Abstract

The filter bank multicarrier (FBMC) modulation format is considered as a potential candidate for future wireless 5G due to its feature of high suppression for out-of-band emissions, which allows combining multiple sub-bands with very narrow band-gaps, and hence increases the overall wireless transmission capacity. In this paper, we experimentally demonstrate the generation of multi sub-bands FBMC signals at millimeter-wave (mm-wave) for radio-over-fiber (RoF) systems. The designed multi sub-bands FBMC system consists of 5 sub-bands of 800 MHz with inter sub-band gaps of 781.25 kHz. The composite 5 sub-bands FBMC signal is generated with no band-gap between dc to the first sub-band to preserve the bandwidth of the system. Each FBMC sub-band consists of 1024 sub-carriers and is modulated with uncorrelated data sequences. The aggregate FBMC signal is carried optically by externally modulating a free running laser and is converted to millimeter waves (mm-waves) by photomixing with another free running laser at a frequency offset of 53 GHz. At the receiver, the received electrical mm-wave signal is down-converted to an intermediate frequency (IF) and then post-processed using digital signal processing (DSP) techniques. With the use of the simple recursive least square (RLS) equalizer in the DSP receiver, the achieved aggregate data rate is 8 Gbps and 12 Gbps for 16 quadrature amplitude modulation (QAM), and 64 QAM, respectively with a total bandwidth of 4.2 GHz. The system performance is evaluated by measuring error vector magnitude (EVM) and bit error rate (BER) calculations.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Experimental demonstration of 24-Gb/s CAP-64QAM radio-over-fiber system over 40-GHz mm-wave fiber-wireless transmission

Junwen Zhang, Jianjun Yu, Nan Chi, Fan Li, and Xinying Li
Opt. Express 21(22) 26888-26895 (2013)

