Abstract

We propose a blind and fast modulation format identification (MFI) enabled by the digital frequency-offset (FO) loading technique for hitless coherent transceiver. Since modulation format information is encoded to the FO distribution during digital signal processing (DSP) at the transmitter side (Tx), we can use the fast Fourier transformation based FO estimation (FFT-FOE) method to obtain the FO distribution of individual data block after constant modulus algorithm (CMA) pre-equalization at the receiver side, in order to realize non-data-aided (NDA) and fast MFI. The obtained FO can be also used for subsequent FO compensation (FOC), without additional complexity. We numerically investigate and experimentally verify the proposed MFI with high accuracy and fast format switching among 28 Gbaud dual-polarization (DP)-4/8/16/64QAM, time domain hybrid-4/16QAM, and set partitioning (SP)-128QAM. In particular, the proposed MFI brings no performance degradation, in term of tolerance of amplified spontaneous emission (ASE) noise, laser linewidth, and fiber nonlinearity. Finally, a hitless coherent transceiver enabled by the proposed MFI with switching-block of only 2048 symbols is demonstrated over 1500 km standard single mode fiber (SSMF) transmission.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Modulation format identification aided hitless flexible coherent transceiver

Meng Xiang, Qunbi Zhuge, Meng Qiu, Xingyu Zhou, Fangyuan Zhang, Ming Tang, Deming Liu, Songnian Fu, and David V. Plant
Opt. Express 24(14) 15642-15655 (2016)

RF-pilot aided modulation format identification for hitless coherent transceiver

Meng Xiang, Qunbi Zhuge, Meng Qiu, Xinyu Zhou, Ming Tang, Deming Liu, Songnian Fu, and David V. Plant
Opt. Express 25(1) 463-471 (2017)

