Abstract

Mechanically robust and low loss single-mode arsenic sulfide fibers are used to deliver high power mid-infrared sources. Anti-reflection coatings were deposited on the fiber facets, enabling 90% transmission through 20 cm length fibers. 10.3 W was transmitted through an anti-reflection coated fiber at 2053 nm, and uncoated fibers sustained 12 MW/cm2 intensities on the facet without failure. A Cr:ZnSe laser transmitted >1 W at 2520 nm, and a Fe:ZnSe laser transmitted 0.5 W at 4102 nm. These results indicate that by improving the anti-reflection coatings and using a high beam quality mid-infrared source, chalcogenide fibers can reliably deliver ≥10 W in a single mode, potentially out to 6.5 µm.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-power mid-infrared supercontinuum laser source using fluorotellurite fiber

Chuanfei Yao, Zhixu Jia, Zhenrui Li, Shijie Jia, Zhipeng Zhao, Lei Zhang, Yan Feng, Guanshi Qin, Yasutake Ohishi, and Weiping Qin
Optica 5(10) 1264-1270 (2018)

Mid-infrared supercontinuum generation in a suspended-core tellurium-based chalcogenide fiber

Bo Wu, Zheming Zhao, Xunsi Wang, Youmei Tian, Nan Mi, Peng Chen, Zugang Xue, Zijun Liu, Peiqing Zhang, Xiang Shen, Qiuhua Nie, Shixun Dai, and Rongping Wang
Opt. Mater. Express 8(5) 1341-1348 (2018)

Low threshold mid-infrared supercontinuum generation in short fluoride-chalcogenide multimaterial fibers

Xia Li, Wei Chen, Tianfeng Xue, Juanjuan Gao, Weiqing Gao, Lili Hu, and Meisong Liao
Opt. Express 22(20) 24179-24191 (2014)

