Abstract

Active ultraviolet light-induced terahertz modulation of an indium oxide film is investigated. A large absorption modulation of ~66% is achieved upon illumination with a low intensity UV laser (11 mW/cm2). The interaction between indium oxide and a flexible metamaterial structure is investigated owing to the large UV-induced enhancement of photo carriers observed in an indium oxide film. We are able to realize absorption peak shifts of 37 GHz by changing the UV excitation light intensity. We also propose a multi-frequency switch by building a circular metallic split ring resonator whose gaps are filled with silicon, germanium, and indium oxide. In future, a photo-excited tunable multi-frequency metamaterial switch can be realized by irradiating the structure with multi-wavelength laser beam.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
UV-induced terahertz wave modulation in free-standing ZnO nanowire films

J. T. Hong, Ji-Yong Park, Soonil Lee, and Y. H. Ahn
Opt. Mater. Express 6(12) 3751-3758 (2016)

Resonance enhancement of terahertz metamaterials by liquid crystals/indium tin oxide interfaces

Zhen Liu, Chia-Yi Huang, Hongwei Liu, Xinhai Zhang, and Chengkuo Lee
Opt. Express 21(5) 6519-6525 (2013)

Superior local conductivity in self-organized nanodots on indium-tin-oxide films induced by femtosecond laser pulses

Chih Wang, Hsuan-I Wang, Wei-Tsung Tang, Chih-Wei Luo, Takayoshi Kobayashi, and Jihperng Leu
Opt. Express 19(24) 24286-24297 (2011)

References

  • View by:
  • |
  • |
  • |

  1. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [Crossref] [PubMed]
  2. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  3. M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
    [Crossref] [PubMed]
  4. H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
    [Crossref]
  5. E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
    [Crossref] [PubMed]
  6. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
    [Crossref] [PubMed]
  7. T. K. Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett. 84(18), 3555–3557 (2004).
    [Crossref]
  8. Y. N. He, B. Zhang, T. He, T. J. Chen, G. C. Wang, Y. B. Hou, W. Xiong, and J. L. Shen, “Optically-controlled metamaterial absorber based on hybrid structure,” Opt. Commun. 356, 595–598 (2015).
    [Crossref]
  9. J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
    [Crossref]
  10. G. S. Deng, P. Chen, J. Yang, Z. P. Yin, and L. Z. Qiu, “Graphene-based tunable polarization sensitive terahertz metamaterial absorber,” Opt. Commun. 380, 101–107 (2016).
    [Crossref]
  11. G. C. Wang, B. Zhang, H. Y. Ji, X. Liu, T. He, L. F. Lv, Y. B. Hou, and J. L. Shen, “Monolayer graphene based organic optical terahertz modulator,” Appl. Phys. Lett. 110(2), 023301 (2017).
    [Crossref]
  12. B. Zhang, T. He, J. Shen, Y. Hou, Y. Hu, M. Zang, T. Chen, S. Feng, F. Teng, and L. Qin, “Conjugated polymer-based broadband terahertz wave modulator,” Opt. Lett. 39(21), 6110–6113 (2014).
    [Crossref] [PubMed]
  13. B. Zhang, L. F. Lv, T. He, T. J. Chen, M. D. Zang, L. Zhong, X. K. Wang, J. L. Shen, and Y. B. Hou, “Active terahertz device based on optically controlled organometal halide perovskite,” Appl. Phys. Lett. 107(9), 093301 (2015).
    [Crossref]
  14. Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W. W. Liu, Q. H. Yang, M. Sanderson, and H. W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2015).
    [Crossref] [PubMed]
  15. Z. Li, Y. Zhang, and B. Li, “Terahertz photonic crystal switch in silicon based on self-imaging principle,” Opt. Express 14(9), 3887–3892 (2006).
    [Crossref] [PubMed]
  16. Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6(1), 7082 (2015).
    [Crossref] [PubMed]
  17. S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
    [Crossref] [PubMed]
  18. X. J. Wu, X. C. Pan, B. G. Quan, and L. Wang, “Optical modulation of terahertz behavior in silicon with structured surfaces,” Appl. Phys. Lett. 103(12), 121112 (2013).
    [Crossref]
  19. H. K. Yoo, C. Kang, Y. Yoon, H. Lee, J. W. Lee, K. Lee, and C. S. Kee, “Organic conjugated material-based broadband terahertz wave modulators,” Appl. Phys. Lett. 99(6), 061108 (2011).
    [Crossref]
  20. L. Cong, Y. K. Srivastava, A. Solanki, T. C. Sum, and R. Singh, “Perovskite as a platform for active flexible metaphotonic devices,” ACS Photonics 4(7), 1595–1601 (2017).
    [Crossref]
  21. M. Shalaby, M. Peccianti, Y. Ozturk, I. Al-Naib, C. P. Hauri, and R. Morandotti, “Terahertz magnetic modulator based on magnetically clustered nanoparticles,” Appl. Phys. Lett. 105(15), 151108 (2014).
    [Crossref]
  22. J. B. Baxter and C. A. Schmuttenmaer, “Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy,” J. Phys. Chem. B 110(50), 25229–25239 (2006).
    [Crossref] [PubMed]
  23. M. Mazzillo, G. Condorelli, M. E. Castagna, G. Catania, A. Sciuto, F. Roccaforte, and V. Raineri, “Highly efficient low reverse biased 4H-SiC Schottky photodiodes for UV-light detection,” IEEE Photonics Technol. Lett. 21(23), 1782–1784 (2009).
    [Crossref]
  24. X. Fang, Y. Bando, M. Liao, U. K. Gautam, C. Zhi, B. Dierre, B. Liu, T. Zhai, T. Sekiguchi, Y. Koide, and D. Golberg, “Single-crystalline ZnS nanobelts as ultraviolet-light sensors,” Adv. Mater. 21(20), 2034–2039 (2009).
    [Crossref]
  25. J. T. Hong, J. Y. Park, S. Lee, and Y. H. Ahn, “UV-induced terahertz wave modulation in free-standing ZnO nanowire films,” Opt. Mater. Express 6(12), 3751 (2016).
    [Crossref]
  26. H. Ji, B. Zhang, G. Wang, W. Wang, and J. Shen, “Photo-excited multi-frequency terahertz switch based on a composite metamaterial structure,” Opt. Commum. 412, 37–40 (2018).
    [Crossref]