References

  • View by:
  • |
  • |
  • |

  1. T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave mobile communications for 5G cellular: it will work!” IEEE Access 1, 335–349 (2013).
    [Crossref]
  2. L. Wei, R. Q. Hu, Y. Qian, and G. Wu, “Key elements to enable millimeter wave communications for 5G wireless systems,” IEEE Wirel. Commun. 21(6), 136–143 (2014).
    [Crossref]
  3. D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-over-fiber technologies for emerging wireless systems,” IEEE J. Quantum Electron. 52(1), 1–11 (2016).
    [Crossref]
  4. E. P. Martin, T. Shao, V. Vujicic, P. M. Anandarajah, C. Browning, R. Llorente, and L. P. Barry, “25-Gb/s OFDM 60-GHz radio over fiber system based on a gain switched laser,” J. Lightwave Technol. 33(8), 1635–1643 (2015).
    [Crossref]
  5. T. T. Nguyen, S. T. Le, Q. He, L. V. Compernolle, M. Wuilpart, and P. Mégret, “Multicarrier approaches for high-baudrate optical-fiber transmission systems with a single coherent receiver,” IEEE Photonics J. 9(2), 1–10 (2017).
    [Crossref]
  6. P. Banelli, S. Buzzi, G. Colavolpe, A. Modenini, F. Rusek, and A. Ugolini, “Modulation formats and waveforms for 5G networks: who will be the heir of OFDM? An overview of alternative modulation schemes for improved spectral efficiency,” IEEE Signal Process. Mag. 31(6), 80–93 (2014).
    [Crossref]
  7. J. Zhang, M. Xu, J. Wang, F. Lu, L. Cheng, H. Cho, K. Ying, J. Yu, and G. K. Chang, “Full-duplex quasi-gapless carrier aggregation using FBMC in centralized radio-over-fiber heterogeneous networks,” J. Lightwave Technol. 35(4), 989–996 (2017).
    [Crossref]
  8. M. Xu, J. Zhang, F. Lu, J. Wang, L. Cheng, H. J. Cho, M. I. Khalil, D. Guidotti, and G. K. Chang, “FBMC in next-generation mobile fronthaul networks with centralized pre-equalization,” IEEE Photonics Technol. Lett. 28(18), 1912–1915 (2016).
    [Crossref]
  9. A. Saljoghei, F. A. Gutiérrez, P. Perry, D. Venkitesh, R. D. Koipillai, and L. P. Barry, “Experimental comparison of FBMC and OFDM for multiple access uplink PON,” J. Lightwave Technol. 35(9), 1595–1604 (2017).
    [Crossref]
  10. S. Y. Jung, S. M. Jung, and S. K. Han, “AMO-FBMC for asynchronous heterogeneous signal integrated optical transmission,” IEEE Photonics Technol. Lett. 27(2), 133–136 (2015).
    [Crossref]
  11. Y. T. Hsueh, C. Liu, S. H. Fan, J. Yu, and G. K. Chang, “A novel full-duplex testbed demonstration of converged all-band 60-GHz radio-over-fiber access architecture,” OFC/NFOEC), (Optical Society of America, 2012), pp. 1–3, paper OTu2H.5.
  12. M. Zhu, A. Yi, Y. T. Hsueh, C. Liu, J. Wang, S. C. Shin, J. Yu, and G. K. Chang, “Demonstration of 4-band millimeter-wave radio-over-fiber system for multi-service wireless access networks,” 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), (Optical Society of America, 2013), pp. 1–3, paper OM3D.4.
    [Crossref]
  13. R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “30Gb/s real-time triple sub-band OFDM transceivers for future PONs beyond 10Gb/s/λ,” 39th European Conference and Exhibition on Optical Communication (ECOC 2013), London, 2013, pp. 1–3.
    [Crossref]
  14. H. Shams, M. J. Fice, L. Gonzalez-Guerrero, C. C. Renaud, F. van Dijk, and A. J. Seeds, “Sub-THz wireless over fiber for frequency band 220–280 GHz,” J. Lightwave Technol. 34(20), 4786–4793 (2016).
    [Crossref]
  15. K. Werfli, P. A. Haigh, Z. Ghassemlooy, N. B. Hassan, and S. Zvanovec, “A new concept of multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications,” 2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), 2016, pp. 1–5.
    [Crossref]
  16. Project Document “FBMC physical layer: a primer,” (PHYDYAS, Jan. 2010). [Online available: http://www.ict-phydyas.org/ ]
  17. ETSI, “LTE; Evolved universal terrestrial radio access (E-UTRA); Base station (BS) radio transmission and reception”, 2015.
  18. Z. Li, M. S. Erkılınç, K. Shi, E. Sillekens, L. Galdnio, B. C. Thomsen, P. Bayvel, and R. I. Killey, “SSBI mitigation and the Kramers–Kronig scheme in single-sideband direct-detection transmission with receiver-based electronic dispersion compensation,” J. Lightwave Technol. 35(10), 1887–1893 (2017).
    [Crossref]

2017 (4)

2016 (3)

H. Shams, M. J. Fice, L. Gonzalez-Guerrero, C. C. Renaud, F. van Dijk, and A. J. Seeds, “Sub-THz wireless over fiber for frequency band 220–280 GHz,” J. Lightwave Technol. 34(20), 4786–4793 (2016).
[Crossref]

M. Xu, J. Zhang, F. Lu, J. Wang, L. Cheng, H. J. Cho, M. I. Khalil, D. Guidotti, and G. K. Chang, “FBMC in next-generation mobile fronthaul networks with centralized pre-equalization,” IEEE Photonics Technol. Lett. 28(18), 1912–1915 (2016).
[Crossref]

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-over-fiber technologies for emerging wireless systems,” IEEE J. Quantum Electron. 52(1), 1–11 (2016).
[Crossref]

2015 (2)

E. P. Martin, T. Shao, V. Vujicic, P. M. Anandarajah, C. Browning, R. Llorente, and L. P. Barry, “25-Gb/s OFDM 60-GHz radio over fiber system based on a gain switched laser,” J. Lightwave Technol. 33(8), 1635–1643 (2015).
[Crossref]

S. Y. Jung, S. M. Jung, and S. K. Han, “AMO-FBMC for asynchronous heterogeneous signal integrated optical transmission,” IEEE Photonics Technol. Lett. 27(2), 133–136 (2015).
[Crossref]

2014 (2)

