc. Am. A (1)

Laser Photonics Rev. (1)

X. Zou, B. Lu, W. Pan, L. Yan, A. Stöhr, and J. Yao, “Photonics for microwave measurements,” Laser Photonics Rev. 10(5), 711–734 (2016).
[Crossref]

Opt. Express (3)

Opt. Lett. (6)

Other (5)

D. Onori, F. Laghezza, F. Scotti, A. Bogoni, P. Ghelfi, M. Bartocci, A. Zaccaron, A. Tafuto, and A. Albertoni, “A DC offset-free ultra-wideband direct conversion receiver based on photonics,” in Radar Conference, IEEE, pp. 1521–1524 (2017).

R. Sambaraju, J. Palaci, R. Alemany, V. Polo, and J. L. Corral, “Photonic vector demodulation of 2.5 Gbit/s QAM modulated wireless signals,” in 2008 International Topical Meeting on Microwave Photonics, IEEE, pp. 117–120 (2008).
[Crossref]

C. Middleton, S. Meredith, R. Peach, and R. DeSalvo, “Photonic frequency conversion for wideband RF-to-IF down-conversion and digitization,” in Proc. IEEE Avionics, Fiber-Opt. Photon. Technol. Conf. (AVFOP), pp. 115–116 (2011).
[Crossref]

Y. Y. Labs, “Modulator bias controllers,” http://www.yylabs.com/products.php

PlugTech, “Automatic bias control,” http://www.plugtech.hk/main/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1 Conventional microwave I/Q down-converter.
Fig. 2
Fig. 2 Schematic diagram of proposed all-optical fundamental/sub-harmonic microwave I/Q down-converters.
Fig. 3
Fig. 3 Response curve of OBPF, and optical spectra before and after OBPF in fundamental I/Q down-converter.
Fig. 4
Fig. 4 Measured conversion gain and NF versus LO power in fundamental I/Q down-converter.
Fig. 5
Fig. 5 Down-converted signals with (a) single photodiode, and (b) BPD in fundamental I/Q down-converter.
Fig. 6
Fig. 6 IF output power versus RF input power in fundamental I/Q down-converter.
Fig. 7
Fig. 7 Waveforms of in-phase IF signal and quadrature IF signal with relative phase of 0, 90, 180, 270 degrees in fundamental I/Q down-converter.
Fig. 8
Fig. 8 Measured I/Q phase and power imbalance versus (a) RF frequency and (b) IF frequency in fundamental I/Q down-converter.
Fig. 9
Fig. 9 Desired signal and image product after image-reject down-conversion based on fundamental I/Q down-converter: (a) waveforms and (b) spectra. LO frequency: 25.5 GHz; desired RF frequency: 26 GHz; image RF frequency: 25 GHz.
Fig. 10
Fig. 10 Demodulated EVM versus RF input power with 26 and 36 GHz carrier frequencies in fundamental zero-IF receiver. Insets: constellation diagrams. Modulation format: 16QAM; signal bandwidth: 100 MBand.
Fig. 11
Fig. 11 Measured LO/RF isolation versus operating frequency.
Fig. 12
Fig. 12 Filter response and optical spectra before and after OBPF in sub-harmonic I/Q down-converter.
Fig. 13
Fig. 13 Waveforms of in-phase IF signal and quadrature IF signal with relative phase of 0, 90, 180, 270 degrees in sub-harmonic I/Q down-converter.
Fig. 14
Fig. 14 Measured I/Q phase and power imbalance versus (a) RF frequency and (b) IF frequency in sub-harmonic I/Q down-converter.
Fig. 15
Fig. 15 Demodulated EVM versus RF input power in sub-harmonic zero-IF receiver. Insets: constellation diagrams. Modulation format: 16QAM; signal bandwidth: 100 Mband; RF frequency: 36 GHz; LO frequency: 18 GHz.
Fig. 16
Fig. 16 Designed polarization-demultiplexed I/Q photodetector.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

E Xa (t)= E in ( t ){ exp[ j m R sin( Ω R t ) ]exp[ j m R sin( Ω R t ) ] }/4 = E in ( t ){ n= J n ( m R )exp( jn Ω R t )[ 1 ( 1 ) n ] }/4 E in ( t ) J 1 ( m R )[ exp( j Ω R t )exp( j Ω R t ) ]/2
E X (t)= E Xa (t)/ 2 = E in ( t ) J 1 ( m R )[ exp( j Ω R t )exp( j Ω R t ) ]/2 2
E Y (t)= E in ( t ){ exp[ j m L sin( Ω L t ) ]exp[ j m L sin( Ω L t ) ] }/4 2 = E in ( t ){ n= J n ( m L )exp( jn Ω L t )[ 1 ( 1 ) n ] }/4 2 E in ( t ) J 1 ( m L )[ exp( j Ω L t )exp( j Ω L t ) ]/2 2
E PDM (t)=| E X E Y |= E in ( t )| J 1 ( m R )[ exp( j Ω R t )exp( j Ω R t ) ] J 1 ( m L )[ exp( j Ω L t )exp( j Ω L t ) ] |/2 2
E OBPF (t)= E in ( t )| J 1 ( m R )exp( j Ω R t ) J 1 ( m L )exp( j Ω L t ) |/2 2
E 1 (t)= E in ( t )[ J 1 ( m R )exp( j Ω R t )cosα+ J 1 ( m L )exp( j Ω L t )sinαexp( jφ ) ]/4
E 2 (t)= E in ( t )[ J 1 ( m R )exp( j Ω R t )sinα J 1 ( m L )exp( j Ω L t )cosαexp( jφ ) ]/4
i( t ) | E 1 (t) | 2 | E 2 (t) | 2 J 1 ( m R ) J 1 ( m L )cos[ ( Ω R Ω L )tφ ]
i I ( t ) J 1 ( m R ) J 1 ( m L )cos[ ( Ω R Ω L )t ]
i Q ( t ) J 1 ( m R ) J 1 ( m L )sin[ ( Ω R Ω L )t ]
E Y (t)= E in ( t ){ exp[ j m L sin( Ω L t ) ]+exp[ j m L sin( Ω L t ) ]2cos( θ/2 ) }/4 2 = E in ( t ){ n= J n ( m L )exp( jn Ω L t )[ 1+ ( 1 ) n ]2cos( θ/2 ) }/4 2 E in ( t ){ J 2 ( m L )[ exp( j2 Ω L t )+exp( j2 Ω L t ) ]+ J 0 ( m L )cos( θ/2 ) }/2 2
J 0 ( m L )=cos( θ/2 )
E Y (t)= E in ( t ) J 2 ( m L )[ exp( j2 Ω L t )+exp( j2 Ω L t ) ]/2 2
i I ( t ) J 1 ( m R ) J 2 ( m L )cos[ ( Ω R 2 Ω L )t ]
i Q ( t ) J 1 ( m R ) J 2 ( m L )sin[ ( Ω R 2 Ω L )t ]
| X= E in ( t ) 2 2 J 1 ( m R )exp( j Ω R t ) Y= E in ( t ) 2 2 J 1 ( m L )exp( j Ω L t ) |

Metrics