Blind modulation format identification using nonlinear power transformation

Gengchen Liu, Roberto Proietti, Kaiqi Zhang, Hongbo Lu, and S. J. Ben Yoo
Opt. Express 25(25) 30895-30904 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Cisco Visual Networking Index, Forecast and Methodology, 2013–2018. [Online] Available at ( http://www. cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11–481360.pdf ).
  2. I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: state of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317–1337 (2014).
    [Crossref]
  3. H. Khodakarami, B. Pillai, B. Sedighi, and W. Shieh, “Flexible Optical Networks: An Energy Efficiency Perspective,” J. Lightwave Technol. 32(21), 3356–3367 (2014).
    [Crossref]
  4. Q. Zhuge, M. Morsy-Osman, X. Xu, M. Chagnon, M. Qiu, and D. V. Plant, “Spectral efficiency-adaptive optical transmission using time domain hybrid QAM for agile optical networks,” J. Lightwave Technol. 31(15), 2621–2628 (2013).
    [Crossref]
  5. Z. Zhang and C. Li, “Hitless Multi-rate Coherent Transceiver,” in Proceedings of Signal Processing in Photonic Communications (2015), paper SpS3D.2.
  6. M. Xiang, Q. Zhuge, M. Qiu, X. Zhou, F. Zhang, M. Tang, D. Liu, S. Fu, and D. V. Plant, “Modulation format identification aided hitless flexible coherent transceiver,” Opt. Express 24(14), 15642–15655 (2016).
    [Crossref] [PubMed]
  7. V. N. Rozental and D. A. Mello, “Hitless Rate Switching for Dynamically Reconfigurable Optical Systems,” IEEE Photonics J. 7(2), 1–9 (2015).
    [Crossref]
  8. K. Roberts and C. Laperle, “Flexible transceivers,” in Proceedings of European Conference and Exposition on Optical Communications (2012), paper We.3.A.3.
    [Crossref]
  9. M. Xiang, Q. Zhuge, M. Qiu, X. Zhou, M. Tang, D. Liu, S. Fu, and D. V. Plant, “RF-pilot aided modulation format identification for hitless coherent transceiver,” Opt. Express 25(1), 463–471 (2017).
    [Crossref] [PubMed]
  10. P. Isautier, J. Pan, R. DeSalvo, and S. E. Ralph, “Stokes space-based modulation format recognition for autonomous optical receivers,” J. Lightwave Technol. 33(24), 5157–5163 (2015).
    [Crossref]
  11. R. Boada, R. Borkowski, and I. T. Monroy, “Clustering algorithms for Stokes space modulation format recognition,” Opt. Express 23(12), 15521–15531 (2015).
    [Crossref] [PubMed]
  12. T. Bo, J. Tang, and C. K. Chan, “Modulation Format Recognition for Optical Signals Using Connected Component Analysis,” IEEE Photonics Technol. Lett. 29(1), 11–14 (2017).
    [Crossref]
  13. R. Borkowski, D. Zibar, A. Caballero, V. Arlunno, and I. T. Monroy, “Stokes space-based optical modulation format recognition for digital coherent receivers,” IEEE Photonics Technol. Lett. 25(21), 2129–2132 (2013).
    [Crossref]
  14. F. N. Khan, Y. Zhou, A. P. T. Lau, and C. Lu, “Modulation format identification in heterogeneous fiber-optic networks using artificial neural networks,” Opt. Express 20(11), 12422–12431 (2012).
    [Crossref] [PubMed]
  15. F. N. Khan, K. Zhong, W. H. Al-Arashi, C. Yu, C. Lu, and A. P. T. Lau, “Modulation format identification in coherent receivers using deep machine learning,” IEEE Photonics Technol. Lett. 28(17), 1886–1889 (2016).
    [Crossref]
  16. J. Liu, Z. Dong, K. P. Zhong, A. P. T. Lau, C. Lu, and Y. Lu, “Modulation format identification based on received signal power distributions for digital coherent receivers,” in Proceedings of OFC (2014), paper Th4D.3.
    [Crossref]
  17. G. Liu, R. Proietti, K. Zhang, H. Lu, and S. J. Ben Yoo, “Blind modulation format identification using nonlinear power transformation,” Opt. Express 25(25), 30895–30904 (2017).
    [Crossref] [PubMed]
  18. Y. Wang, E. Serpedin, P. Ciblat, and P. Loubaton, “Non-data aided feedforward cyclostationary statistics based carrier frequency offset estimators for linear modulations,” in Proc. GLOBECOM’01 (2001), pp. 1386–1390.
    [Crossref]
  19. M. Selmi, Y. Jaouën, P. Ciblat, and B. Lankl, “Accurate digital frequency offset estimator for coherent PolMux QAM transmission systems,” in Proc. ECOC’09 (2009), paper P3.08.
  20. Z. Xiao, S. Fu, S. Yao, M. Tang, P. Shum, and D. Liu, “ICI Mitigation for Dual-Carrier Superchannel Transmission Based on m-PSK and m-QAM Formats,” J. Lightwave Technol. 34(23), 5526–5533 (2016).
    [Crossref]
  21. J. Lu, X. Li, S. Fu, M. Luo, M. Xiang, H. Zhou, M. Tang, and D. Liu, “Joint carrier phase and frequency-offset estimation with parallel implementation for dual-polarization coherent receiver,” Opt. Express 25(5), 5217–5231 (2017).
    [Crossref] [PubMed]
  22. F. Xiao, J. Lu, S. Fu, C. Xie, M. Tang, J. Tian, and D. Liu, “Feed-forward frequency offset estimation for 32-QAM optical coherent detection,” Opt. Express 25(8), 8828–8839 (2017).
    [Crossref] [PubMed]
  23. M. Oerder and H. Meyr, “Digital Filter and Square Timing Recovery,” IEEE Trans. Commun. 36(5), 605–612 (1988).
    [Crossref]
  24. T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE Trans. Commun. 45(12), 1613–1621 (1997).
    [Crossref]
  25. T. Pfau, S. Hoffmann, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightwave Technol. 27(8), 989–999 (2009).
    [Crossref]

2017 (5)

2016 (3)

2015 (3)

2014 (2)

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: state of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317–1337 (2014).
[Crossref]

H. Khodakarami, B. Pillai, B. Sedighi, and W. Shieh, “Flexible Optical Networks: An Energy Efficiency Perspective,” J. Lightwave Technol. 32(21), 3356–3367 (2014).
[Crossref]

2013 (2)