L. Wei, R. Q. Hu, Y. Qian, and G. Wu, “Key elements to enable millimeter wave communications for 5G wireless systems,” IEEE Wirel. Commun. 21(6), 136–143 (2014).
[Crossref]

P. Banelli, S. Buzzi, G. Colavolpe, A. Modenini, F. Rusek, and A. Ugolini, “Modulation formats and waveforms for 5G networks: who will be the heir of OFDM? An overview of alternative modulation schemes for improved spectral efficiency,” IEEE Signal Process. Mag. 31(6), 80–93 (2014).
[Crossref]

2013 (1)

T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave mobile communications for 5G cellular: it will work!” IEEE Access 1, 335–349 (2013).
[Crossref]

Anandarajah, P. M.

Azar, Y.

T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave mobile communications for 5G cellular: it will work!” IEEE Access 1, 335–349 (2013).
[Crossref]

Banelli, P.

P. Banelli, S. Buzzi, G. Colavolpe, A. Modenini, F. Rusek, and A. Ugolini, “Modulation formats and waveforms for 5G networks: who will be the heir of OFDM? An overview of alternative modulation schemes for improved spectral efficiency,” IEEE Signal Process. Mag. 31(6), 80–93 (2014).
[Crossref]

Barry, L. P.

Bayvel, P.

Browning, C.

Buzzi, S.

P. Banelli, S. Buzzi, G. Colavolpe, A. Modenini, F. Rusek, and A. Ugolini, “Modulation formats and waveforms for 5G networks: who will be the heir of OFDM? An overview of alternative modulation schemes for improved spectral efficiency,” IEEE Signal Process. Mag. 31(6), 80–93 (2014).
[Crossref]

Chang, G. K.

J. Zhang, M. Xu, J. Wang, F. Lu, L. Cheng, H. Cho, K. Ying, J. Yu, and G. K. Chang, “Full-duplex quasi-gapless carrier aggregation using FBMC in centralized radio-over-fiber heterogeneous networks,” J. Lightwave Technol. 35(4), 989–996 (2017).
[Crossref]

M. Xu, J. Zhang, F. Lu, J. Wang, L. Cheng, H. J. Cho, M. I. Khalil, D. Guidotti, and G. K. Chang, “FBMC in next-generation mobile fronthaul networks with centralized pre-equalization,” IEEE Photonics Technol. Lett. 28(18), 1912–1915 (2016).
[Crossref]

Cheng, L.

J. Zhang, M. Xu, J. Wang, F. Lu, L. Cheng, H. Cho, K. Ying, J. Yu, and G. K. Chang, “Full-duplex quasi-gapless carrier aggregation using FBMC in centralized radio-over-fiber heterogeneous networks,” J. Lightwave Technol. 35(4), 989–996 (2017).
[Crossref]

M. Xu, J. Zhang, F. Lu, J. Wang, L. Cheng, H. J. Cho, M. I. Khalil, D. Guidotti, and G. K. Chang, “FBMC in next-generation mobile fronthaul networks with centralized pre-equalization,” IEEE Photonics Technol. Lett. 28(18), 1912–1915 (2016).
[Crossref]

Cho, H.

Cho, H. J.

M. Xu, J. Zhang, F. Lu, J. Wang, L. Cheng, H. J. Cho, M. I. Khalil, D. Guidotti, and G. K. Chang, “FBMC in next-generation mobile fronthaul networks with centralized pre-equalization,” IEEE Photonics Technol. Lett. 28(18), 1912–1915 (2016).
[Crossref]

Clark, T. R.

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-over-fiber technologies for emerging wireless systems,” IEEE J. Quantum Electron. 52(1), 1–11 (2016).
[Crossref]

Colavolpe, G.

P. Banelli, S. Buzzi, G. Colavolpe, A. Modenini, F. Rusek, and A. Ugolini, “Modulation formats and waveforms for 5G networks: who will be the heir of OFDM? An overview of alternative modulation schemes for improved spectral efficiency,” IEEE Signal Process. Mag. 31(6), 80–93 (2014).
[Crossref]

Compernolle, L. V.