2018 (1)

H. Ji, B. Zhang, G. Wang, W. Wang, and J. Shen, “Photo-excited multi-frequency terahertz switch based on a composite metamaterial structure,” Opt. Commum. 412, 37–40 (2018).
[Crossref]

2017 (2)

G. C. Wang, B. Zhang, H. Y. Ji, X. Liu, T. He, L. F. Lv, Y. B. Hou, and J. L. Shen, “Monolayer graphene based organic optical terahertz modulator,” Appl. Phys. Lett. 110(2), 023301 (2017).
[Crossref]

L. Cong, Y. K. Srivastava, A. Solanki, T. C. Sum, and R. Singh, “Perovskite as a platform for active flexible metaphotonic devices,” ACS Photonics 4(7), 1595–1601 (2017).
[Crossref]

2016 (3)

S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
[Crossref] [PubMed]

G. S. Deng, P. Chen, J. Yang, Z. P. Yin, and L. Z. Qiu, “Graphene-based tunable polarization sensitive terahertz metamaterial absorber,” Opt. Commun. 380, 101–107 (2016).
[Crossref]

J. T. Hong, J. Y. Park, S. Lee, and Y. H. Ahn, “UV-induced terahertz wave modulation in free-standing ZnO nanowire films,” Opt. Mater. Express 6(12), 3751 (2016).
[Crossref]

2015 (4)

B. Zhang, L. F. Lv, T. He, T. J. Chen, M. D. Zang, L. Zhong, X. K. Wang, J. L. Shen, and Y. B. Hou, “Active terahertz device based on optically controlled organometal halide perovskite,” Appl. Phys. Lett. 107(9), 093301 (2015).
[Crossref]

Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W. W. Liu, Q. H. Yang, M. Sanderson, and H. W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2015).
[Crossref] [PubMed]