R. Borkowski, D. Zibar, A. Caballero, V. Arlunno, and I. T. Monroy, “Stokes space-based optical modulation format recognition for digital coherent receivers,” IEEE Photonics Technol. Lett. 25(21), 2129–2132 (2013).
[Crossref]

Q. Zhuge, M. Morsy-Osman, X. Xu, M. Chagnon, M. Qiu, and D. V. Plant, “Spectral efficiency-adaptive optical transmission using time domain hybrid QAM for agile optical networks,” J. Lightwave Technol. 31(15), 2621–2628 (2013).
[Crossref]

2012 (1)

2009 (1)

1997 (1)

T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE Trans. Commun. 45(12), 1613–1621 (1997).
[Crossref]

1988 (1)

M. Oerder and H. Meyr, “Digital Filter and Square Timing Recovery,” IEEE Trans. Commun. 36(5), 605–612 (1988).
[Crossref]

Al-Arashi, W. H.

F. N. Khan, K. Zhong, W. H. Al-Arashi, C. Yu, C. Lu, and A. P. T. Lau, “Modulation format identification in coherent receivers using deep machine learning,” IEEE Photonics Technol. Lett. 28(17), 1886–1889 (2016).
[Crossref]

Arlunno, V.

R. Borkowski, D. Zibar, A. Caballero, V. Arlunno, and I. T. Monroy, “Stokes space-based optical modulation format recognition for digital coherent receivers,” IEEE Photonics Technol. Lett. 25(21), 2129–2132 (2013).
[Crossref]

Azodolmolky, S.

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: state of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317–1337 (2014).
[Crossref]

Ben Yoo, S. J.

Bo, T.

T. Bo, J. Tang, and C. K. Chan, “Modulation Format Recognition for Optical Signals Using Connected Component Analysis,” IEEE Photonics Technol. Lett. 29(1), 11–14 (2017).
[Crossref]

Boada, R.

Borkowski, R.

R. Boada, R. Borkowski, and I. T. Monroy, “Clustering algorithms for Stokes space modulation format recognition,” Opt. Express 23(12), 15521–15531 (2015).
[Crossref] [PubMed]

R. Borkowski, D. Zibar, A. Caballero, V. Arlunno, and I. T. Monroy, “Stokes space-based optical modulation format recognition for digital coherent receivers,” IEEE Photonics Technol. Lett. 25(21), 2129–2132 (2013).
[Crossref]

Caballero, A.

R. Borkowski, D. Zibar, A. Caballero, V. Arlunno, and I. T. Monroy, “Stokes space-based optical modulation format recognition for digital coherent receivers,” IEEE Photonics Technol. Lett. 25(21), 2129–2132 (2013).
[Crossref]

Careglio, D.

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: state of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317–1337 (2014).
[Crossref]

Chagnon, M.

Chan, C. K.

T. Bo, J. Tang, and C. K. Chan, “Modulation Format Recognition for Optical Signals Using Connected Component Analysis,” IEEE Photonics Technol. Lett. 29(1), 11–14 (2017).
[Crossref]

Ciblat, P.

Y. Wang, E. Serpedin, P. Ciblat, and P. Loubaton, “Non-data aided feedforward cyclostationary statistics based carrier frequency offset estimators for linear modulations,” in Proc. GLOBECOM’01 (2001), pp. 1386–1390.
[Crossref]

Cox, D. C.

T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE Trans. Commun. 45(12), 1613–1621 (1997).
[Crossref]

DeSalvo, R.

Fu, S.

Hoffmann, S.

Isautier, P.

Khan, F. N.

F. N. Khan, K. Zhong, W. H. Al-Arashi, C. Yu, C. Lu, and A. P. T. Lau, “Modulation format identification in coherent receivers using deep machine learning,” IEEE Photonics Technol. Lett. 28(17), 1886–1889 (2016).
[Crossref]

F. N. Khan, Y. Zhou, A. P. T. Lau, and C. Lu, “Modulation format identification in heterogeneous fiber-optic networks using artificial neural networks,” Opt. Express 20(11), 12422–12431 (2012).
[Crossref] [PubMed]

Khodakarami, H.

Lau, A. P. T.