T. T. Nguyen, S. T. Le, Q. He, L. V. Compernolle, M. Wuilpart, and P. Mégret, “Multicarrier approaches for high-baudrate optical-fiber transmission systems with a single coherent receiver,” IEEE Photonics J. 9(2), 1–10 (2017).
[Crossref]

Dennis, M. L.

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-over-fiber technologies for emerging wireless systems,” IEEE J. Quantum Electron. 52(1), 1–11 (2016).
[Crossref]

Erkilinç, M. S.

Fice, M. J.

Galdnio, L.

Gamage, P. A.

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-over-fiber technologies for emerging wireless systems,” IEEE J. Quantum Electron. 52(1), 1–11 (2016).
[Crossref]

Giddings, R. P.

R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “30Gb/s real-time triple sub-band OFDM transceivers for future PONs beyond 10Gb/s/λ,” 39th European Conference and Exhibition on Optical Communication (ECOC 2013), London, 2013, pp. 1–3.
[Crossref]

Gonzalez-Guerrero, L.

Guidotti, D.

M. Xu, J. Zhang, F. Lu, J. Wang, L. Cheng, H. J. Cho, M. I. Khalil, D. Guidotti, and G. K. Chang, “FBMC in next-generation mobile fronthaul networks with centralized pre-equalization,” IEEE Photonics Technol. Lett. 28(18), 1912–1915 (2016).
[Crossref]

Gutierrez, F.

T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave mobile communications for 5G cellular: it will work!” IEEE Access 1, 335–349 (2013).
[Crossref]

Gutiérrez, F. A.

Han, S. K.

S. Y. Jung, S. M. Jung, and S. K. Han, “AMO-FBMC for asynchronous heterogeneous signal integrated optical transmission,” IEEE Photonics Technol. Lett. 27(2), 133–136 (2015).
[Crossref]

He, Q.

T. T. Nguyen, S. T. Le, Q. He, L. V. Compernolle, M. Wuilpart, and P. Mégret, “Multicarrier approaches for high-baudrate optical-fiber transmission systems with a single coherent receiver,” IEEE Photonics J. 9(2), 1–10 (2017).
[Crossref]

Hu, R. Q.

L. Wei, R. Q. Hu, Y. Qian, and G. Wu, “Key elements to enable millimeter wave communications for 5G wireless systems,” IEEE Wirel. Commun. 21(6), 136–143 (2014).
[Crossref]

Hugues-Salas, E.

R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “30Gb/s real-time triple sub-band OFDM transceivers for future PONs beyond 10Gb/s/λ,” 39th European Conference and Exhibition on Optical Communication (ECOC 2013), London, 2013, pp. 1–3.
[Crossref]

Jung, S. M.

S. Y. Jung, S. M. Jung, and S. K. Han, “AMO-FBMC for asynchronous heterogeneous signal integrated optical transmission,” IEEE Photonics Technol. Lett. 27(2), 133–136 (2015).
[Crossref]

Jung, S. Y.

S. Y. Jung, S. M. Jung, and S. K. Han, “AMO-FBMC for asynchronous heterogeneous signal integrated optical transmission,” IEEE Photonics Technol. Lett. 27(2), 133–136 (2015).
[Crossref]

Khalil, M. I.

M. Xu, J. Zhang, F. Lu, J. Wang, L. Cheng, H. J. Cho, M. I. Khalil, D. Guidotti, and G. K. Chang, “FBMC in next-generation mobile fronthaul networks with centralized pre-equalization,” IEEE Photonics Technol. Lett. 28(18), 1912–1915 (2016).
[Crossref]

Killey, R. I.

Koipillai, R. D.

Le, S. T.

T. T. Nguyen, S. T. Le, Q. He, L. V. Compernolle, M. Wuilpart, and P. Mégret, “Multicarrier approaches for high-baudrate optical-fiber transmission systems with a single coherent receiver,” IEEE Photonics J. 9(2), 1–10 (2017).
[Crossref]

Li, Z.

Lim, C.

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-over-fiber technologies for emerging wireless systems,” IEEE J. Quantum Electron. 52(1), 1–11 (2016).
[Crossref]

Llorente, R.

Lu, F.