References

  • View by:
  • |
  • |
  • |

  1. I. Moskalev, S. Mirov, M. Mirov, S. Vasilyev, V. Smolski, A. Zakrevskiy, and V. Gapontsev, “140 W Cr:ZnSe laser system,” Opt. Express 24(18), 21090–21104 (2016).
    [Crossref] [PubMed]
  2. D. V. Martyshkin, V. V. Fedorov, M. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, A. Zakrevskiy, and S. B. Mirov, “High Power (9.2 W) CW 4.15 µm Fe:ZnSe laser,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2017), STh1L.6.
    [Crossref]
  3. V. Fortin, M. Bernier, S. T. Bah, and R. Vallée, “30 W fluoride glass all-fiber laser at 2.94 μm,” Opt. Lett. 40(12), 2882–2885 (2015).
    [Crossref] [PubMed]
  4. F. Maes, V. Fortin, M. Bernier, and R. Vallée, “5.6 W monolithic fiber laser at 3.55 μm,” Opt. Lett. 42(11), 2054–2057 (2017).
    [Crossref] [PubMed]
  5. P. Figueiredo, M. Suttinger, R. Go, E. Tsvid, C. K. N. Patel, and A. Lyakh, “Progress in high-power continuous-wave quantum cascade lasers [Invited],” Appl. Opt. 56(31), H15–H23 (2017).
    [Crossref] [PubMed]
  6. Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
    [Crossref]
  7. G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
    [Crossref]
  8. S. Shabahang, F. A. Tan, J. D. Perlstein, G. Tao, O. Alvarez, F. Chenard, A. Sincore, L. Shah, M. C. Richardson, K. L. Schepler, and A. F. Abouraddy, “Robust multimaterial chalcogenide fibers produced by a hybrid fiber-fabrication process,” Opt. Mater. Express 7(7), 2336–2345 (2017).
    [Crossref]
  9. S. Sato, K. Igarashi, M. Taniwaki, K. Tanimoto, and Y. Kikuchi, “Multihundred‐watt CO laser power delivery through chalcogenide glass fibers,” Appl. Phys. Lett. 62(7), 669–671 (1993).
    [Crossref]
  10. E. Papagiakoumou, D. N. Papadopoulos, and A. A. Serafetinides, “Pulsed infrared radiation transmission through chalcogenide glass fibers,” Opt. Commun. 276(1), 80–86 (2007).
    [Crossref]
  11. L. E. Busse, J. A. Moon, J. S. Sanghera, and I. D. Aggarwal, “Mid-IR high-power transmission through chalcogenide fibers: current results and future challenges,” Proc. SPIE 2966, 553 (1997).
  12. F. Chenard, O. Alvarez, and H. Moawad, “MIR chalcogenide fiber and devices,” Proc. SPIE 9317, 93170B (2015).
  13. A. Sincore, N. Bodnar, J. Bradford, A. Abdulfattah, L. Shah, and M. C. Richardson, “SBS Threshold Dependence on Pulse Duration in a 2053 nm Single-Mode Fiber Amplifier,” J. Lightwave Technol. 35(18), 4000–4003 (2017).
    [Crossref]
  14. P. A. Berry and K. L. Schepler, “High-power, widely-tunable Cr2+:ZnSe master oscillator power amplifier systems,” Opt. Express 18(14), 15062–15072 (2010).
    [Crossref] [PubMed]
  15. R. W. Stites, S. A. McDaniel, J. O. Barnes, D. M. Krein, J. H. Goldsmith, S. Guha, and G. Cook, “Hot isostatic pressing of transition metal ions into chalcogenide laser host crystals,” Opt. Mater. Express 6(10), 3339–3353 (2016).
    [Crossref]
  16. S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe-Doped II-VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292–310 (2015).
    [Crossref]
  17. W. H. Kim, V. Q. Nguyen, L. B. Shaw, L. E. Busse, C. Florea, D. J. Gibson, R. R. Gattass, S. S. Bayya, F. H. Kung, G. D. Chin, R. E. Miklos, I. D. Aggarwal, and J. S. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Crystal. Sol. 431, 8–15 (2016).
  18. G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. V. Gerasimenko, E. Dianov, and V. G. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectron. Adv. Mater. Rapid Commun. 3, 669–671 (2009).
  19. Engineering Plastic Products – Stock Shapes for Machining (Quadrant Engineering Plastic Products, 1996).
  20. D. C. Miller, R. R. Foster, S.-H. Jen, J. A. Bertrand, S. J. Cunningham, A. S. Morris, Y.-C. Lee, S. M. George, and M. L. Dunn, “Thermo-mechanical properties of alumina films created using the atomic layer deposition technique,” Sens. Actuators A Phys. 164(1-2), 58–67 (2010).
    [Crossref]
  21. J. Proost and F. Spaepen, “Evolution of the growth stress, stiffness, and microstructure of alumina thin films during vapor deposition,” J. Appl. Phys. 91(1), 204–216 (2002).
    [Crossref]
  22. F. W. Glaze, D. H. Blackburn, J. S. Osmalov, D. Hubbard, M. H. Black, D. H. B. Francis, and M. H. Black, “Properties of arsenic sulfide glass,” J. Res. Nat. Bureau Stds. 59(2), 83–92 (1957).
    [Crossref]
  23. J. Sanghera, C. Florea, L. Busse, B. Shaw, F. Miklos, and I. Aggarwal, “Reduced Fresnel losses in chalcogenide fibers by using anti-reflective surface structures on fiber end faces,” Opt. Express 18(25), 26760–26768 (2010).
    [Crossref] [PubMed]

2017 (4)

2016 (3)

2015 (4)

V. Fortin, M. Bernier, S. T. Bah, and R. Vallée, “30 W fluoride glass all-fiber laser at 2.94 μm,” Opt. Lett. 40(12), 2882–2885 (2015).
[Crossref] [PubMed]

S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe-Doped II-VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292–310 (2015).
[Crossref]

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

F. Chenard, O. Alvarez, and H. Moawad, “MIR chalcogenide fiber and devices,” Proc. SPIE 9317, 93170B (2015).

2011 (1)

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

2010 (3)

2009 (1)

G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. V. Gerasimenko, E. Dianov, and V. G. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectron. Adv. Mater. Rapid Commun. 3, 669–671 (2009).