F. N. Khan, K. Zhong, W. H. Al-Arashi, C. Yu, C. Lu, and A. P. T. Lau, “Modulation format identification in coherent receivers using deep machine learning,” IEEE Photonics Technol. Lett. 28(17), 1886–1889 (2016).
[Crossref]

F. N. Khan, Y. Zhou, A. P. T. Lau, and C. Lu, “Modulation format identification in heterogeneous fiber-optic networks using artificial neural networks,” Opt. Express 20(11), 12422–12431 (2012).
[Crossref] [PubMed]

Li, X.

Liu, D.

Liu, G.

Loubaton, P.

Y. Wang, E. Serpedin, P. Ciblat, and P. Loubaton, “Non-data aided feedforward cyclostationary statistics based carrier frequency offset estimators for linear modulations,” in Proc. GLOBECOM’01 (2001), pp. 1386–1390.
[Crossref]

Lu, C.

F. N. Khan, K. Zhong, W. H. Al-Arashi, C. Yu, C. Lu, and A. P. T. Lau, “Modulation format identification in coherent receivers using deep machine learning,” IEEE Photonics Technol. Lett. 28(17), 1886–1889 (2016).
[Crossref]

F. N. Khan, Y. Zhou, A. P. T. Lau, and C. Lu, “Modulation format identification in heterogeneous fiber-optic networks using artificial neural networks,” Opt. Express 20(11), 12422–12431 (2012).
[Crossref] [PubMed]

Lu, H.

Lu, J.

Luo, M.

Mello, D. A.

V. N. Rozental and D. A. Mello, “Hitless Rate Switching for Dynamically Reconfigurable Optical Systems,” IEEE Photonics J. 7(2), 1–9 (2015).
[Crossref]

Meyr, H.

M. Oerder and H. Meyr, “Digital Filter and Square Timing Recovery,” IEEE Trans. Commun. 36(5), 605–612 (1988).
[Crossref]

Monroy, I. T.

R. Boada, R. Borkowski, and I. T. Monroy, “Clustering algorithms for Stokes space modulation format recognition,” Opt. Express 23(12), 15521–15531 (2015).
[Crossref] [PubMed]

R. Borkowski, D. Zibar, A. Caballero, V. Arlunno, and I. T. Monroy, “Stokes space-based optical modulation format recognition for digital coherent receivers,” IEEE Photonics Technol. Lett. 25(21), 2129–2132 (2013).
[Crossref]

Morsy-Osman, M.

Noé, R.

Oerder, M.

M. Oerder and H. Meyr, “Digital Filter and Square Timing Recovery,” IEEE Trans. Commun. 36(5), 605–612 (1988).
[Crossref]

Palkopoulou, E.

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: state of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317–1337 (2014).
[Crossref]

Pan, J.

Pfau, T.

Pillai, B.

Plant, D. V.

Proietti, R.

Qiu, M.

Ralph, S. E.

Rozental, V. N.

V. N. Rozental and D. A. Mello, “Hitless Rate Switching for Dynamically Reconfigurable Optical Systems,” IEEE Photonics J. 7(2), 1–9 (2015).
[Crossref]

Schmidl, T. M.

T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE Trans. Commun. 45(12), 1613–1621 (1997).
[Crossref]

Sedighi, B.

Serpedin, E.

Y. Wang, E. Serpedin, P. Ciblat, and P. Loubaton, “Non-data aided feedforward cyclostationary statistics based carrier frequency offset estimators for linear modulations,” in Proc. GLOBECOM’01 (2001), pp. 1386–1390.
[Crossref]

Shieh, W.

Shum, P.

Sole-Pareta, J.

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: state of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317–1337 (2014).
[Crossref]

Tang, J.

T. Bo, J. Tang, and C. K. Chan, “Modulation Format Recognition for Optical Signals Using Connected Component Analysis,” IEEE Photonics Technol. Lett. 29(1), 11–14 (2017).
[Crossref]

Tang, M.

Tian, J.

Tomkos, I.

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: state of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317–1337 (2014).
[Crossref]

Wang, Y.

Y. Wang, E. Serpedin, P. Ciblat, and P. Loubaton, “Non-data aided feedforward cyclostationary statistics based carrier frequency offset estimators for linear modulations,” in Proc. GLOBECOM’01 (2001), pp. 1386–1390.
[Crossref]

Xiang, M.