J. Zhang, M. Xu, J. Wang, F. Lu, L. Cheng, H. Cho, K. Ying, J. Yu, and G. K. Chang, “Full-duplex quasi-gapless carrier aggregation using FBMC in centralized radio-over-fiber heterogeneous networks,” J. Lightwave Technol. 35(4), 989–996 (2017).
[Crossref]

M. Xu, J. Zhang, F. Lu, J. Wang, L. Cheng, H. J. Cho, M. I. Khalil, D. Guidotti, and G. K. Chang, “FBMC in next-generation mobile fronthaul networks with centralized pre-equalization,” IEEE Photonics Technol. Lett. 28(18), 1912–1915 (2016).
[Crossref]

Martin, E. P.

Mayzus, R.

T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave mobile communications for 5G cellular: it will work!” IEEE Access 1, 335–349 (2013).
[Crossref]

Mégret, P.

T. T. Nguyen, S. T. Le, Q. He, L. V. Compernolle, M. Wuilpart, and P. Mégret, “Multicarrier approaches for high-baudrate optical-fiber transmission systems with a single coherent receiver,” IEEE Photonics J. 9(2), 1–10 (2017).
[Crossref]

Modenini, A.

P. Banelli, S. Buzzi, G. Colavolpe, A. Modenini, F. Rusek, and A. Ugolini, “Modulation formats and waveforms for 5G networks: who will be the heir of OFDM? An overview of alternative modulation schemes for improved spectral efficiency,” IEEE Signal Process. Mag. 31(6), 80–93 (2014).
[Crossref]

Nanzer, J. A.

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-over-fiber technologies for emerging wireless systems,” IEEE J. Quantum Electron. 52(1), 1–11 (2016).
[Crossref]

Nguyen, T. T.

T. T. Nguyen, S. T. Le, Q. He, L. V. Compernolle, M. Wuilpart, and P. Mégret, “Multicarrier approaches for high-baudrate optical-fiber transmission systems with a single coherent receiver,” IEEE Photonics J. 9(2), 1–10 (2017).
[Crossref]

Nirmalathas, A.

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-over-fiber technologies for emerging wireless systems,” IEEE J. Quantum Electron. 52(1), 1–11 (2016).
[Crossref]

Novak, D.

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-over-fiber technologies for emerging wireless systems,” IEEE J. Quantum Electron. 52(1), 1–11 (2016).
[Crossref]

Perry, P.

Qian, Y.

L. Wei, R. Q. Hu, Y. Qian, and G. Wu, “Key elements to enable millimeter wave communications for 5G wireless systems,” IEEE Wirel. Commun. 21(6), 136–143 (2014).
[Crossref]

Rappaport, T. S.

T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave mobile communications for 5G cellular: it will work!” IEEE Access 1, 335–349 (2013).
[Crossref]

Renaud, C. C.

Rusek, F.

P. Banelli, S. Buzzi, G. Colavolpe, A. Modenini, F. Rusek, and A. Ugolini, “Modulation formats and waveforms for 5G networks: who will be the heir of OFDM? An overview of alternative modulation schemes for improved spectral efficiency,” IEEE Signal Process. Mag. 31(6), 80–93 (2014).
[Crossref]

Saljoghei, A.

Samimi, M.

T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave mobile communications for 5G cellular: it will work!” IEEE Access 1, 335–349 (2013).
[Crossref]

Schulz, J. K.

T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave mobile communications for 5G cellular: it will work!” IEEE Access 1, 335–349 (2013).
[Crossref]

Seeds, A. J.

Shams, H.

Shao, T.

Shi, K.

Sillekens, E.

Sun, S.

T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave mobile communications for 5G cellular: it will work!” IEEE Access 1, 335–349 (2013).
[Crossref]

Tang, J. M.

R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “30Gb/s real-time triple sub-band OFDM transceivers for future PONs beyond 10Gb/s/λ,” 39th European Conference and Exhibition on Optical Communication (ECOC 2013), London, 2013, pp. 1–3.
[Crossref]

Thomsen, B. C.

Ugolini, A.

P. Banelli, S. Buzzi, G. Colavolpe, A. Modenini, F. Rusek, and A. Ugolini, “Modulation formats and waveforms for 5G networks: who will be the heir of OFDM? An overview of alternative modulation schemes for improved spectral efficiency,” IEEE Signal Process. Mag. 31(6), 80–93 (2014).
[Crossref]

van Dijk, F.