2007 (1)

E. Papagiakoumou, D. N. Papadopoulos, and A. A. Serafetinides, “Pulsed infrared radiation transmission through chalcogenide glass fibers,” Opt. Commun. 276(1), 80–86 (2007).
[Crossref]

2002 (1)

J. Proost and F. Spaepen, “Evolution of the growth stress, stiffness, and microstructure of alumina thin films during vapor deposition,” J. Appl. Phys. 91(1), 204–216 (2002).
[Crossref]

1997 (1)

L. E. Busse, J. A. Moon, J. S. Sanghera, and I. D. Aggarwal, “Mid-IR high-power transmission through chalcogenide fibers: current results and future challenges,” Proc. SPIE 2966, 553 (1997).

1993 (1)

S. Sato, K. Igarashi, M. Taniwaki, K. Tanimoto, and Y. Kikuchi, “Multihundred‐watt CO laser power delivery through chalcogenide glass fibers,” Appl. Phys. Lett. 62(7), 669–671 (1993).
[Crossref]

1957 (1)

F. W. Glaze, D. H. Blackburn, J. S. Osmalov, D. Hubbard, M. H. Black, D. H. B. Francis, and M. H. Black, “Properties of arsenic sulfide glass,” J. Res. Nat. Bureau Stds. 59(2), 83–92 (1957).
[Crossref]

Abdulfattah, A.

Abouraddy, A. F.

Aggarwal, I.

Aggarwal, I. D.

W. H. Kim, V. Q. Nguyen, L. B. Shaw, L. E. Busse, C. Florea, D. J. Gibson, R. R. Gattass, S. S. Bayya, F. H. Kung, G. D. Chin, R. E. Miklos, I. D. Aggarwal, and J. S. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Crystal. Sol. 431, 8–15 (2016).

L. E. Busse, J. A. Moon, J. S. Sanghera, and I. D. Aggarwal, “Mid-IR high-power transmission through chalcogenide fibers: current results and future challenges,” Proc. SPIE 2966, 553 (1997).

Alvarez, O.

Badding, J. V.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Bah, S. T.

Bai, Y.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Ballato, J.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Bandyopadhyay, N.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Barnes, J. O.

Bayya, S. S.

W. H. Kim, V. Q. Nguyen, L. B. Shaw, L. E. Busse, C. Florea, D. J. Gibson, R. R. Gattass, S. S. Bayya, F. H. Kung, G. D. Chin, R. E. Miklos, I. D. Aggarwal, and J. S. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Crystal. Sol. 431, 8–15 (2016).

Bernier, M.

Berry, P. A.

Bertrand, J. A.

D. C. Miller, R. R. Foster, S.-H. Jen, J. A. Bertrand, S. J. Cunningham, A. S. Morris, Y.-C. Lee, S. M. George, and M. L. Dunn, “Thermo-mechanical properties of alumina films created using the atomic layer deposition technique,” Sens. Actuators A Phys. 164(1-2), 58–67 (2010).
[Crossref]

Black, M. H.

F. W. Glaze, D. H. Blackburn, J. S. Osmalov, D. Hubbard, M. H. Black, D. H. B. Francis, and M. H. Black, “Properties of arsenic sulfide glass,” J. Res. Nat. Bureau Stds. 59(2), 83–92 (1957).
[Crossref]

F. W. Glaze, D. H. Blackburn, J. S. Osmalov, D. Hubbard, M. H. Black, D. H. B. Francis, and M. H. Black, “Properties of arsenic sulfide glass,” J. Res. Nat. Bureau Stds. 59(2), 83–92 (1957).
[Crossref]

Blackburn, D. H.

F. W. Glaze, D. H. Blackburn, J. S. Osmalov, D. Hubbard, M. H. Black, D. H. B. Francis, and M. H. Black, “Properties of arsenic sulfide glass,” J. Res. Nat. Bureau Stds. 59(2), 83–92 (1957).
[Crossref]

Bodnar, N.

Bradford, J.

Busse, L.

Busse, L. E.

W. H. Kim, V. Q. Nguyen, L. B. Shaw, L. E. Busse, C. Florea, D. J. Gibson, R. R. Gattass, S. S. Bayya, F. H. Kung, G. D. Chin, R. E. Miklos, I. D. Aggarwal, and J. S. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Crystal. Sol. 431, 8–15 (2016).

L. E. Busse, J. A. Moon, J. S. Sanghera, and I. D. Aggarwal, “Mid-IR high-power transmission through chalcogenide fibers: current results and future challenges,” Proc. SPIE 2966, 553 (1997).