Xiao, F.

Xiao, Z.

Xie, C.

Xu, X.

Yao, S.

Yu, C.

F. N. Khan, K. Zhong, W. H. Al-Arashi, C. Yu, C. Lu, and A. P. T. Lau, “Modulation format identification in coherent receivers using deep machine learning,” IEEE Photonics Technol. Lett. 28(17), 1886–1889 (2016).
[Crossref]

Zhang, F.

Zhang, K.

Zhong, K.

F. N. Khan, K. Zhong, W. H. Al-Arashi, C. Yu, C. Lu, and A. P. T. Lau, “Modulation format identification in coherent receivers using deep machine learning,” IEEE Photonics Technol. Lett. 28(17), 1886–1889 (2016).
[Crossref]

Zhou, H.

Zhou, X.

Zhou, Y.

Zhuge, Q.

Zibar, D.

R. Borkowski, D. Zibar, A. Caballero, V. Arlunno, and I. T. Monroy, “Stokes space-based optical modulation format recognition for digital coherent receivers,” IEEE Photonics Technol. Lett. 25(21), 2129–2132 (2013).
[Crossref]

IEEE Photonics J. (1)

V. N. Rozental and D. A. Mello, “Hitless Rate Switching for Dynamically Reconfigurable Optical Systems,” IEEE Photonics J. 7(2), 1–9 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (3)

T. Bo, J. Tang, and C. K. Chan, “Modulation Format Recognition for Optical Signals Using Connected Component Analysis,” IEEE Photonics Technol. Lett. 29(1), 11–14 (2017).
[Crossref]

R. Borkowski, D. Zibar, A. Caballero, V. Arlunno, and I. T. Monroy, “Stokes space-based optical modulation format recognition for digital coherent receivers,” IEEE Photonics Technol. Lett. 25(21), 2129–2132 (2013).
[Crossref]

F. N. Khan, K. Zhong, W. H. Al-Arashi, C. Yu, C. Lu, and A. P. T. Lau, “Modulation format identification in coherent receivers using deep machine learning,” IEEE Photonics Technol. Lett. 28(17), 1886–1889 (2016).
[Crossref]

IEEE Trans. Commun. (2)

M. Oerder and H. Meyr, “Digital Filter and Square Timing Recovery,” IEEE Trans. Commun. 36(5), 605–612 (1988).
[Crossref]

T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE Trans. Commun. 45(12), 1613–1621 (1997).
[Crossref]

J. Lightwave Technol. (5)

Opt. Express (7)

M. Xiang, Q. Zhuge, M. Qiu, X. Zhou, F. Zhang, M. Tang, D. Liu, S. Fu, and D. V. Plant, “Modulation format identification aided hitless flexible coherent transceiver,” Opt. Express 24(14), 15642–15655 (2016).
[Crossref] [PubMed]

M. Xiang, Q. Zhuge, M. Qiu, X. Zhou, M. Tang, D. Liu, S. Fu, and D. V. Plant, “RF-pilot aided modulation format identification for hitless coherent transceiver,” Opt. Express 25(1), 463–471 (2017).
[Crossref] [PubMed]

R. Boada, R. Borkowski, and I. T. Monroy, “Clustering algorithms for Stokes space modulation format recognition,” Opt. Express 23(12), 15521–15531 (2015).
[Crossref] [PubMed]

F. N. Khan, Y. Zhou, A. P. T. Lau, and C. Lu, “Modulation format identification in heterogeneous fiber-optic networks using artificial neural networks,” Opt. Express 20(11), 12422–12431 (2012).
[Crossref] [PubMed]

G. Liu, R. Proietti, K. Zhang, H. Lu, and S. J. Ben Yoo, “Blind modulation format identification using nonlinear power transformation,” Opt. Express 25(25), 30895–30904 (2017).
[Crossref] [PubMed]

J. Lu, X. Li, S. Fu, M. Luo, M. Xiang, H. Zhou, M. Tang, and D. Liu, “Joint carrier phase and frequency-offset estimation with parallel implementation for dual-polarization coherent receiver,” Opt. Express 25(5), 5217–5231 (2017).
[Crossref] [PubMed]

F. Xiao, J. Lu, S. Fu, C. Xie, M. Tang, J. Tian, and D. Liu, “Feed-forward frequency offset estimation for 32-QAM optical coherent detection,” Opt. Express 25(8), 8828–8839 (2017).
[Crossref] [PubMed]

Proc. IEEE (1)

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: state of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317–1337 (2014).
[Crossref]

Other (6)

Cisco Visual Networking Index, Forecast and Methodology, 2013–2018. [Online] Available at ( http://www. cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11–481360.pdf ).