Venkitesh, D.

Vujicic, V.

Wang, J.

J. Zhang, M. Xu, J. Wang, F. Lu, L. Cheng, H. Cho, K. Ying, J. Yu, and G. K. Chang, “Full-duplex quasi-gapless carrier aggregation using FBMC in centralized radio-over-fiber heterogeneous networks,” J. Lightwave Technol. 35(4), 989–996 (2017).
[Crossref]

M. Xu, J. Zhang, F. Lu, J. Wang, L. Cheng, H. J. Cho, M. I. Khalil, D. Guidotti, and G. K. Chang, “FBMC in next-generation mobile fronthaul networks with centralized pre-equalization,” IEEE Photonics Technol. Lett. 28(18), 1912–1915 (2016).
[Crossref]

Wang, K.

T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave mobile communications for 5G cellular: it will work!” IEEE Access 1, 335–349 (2013).
[Crossref]

Waterhouse, R. B.

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-over-fiber technologies for emerging wireless systems,” IEEE J. Quantum Electron. 52(1), 1–11 (2016).
[Crossref]

Wei, L.

L. Wei, R. Q. Hu, Y. Qian, and G. Wu, “Key elements to enable millimeter wave communications for 5G wireless systems,” IEEE Wirel. Commun. 21(6), 136–143 (2014).
[Crossref]

Wong, G. N.

T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave mobile communications for 5G cellular: it will work!” IEEE Access 1, 335–349 (2013).
[Crossref]

Wu, G.

L. Wei, R. Q. Hu, Y. Qian, and G. Wu, “Key elements to enable millimeter wave communications for 5G wireless systems,” IEEE Wirel. Commun. 21(6), 136–143 (2014).
[Crossref]

Wuilpart, M.

T. T. Nguyen, S. T. Le, Q. He, L. V. Compernolle, M. Wuilpart, and P. Mégret, “Multicarrier approaches for high-baudrate optical-fiber transmission systems with a single coherent receiver,” IEEE Photonics J. 9(2), 1–10 (2017).
[Crossref]

Xu, M.

J. Zhang, M. Xu, J. Wang, F. Lu, L. Cheng, H. Cho, K. Ying, J. Yu, and G. K. Chang, “Full-duplex quasi-gapless carrier aggregation using FBMC in centralized radio-over-fiber heterogeneous networks,” J. Lightwave Technol. 35(4), 989–996 (2017).
[Crossref]

M. Xu, J. Zhang, F. Lu, J. Wang, L. Cheng, H. J. Cho, M. I. Khalil, D. Guidotti, and G. K. Chang, “FBMC in next-generation mobile fronthaul networks with centralized pre-equalization,” IEEE Photonics Technol. Lett. 28(18), 1912–1915 (2016).
[Crossref]

Ying, K.

Yu, J.

Zhang, J.

J. Zhang, M. Xu, J. Wang, F. Lu, L. Cheng, H. Cho, K. Ying, J. Yu, and G. K. Chang, “Full-duplex quasi-gapless carrier aggregation using FBMC in centralized radio-over-fiber heterogeneous networks,” J. Lightwave Technol. 35(4), 989–996 (2017).
[Crossref]

M. Xu, J. Zhang, F. Lu, J. Wang, L. Cheng, H. J. Cho, M. I. Khalil, D. Guidotti, and G. K. Chang, “FBMC in next-generation mobile fronthaul networks with centralized pre-equalization,” IEEE Photonics Technol. Lett. 28(18), 1912–1915 (2016).
[Crossref]

Zhao, H.