Chenard, F.

Chin, G. D.

W. H. Kim, V. Q. Nguyen, L. B. Shaw, L. E. Busse, C. Florea, D. J. Gibson, R. R. Gattass, S. S. Bayya, F. H. Kung, G. D. Chin, R. E. Miklos, I. D. Aggarwal, and J. S. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Crystal. Sol. 431, 8–15 (2016).

Churbanov, M. F.

G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. V. Gerasimenko, E. Dianov, and V. G. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectron. Adv. Mater. Rapid Commun. 3, 669–671 (2009).

Cook, G.

Cunningham, S. J.

D. C. Miller, R. R. Foster, S.-H. Jen, J. A. Bertrand, S. J. Cunningham, A. S. Morris, Y.-C. Lee, S. M. George, and M. L. Dunn, “Thermo-mechanical properties of alumina films created using the atomic layer deposition technique,” Sens. Actuators A Phys. 164(1-2), 58–67 (2010).
[Crossref]

Danto, S.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Dianov, E.

G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. V. Gerasimenko, E. Dianov, and V. G. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectron. Adv. Mater. Rapid Commun. 3, 669–671 (2009).

Dunn, M. L.

D. C. Miller, R. R. Foster, S.-H. Jen, J. A. Bertrand, S. J. Cunningham, A. S. Morris, Y.-C. Lee, S. M. George, and M. L. Dunn, “Thermo-mechanical properties of alumina films created using the atomic layer deposition technique,” Sens. Actuators A Phys. 164(1-2), 58–67 (2010).
[Crossref]

Ebendorff-Heidepriem, H.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Fedorov, V. V.

S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe-Doped II-VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292–310 (2015).
[Crossref]

Figueiredo, P.

Fink, Y.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Florea, C.

W. H. Kim, V. Q. Nguyen, L. B. Shaw, L. E. Busse, C. Florea, D. J. Gibson, R. R. Gattass, S. S. Bayya, F. H. Kung, G. D. Chin, R. E. Miklos, I. D. Aggarwal, and J. S. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Crystal. Sol. 431, 8–15 (2016).

J. Sanghera, C. Florea, L. Busse, B. Shaw, F. Miklos, and I. Aggarwal, “Reduced Fresnel losses in chalcogenide fibers by using anti-reflective surface structures on fiber end faces,” Opt. Express 18(25), 26760–26768 (2010).
[Crossref] [PubMed]

Fortin, V.

Foster, R. R.

D. C. Miller, R. R. Foster, S.-H. Jen, J. A. Bertrand, S. J. Cunningham, A. S. Morris, Y.-C. Lee, S. M. George, and M. L. Dunn, “Thermo-mechanical properties of alumina films created using the atomic layer deposition technique,” Sens. Actuators A Phys. 164(1-2), 58–67 (2010).
[Crossref]

Francis, D. H. B.

F. W. Glaze, D. H. Blackburn, J. S. Osmalov, D. Hubbard, M. H. Black, D. H. B. Francis, and M. H. Black, “Properties of arsenic sulfide glass,” J. Res. Nat. Bureau Stds. 59(2), 83–92 (1957).
[Crossref]

Gapontsev, V.

Gattass, R. R.

W. H. Kim, V. Q. Nguyen, L. B. Shaw, L. E. Busse, C. Florea, D. J. Gibson, R. R. Gattass, S. S. Bayya, F. H. Kung, G. D. Chin, R. E. Miklos, I. D. Aggarwal, and J. S. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Crystal. Sol. 431, 8–15 (2016).

George, S. M.

D. C. Miller, R. R. Foster, S.-H. Jen, J. A. Bertrand, S. J. Cunningham, A. S. Morris, Y.-C. Lee, S. M. George, and M. L. Dunn, “Thermo-mechanical properties of alumina films created using the atomic layer deposition technique,” Sens. Actuators A Phys. 164(1-2), 58–67 (2010).
[Crossref]

Gerasimenko, V. V.

G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. V. Gerasimenko, E. Dianov, and V. G. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectron. Adv. Mater. Rapid Commun. 3, 669–671 (2009).