Z. Zhang and C. Li, “Hitless Multi-rate Coherent Transceiver,” in Proceedings of Signal Processing in Photonic Communications (2015), paper SpS3D.2.

K. Roberts and C. Laperle, “Flexible transceivers,” in Proceedings of European Conference and Exposition on Optical Communications (2012), paper We.3.A.3.
[Crossref]

Y. Wang, E. Serpedin, P. Ciblat, and P. Loubaton, “Non-data aided feedforward cyclostationary statistics based carrier frequency offset estimators for linear modulations,” in Proc. GLOBECOM’01 (2001), pp. 1386–1390.
[Crossref]

M. Selmi, Y. Jaouën, P. Ciblat, and B. Lankl, “Accurate digital frequency offset estimator for coherent PolMux QAM transmission systems,” in Proc. ECOC’09 (2009), paper P3.08.

J. Liu, Z. Dong, K. P. Zhong, A. P. T. Lau, C. Lu, and Y. Lu, “Modulation format identification based on received signal power distributions for digital coherent receivers,” in Proceedings of OFC (2014), paper Th4D.3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Discrete-frequency spectrums of (a) DP-4QAM under the condition of OSNR = 9 dB, (b) DP-hybrid-4/16QAM under the condition of OSNR = 12 dB, (c) DP-16QAM under the condition of OSNR = 12 dB, and (d) DP-64QAM under the condition of OSNR = 15 dB. The symbol rate is 28 Gbaud.
Fig. 2
Fig. 2 MFI with the digital FO loading of 200MHz, including discrete-frequency spectrum obtained by the FFT with coding “0” or “1”.
Fig. 3
Fig. 3 (a) Experimental setup of the proposed MFI aided hitless coherent transceiver, the schematics of the offline DSP in the (b) transmitter and (c) receiver. (PBS: polarization beam splitter, PBC: polarization beam combiner, AOM: acousto-optic modulator. PC: polarization controller.)
Fig. 4
Fig. 4 (a) Laser linewidth tolerance of DP-4QAM, DP-hybrid 4/16QAM, DP-16QAM, and DP-64QAM under the scenario of B2B transmission. (b) BER versus launch power for DP-8QAM, SP-128QAM, DP-16QAM, and DP-64QAM after 2640 km, 2120 km, 1840 km and 520 km SSMF transmission, respectively.
Fig. 5
Fig. 5 BER as a function of the digitally loaded FO value for DP-16QAM signals after 1500 km SSMF transmissions.
Fig. 6
Fig. 6 B2B performance for DP-4QAM, SP-128QAM, DP-16QAM, DP-hybrid-4/16QAM, and DP-64QAM.
Fig. 7
Fig. 7 (a) Correct probability of MFIs versus OSNR under the scenario of B2B transmission. (b) Correct probability of MFIs versus the SSMF transmission distance. “Circle”: DP-64QAM, “Square”: DP-16QAM.
Fig. 8
Fig. 8 (a) BER and SNR versus block index for the interleaved DP-16QAM, hybrid-4/16QAM and SP-128QAM. (b) Corresponding FO distribution of signals in (a). (c) BER and SNR versus block index for interleaved hybrid-4/16QAM, SP-128QAM and DP-8QAM. (d) Corresponding FO distribution of signals in (c).

Tables (1)

Tables Icon

Table 1 Example of modulation format encoding given 4-bit information

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

t(k)=m(k)exp(jΔωk) k=0,1,2...511
Δ f ^ = 1 4 arg max | Δ f ^ |<1/2T | k=0 N1 r 4 (k) e j2πΔ f ^ Tk |

Metrics