T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave mobile communications for 5G cellular: it will work!” IEEE Access 1, 335–349 (2013).
[Crossref]

IEEE Access (1)

T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave mobile communications for 5G cellular: it will work!” IEEE Access 1, 335–349 (2013).
[Crossref]

IEEE J. Quantum Electron. (1)

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-over-fiber technologies for emerging wireless systems,” IEEE J. Quantum Electron. 52(1), 1–11 (2016).
[Crossref]

IEEE Photonics J. (1)

T. T. Nguyen, S. T. Le, Q. He, L. V. Compernolle, M. Wuilpart, and P. Mégret, “Multicarrier approaches for high-baudrate optical-fiber transmission systems with a single coherent receiver,” IEEE Photonics J. 9(2), 1–10 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (2)

M. Xu, J. Zhang, F. Lu, J. Wang, L. Cheng, H. J. Cho, M. I. Khalil, D. Guidotti, and G. K. Chang, “FBMC in next-generation mobile fronthaul networks with centralized pre-equalization,” IEEE Photonics Technol. Lett. 28(18), 1912–1915 (2016).
[Crossref]

S. Y. Jung, S. M. Jung, and S. K. Han, “AMO-FBMC for asynchronous heterogeneous signal integrated optical transmission,” IEEE Photonics Technol. Lett. 27(2), 133–136 (2015).
[Crossref]

IEEE Signal Process. Mag. (1)

P. Banelli, S. Buzzi, G. Colavolpe, A. Modenini, F. Rusek, and A. Ugolini, “Modulation formats and waveforms for 5G networks: who will be the heir of OFDM? An overview of alternative modulation schemes for improved spectral efficiency,” IEEE Signal Process. Mag. 31(6), 80–93 (2014).
[Crossref]

IEEE Wirel. Commun. (1)

L. Wei, R. Q. Hu, Y. Qian, and G. Wu, “Key elements to enable millimeter wave communications for 5G wireless systems,” IEEE Wirel. Commun. 21(6), 136–143 (2014).
[Crossref]

J. Lightwave Technol. (5)

Other (6)

K. Werfli, P. A. Haigh, Z. Ghassemlooy, N. B. Hassan, and S. Zvanovec, “A new concept of multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications,” 2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), 2016, pp. 1–5.
[Crossref]

Project Document “FBMC physical layer: a primer,” (PHYDYAS, Jan. 2010). [Online available: http://www.ict-phydyas.org/ ]

ETSI, “LTE; Evolved universal terrestrial radio access (E-UTRA); Base station (BS) radio transmission and reception”, 2015.

Y. T. Hsueh, C. Liu, S. H. Fan, J. Yu, and G. K. Chang, “A novel full-duplex testbed demonstration of converged all-band 60-GHz radio-over-fiber access architecture,” OFC/NFOEC), (Optical Society of America, 2012), pp. 1–3, paper OTu2H.5.

M. Zhu, A. Yi, Y. T. Hsueh, C. Liu, J. Wang, S. C. Shin, J. Yu, and G. K. Chang, “Demonstration of 4-band millimeter-wave radio-over-fiber system for multi-service wireless access networks,” 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), (Optical Society of America, 2013), pp. 1–3, paper OM3D.4.
[Crossref]

R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “30Gb/s real-time triple sub-band OFDM transceivers for future PONs beyond 10Gb/s/λ,” 39th European Conference and Exhibition on Optical Communication (ECOC 2013), London, 2013, pp. 1–3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Functional block diagram of (a) a single FBMC signal generation, and (b) composite FBMC signal of 5 sub-bands.
Fig. 2
Fig. 2 Electrical spectrum of offline generated 5 sub-bands FBMC signal.
Fig. 3
Fig. 3 Experimental setup for multi FBMC sub-bands transmitter and receiver. The inset figure is the optical spectrum of the mixed optical signals at the OSA.
Fig. 4
Fig. 4 Digital signal processing to recover and demodulate the received multi sub-band FBMC signals.
Fig. 5
Fig. 5 Electrical spectra of the received composite 5 FBMC sub-bands signal after (a) IF amplifier, (b) bandpass filter, (c) envelope detector, and (d) low pass filter.
Fig. 6
Fig. 6 (a) EVM and (b) BER performances versus ROP for 5 sub-bands FBMC signal. Inset figures are the constellations of 16QAM and 64QAM for ROP of 2.5 dBm.
Fig. 7
Fig. 7 EVM performances of each sub-band FBMC signal for (a) 16 QAM (b) 64 QAM.

Tables (1)

Tables Icon

Table 1 Design parameters of multi sub-band FBMC signal generation

Metrics