Gibson, D. J.

W. H. Kim, V. Q. Nguyen, L. B. Shaw, L. E. Busse, C. Florea, D. J. Gibson, R. R. Gattass, S. S. Bayya, F. H. Kung, G. D. Chin, R. E. Miklos, I. D. Aggarwal, and J. S. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Crystal. Sol. 431, 8–15 (2016).

Glaze, F. W.

F. W. Glaze, D. H. Blackburn, J. S. Osmalov, D. Hubbard, M. H. Black, D. H. B. Francis, and M. H. Black, “Properties of arsenic sulfide glass,” J. Res. Nat. Bureau Stds. 59(2), 83–92 (1957).
[Crossref]

Go, R.

Goldsmith, J. H.

Guha, S.

Hubbard, D.

F. W. Glaze, D. H. Blackburn, J. S. Osmalov, D. Hubbard, M. H. Black, D. H. B. Francis, and M. H. Black, “Properties of arsenic sulfide glass,” J. Res. Nat. Bureau Stds. 59(2), 83–92 (1957).
[Crossref]

Igarashi, K.

S. Sato, K. Igarashi, M. Taniwaki, K. Tanimoto, and Y. Kikuchi, “Multihundred‐watt CO laser power delivery through chalcogenide glass fibers,” Appl. Phys. Lett. 62(7), 669–671 (1993).
[Crossref]

Jen, S.-H.

D. C. Miller, R. R. Foster, S.-H. Jen, J. A. Bertrand, S. J. Cunningham, A. S. Morris, Y.-C. Lee, S. M. George, and M. L. Dunn, “Thermo-mechanical properties of alumina films created using the atomic layer deposition technique,” Sens. Actuators A Phys. 164(1-2), 58–67 (2010).
[Crossref]

Kikuchi, Y.

S. Sato, K. Igarashi, M. Taniwaki, K. Tanimoto, and Y. Kikuchi, “Multihundred‐watt CO laser power delivery through chalcogenide glass fibers,” Appl. Phys. Lett. 62(7), 669–671 (1993).
[Crossref]

Kim, W. H.

W. H. Kim, V. Q. Nguyen, L. B. Shaw, L. E. Busse, C. Florea, D. J. Gibson, R. R. Gattass, S. S. Bayya, F. H. Kung, G. D. Chin, R. E. Miklos, I. D. Aggarwal, and J. S. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Crystal. Sol. 431, 8–15 (2016).

Krein, D. M.

Kung, F. H.

W. H. Kim, V. Q. Nguyen, L. B. Shaw, L. E. Busse, C. Florea, D. J. Gibson, R. R. Gattass, S. S. Bayya, F. H. Kung, G. D. Chin, R. E. Miklos, I. D. Aggarwal, and J. S. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Crystal. Sol. 431, 8–15 (2016).

Lee, Y.-C.

D. C. Miller, R. R. Foster, S.-H. Jen, J. A. Bertrand, S. J. Cunningham, A. S. Morris, Y.-C. Lee, S. M. George, and M. L. Dunn, “Thermo-mechanical properties of alumina films created using the atomic layer deposition technique,” Sens. Actuators A Phys. 164(1-2), 58–67 (2010).
[Crossref]

Lyakh, A.

Maes, F.

Martyshkin, D.

S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe-Doped II-VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292–310 (2015).
[Crossref]

McDaniel, S. A.

Miklos, F.

Miklos, R. E.

W. H. Kim, V. Q. Nguyen, L. B. Shaw, L. E. Busse, C. Florea, D. J. Gibson, R. R. Gattass, S. S. Bayya, F. H. Kung, G. D. Chin, R. E. Miklos, I. D. Aggarwal, and J. S. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Crystal. Sol. 431, 8–15 (2016).

Miller, D. C.

D. C. Miller, R. R. Foster, S.-H. Jen, J. A. Bertrand, S. J. Cunningham, A. S. Morris, Y.-C. Lee, S. M. George, and M. L. Dunn, “Thermo-mechanical properties of alumina films created using the atomic layer deposition technique,” Sens. Actuators A Phys. 164(1-2), 58–67 (2010).
[Crossref]

Mirov, M.

I. Moskalev, S. Mirov, M. Mirov, S. Vasilyev, V. Smolski, A. Zakrevskiy, and V. Gapontsev, “140 W Cr:ZnSe laser system,” Opt. Express 24(18), 21090–21104 (2016).
[Crossref] [PubMed]

S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe-Doped II-VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292–310 (2015).
[Crossref]

Mirov, S.

Mirov, S. B.

S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe-Doped II-VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292–310 (2015).
[Crossref]

Moawad, H.

F. Chenard, O. Alvarez, and H. Moawad, “MIR chalcogenide fiber and devices,” Proc. SPIE 9317, 93170B (2015).

Moon, J. A.

L. E. Busse, J. A. Moon, J. S. Sanghera, and I. D. Aggarwal, “Mid-IR high-power transmission through chalcogenide fibers: current results and future challenges,” Proc. SPIE 2966, 553 (1997).

Morris, A. S.

D. C. Miller, R. R. Foster, S.-H. Jen, J. A. Bertrand, S. J. Cunningham, A. S. Morris, Y.-C. Lee, S. M. George, and M. L. Dunn, “Thermo-mechanical properties of alumina films created using the atomic layer deposition technique,” Sens. Actuators A Phys. 164(1-2), 58–67 (2010).
[Crossref]

Moskalev, I.

Moskalev, I. S.

S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe-Doped II-VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292–310 (2015).
[Crossref]

Nguyen, V. Q.

W. H. Kim, V. Q. Nguyen, L. B. Shaw, L. E. Busse, C. Florea, D. J. Gibson, R. R. Gattass, S. S. Bayya, F. H. Kung, G. D. Chin, R. E. Miklos, I. D. Aggarwal, and J. S. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Crystal. Sol. 431, 8–15 (2016).

Osmalov, J. S.

F. W. Glaze, D. H. Blackburn, J. S. Osmalov, D. Hubbard, M. H. Black, D. H. B. Francis, and M. H. Black, “Properties of arsenic sulfide glass,” J. Res. Nat. Bureau Stds. 59(2), 83–92 (1957).
[Crossref]

Papadopoulos, D. N.

E. Papagiakoumou, D. N. Papadopoulos, and A. A. Serafetinides, “Pulsed infrared radiation transmission through chalcogenide glass fibers,” Opt. Commun. 276(1), 80–86 (2007).
[Crossref]

Papagiakoumou, E.

E. Papagiakoumou, D. N. Papadopoulos, and A. A. Serafetinides, “Pulsed infrared radiation transmission through chalcogenide glass fibers,” Opt. Commun. 276(1), 80–86 (2007).
[Crossref]

Patel, C. K. N.

Perlstein, J. D.

Plotnichenko, V. G.

G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. V. Gerasimenko, E. Dianov, and V. G. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectron. Adv. Mater. Rapid Commun. 3, 669–671 (2009).

Proost, J.

J. Proost and F. Spaepen, “Evolution of the growth stress, stiffness, and microstructure of alumina thin films during vapor deposition,” J. Appl. Phys. 91(1), 204–216 (2002).
[Crossref]

Pushkin, A. A.

G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. V. Gerasimenko, E. Dianov, and V. G. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectron. Adv. Mater. Rapid Commun. 3, 669–671 (2009).

Razeghi, M.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Richardson, M. C.

Sanghera, J.

Sanghera, J. S.

W. H. Kim, V. Q. Nguyen, L. B. Shaw, L. E. Busse, C. Florea, D. J. Gibson, R. R. Gattass, S. S. Bayya, F. H. Kung, G. D. Chin, R. E. Miklos, I. D. Aggarwal, and J. S. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Crystal. Sol. 431, 8–15 (2016).

L. E. Busse, J. A. Moon, J. S. Sanghera, and I. D. Aggarwal, “Mid-IR high-power transmission through chalcogenide fibers: current results and future challenges,” Proc. SPIE 2966, 553 (1997).

Sato, S.

S. Sato, K. Igarashi, M. Taniwaki, K. Tanimoto, and Y. Kikuchi, “Multihundred‐watt CO laser power delivery through chalcogenide glass fibers,” Appl. Phys. Lett. 62(7), 669–671 (1993).
[Crossref]

Schepler, K. L.

Serafetinides, A. A.

E. Papagiakoumou, D. N. Papadopoulos, and A. A. Serafetinides, “Pulsed infrared radiation transmission through chalcogenide glass fibers,” Opt. Commun. 276(1), 80–86 (2007).
[Crossref]

Shabahang, S.

Shah, L.

Shaw, B.

Shaw, L. B.

W. H. Kim, V. Q. Nguyen, L. B. Shaw, L. E. Busse, C. Florea, D. J. Gibson, R. R. Gattass, S. S. Bayya, F. H. Kung, G. D. Chin, R. E. Miklos, I. D. Aggarwal, and J. S. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Crystal. Sol. 431, 8–15 (2016).

Sincore, A.

Slivken, S.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Smolski, V.

Snopatin, G. E.

G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. V. Gerasimenko, E. Dianov, and V. G. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectron. Adv. Mater. Rapid Commun. 3, 669–671 (2009).

Spaepen, F.

J. Proost and F. Spaepen, “Evolution of the growth stress, stiffness, and microstructure of alumina thin films during vapor deposition,” J. Appl. Phys. 91(1), 204–216 (2002).
[Crossref]

Stites, R. W.

Stolyarov, A. M.

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Suttinger, M.

Tan, F. A.

Tanimoto, K.

S. Sato, K. Igarashi, M. Taniwaki, K. Tanimoto, and Y. Kikuchi, “Multihundred‐watt CO laser power delivery through chalcogenide glass fibers,” Appl. Phys. Lett. 62(7), 669–671 (1993).
[Crossref]

Taniwaki, M.

S. Sato, K. Igarashi, M. Taniwaki, K. Tanimoto, and Y. Kikuchi, “Multihundred‐watt CO laser power delivery through chalcogenide glass fibers,” Appl. Phys. Lett. 62(7), 669–671 (1993).
[Crossref]

Tao, G.

Tsao, S.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Tsvid, E.

Vallée, R.

Vasilyev, S.

I. Moskalev, S. Mirov, M. Mirov, S. Vasilyev, V. Smolski, A. Zakrevskiy, and V. Gapontsev, “140 W Cr:ZnSe laser system,” Opt. Express 24(18), 21090–21104 (2016).
[Crossref] [PubMed]

S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe-Doped II-VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292–310 (2015).
[Crossref]

Zakrevskiy, A.

Adv. Opt. Photonics (1)

G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

S. Sato, K. Igarashi, M. Taniwaki, K. Tanimoto, and Y. Kikuchi, “Multihundred‐watt CO laser power delivery through chalcogenide glass fibers,” Appl. Phys. Lett. 62(7), 669–671 (1993).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe-Doped II-VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 292–310 (2015).
[Crossref]

J. Appl. Phys. (1)

J. Proost and F. Spaepen, “Evolution of the growth stress, stiffness, and microstructure of alumina thin films during vapor deposition,” J. Appl. Phys. 91(1), 204–216 (2002).
[Crossref]

J. Lightwave Technol. (1)

J. Non-Crystal. Sol. (1)

W. H. Kim, V. Q. Nguyen, L. B. Shaw, L. E. Busse, C. Florea, D. J. Gibson, R. R. Gattass, S. S. Bayya, F. H. Kung, G. D. Chin, R. E. Miklos, I. D. Aggarwal, and J. S. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Crystal. Sol. 431, 8–15 (2016).

J. Res. Nat. Bureau Stds. (1)

F. W. Glaze, D. H. Blackburn, J. S. Osmalov, D. Hubbard, M. H. Black, D. H. B. Francis, and M. H. Black, “Properties of arsenic sulfide glass,” J. Res. Nat. Bureau Stds. 59(2), 83–92 (1957).
[Crossref]

Opt. Commun. (1)

E. Papagiakoumou, D. N. Papadopoulos, and A. A. Serafetinides, “Pulsed infrared radiation transmission through chalcogenide glass fibers,” Opt. Commun. 276(1), 80–86 (2007).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Opt. Mater. Express (2)

Optoelectron. Adv. Mater. Rapid Commun. (1)

G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. V. Gerasimenko, E. Dianov, and V. G. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectron. Adv. Mater. Rapid Commun. 3, 669–671 (2009).

Proc. SPIE (2)

L. E. Busse, J. A. Moon, J. S. Sanghera, and I. D. Aggarwal, “Mid-IR high-power transmission through chalcogenide fibers: current results and future challenges,” Proc. SPIE 2966, 553 (1997).

F. Chenard, O. Alvarez, and H. Moawad, “MIR chalcogenide fiber and devices,” Proc. SPIE 9317, 93170B (2015).

Sens. Actuators A Phys. (1)

D. C. Miller, R. R. Foster, S.-H. Jen, J. A. Bertrand, S. J. Cunningham, A. S. Morris, Y.-C. Lee, S. M. George, and M. L. Dunn, “Thermo-mechanical properties of alumina films created using the atomic layer deposition technique,” Sens. Actuators A Phys. 164(1-2), 58–67 (2010).
[Crossref]

Other (2)

Engineering Plastic Products – Stock Shapes for Machining (Quadrant Engineering Plastic Products, 1996).

D. V. Martyshkin, V. V. Fedorov, M. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, A. Zakrevskiy, and S. B. Mirov, “High Power (9.2 W) CW 4.15 µm Fe:ZnSe laser,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2017), STh1L.6.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Optical image of the polished chalcogenide fiber facets, along with their dimensions and calculated V-numbers.
Fig. 2
Fig. 2 Theoretical transmission through the deposited AR-coatings using the measured thicknesses ( ± 5% error). Transmission at the design wavelength is indicated by a circle.
Fig. 3
Fig. 3 High power testbed for coupling up to 12 W of a 2053 nm source into the ChG-A fibers. The light valve enabled variable power throughput by rotating the half-wave plate (HWP). An isolator was necessary to prevent instabilities caused by back reflections off the uncoated ChG facet.
Figure 4
Figure 4 A four lens telescope was used for coupling up to 3.5 W of a 2520 nm Cr:ZnSe MOPA into the ChG-A fiber.
Fig. 5
Fig. 5 The Fe:ZnSe oscillator was maintained at 1.1 W and directed through a variable attenuator to vary the power launched into the ChG-B fiber.
Fig. 6
Fig. 6 Measured transmission of the 2053 nm source through 20 cm lengths of ChG-A fiber. AR-coating the fiber enables >90% transmission and 10.3 W delivery. The uncoated fiber sustained intensities of ~12 MW/cm2 without failure.
Fig. 7
Fig. 7 Transmitted beam profiles of the 2053 nm source through the ChG-A fiber. Thermal lensing in the molded aspheric lenses causes an increase in cladding light at high powers (note that gray is a lower intensity than dark purple). Measurements at low power indicate >95% can be coupled into the fundamental ChG mode.
Fig. 8
Fig. 8 Measured transmission of the 2520 nm source through 20 cm length of AR-coated ChG-A fiber. Facet damage occurred after coupling ~1.3 W. Inset: Beam profile when transmitting 1 W demonstrates strong core confinement with Gaussian profile.
Fig. 9
Fig. 9 Measured transmission of the 4102 nm source through a 20 cm and 40 cm length of uncoated ChG-B fiber. Fiber failure occurred when coupling ~1.1 W through the 40 cm length fiber. Inset: Beam profile diverging from the ChG output facet. A Gaussian profile is located in the center surrounded by substantial cladding light.
Fig. 10
Fig. 10 Measured loss of the ChG-B fiber as compared to the ChG preform. Similar loss measurements between the preform and fiber indicate the hybrid fiber-fabrication process did not introduce additional losses. The high losses of ~12 dB/m is due to both measurements including propagation in the cladding, and do not represent loss of the fundamental core mode. The absorption feature at 4.023 µm is due to S-H bonds, while the feature at 4.305 µm is due to CO2 impurities. Inset: The ChG glass preform has a high transmission window out to 6.5 µm.
Fig. 11
Fig. 11 A) Input facet of the AR-coated ChG-A fiber after exposure to high power at 2053 nm. Cracking in the coating has formed near the fiber core. B) Input facet of another AR-coated ChG-A fiber after exposure to 2520 nm. Cracking is more severe with major damage features in the polymer coating. Both fibers continued to sustain multi-Watt transmission without total failure.

Metrics