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6(1), 7082 (2015).
[Crossref] [PubMed]

Y. N. He, B. Zhang, T. He, T. J. Chen, G. C. Wang, Y. B. Hou, W. Xiong, and J. L. Shen, “Optically-controlled metamaterial absorber based on hybrid structure,” Opt. Commun. 356, 595–598 (2015).
[Crossref]

2014 (2)

M. Shalaby, M. Peccianti, Y. Ozturk, I. Al-Naib, C. P. Hauri, and R. Morandotti, “Terahertz magnetic modulator based on magnetically clustered nanoparticles,” Appl. Phys. Lett. 105(15), 151108 (2014).
[Crossref]

B. Zhang, T. He, J. Shen, Y. Hou, Y. Hu, M. Zang, T. Chen, S. Feng, F. Teng, and L. Qin, “Conjugated polymer-based broadband terahertz wave modulator,” Opt. Lett. 39(21), 6110–6113 (2014).
[Crossref] [PubMed]

2013 (1)

X. J. Wu, X. C. Pan, B. G. Quan, and L. Wang, “Optical modulation of terahertz behavior in silicon with structured surfaces,” Appl. Phys. Lett. 103(12), 121112 (2013).
[Crossref]

2012 (1)

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

2011 (1)

H. K. Yoo, C. Kang, Y. Yoon, H. Lee, J. W. Lee, K. Lee, and C. S. Kee, “Organic conjugated material-based broadband terahertz wave modulators,” Appl. Phys. Lett. 99(6), 061108 (2011).
[Crossref]

2010 (1)

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

2009 (3)

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

M. Mazzillo, G. Condorelli, M. E. Castagna, G. Catania, A. Sciuto, F. Roccaforte, and V. Raineri, “Highly efficient low reverse biased 4H-SiC Schottky photodiodes for UV-light detection,” IEEE Photonics Technol. Lett. 21(23), 1782–1784 (2009).
[Crossref]

X. Fang, Y. Bando, M. Liao, U. K. Gautam, C. Zhi, B. Dierre, B. Liu, T. Zhai, T. Sekiguchi, Y. Koide, and D. Golberg, “Single-crystalline ZnS nanobelts as ultraviolet-light sensors,” Adv. Mater. 21(20), 2034–2039 (2009).
[Crossref]

2008 (1)

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[Crossref] [PubMed]

2007 (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

2006 (3)

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

J. B. Baxter and C. A. Schmuttenmaer, “Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy,” J. Phys. Chem. B 110(50), 25229–25239 (2006).
[Crossref] [PubMed]

Z. Li, Y. Zhang, and B. Li, “Terahertz photonic crystal switch in silicon based on self-imaging principle,” Opt. Express 14(9), 3887–3892 (2006).
[Crossref] [PubMed]

2004 (1)

T. K. Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett. 84(18), 3555–3557 (2004).
[Crossref]

2002 (1)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Ahn, Y. H.

Al-Naib, I.

M. Shalaby, M. Peccianti, Y. Ozturk, I. Al-Naib, C. P. Hauri, and R. Morandotti, “Terahertz magnetic modulator based on magnetically clustered nanoparticles,” Appl. Phys. Lett. 105(15), 151108 (2014).
[Crossref]

Averitt, R. D.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Azad, A. K.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Bando, Y.

X. Fang, Y. Bando, M. Liao, U. K. Gautam, C. Zhi, B. Dierre, B. Liu, T. Zhai, T. Sekiguchi, Y. Koide, and D. Golberg, “Single-crystalline ZnS nanobelts as ultraviolet-light sensors,” Adv. Mater. 21(20), 2034–2039 (2009).
[Crossref]

Baxter, J. B.

J. B. Baxter and C. A. Schmuttenmaer, “Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy,” J. Phys. Chem. B 110(50), 25229–25239 (2006).
[Crossref] [PubMed]

Bonn, M.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[Crossref] [PubMed]

Castagna, M. E.

M. Mazzillo, G. Condorelli, M. E. Castagna, G. Catania, A. Sciuto, F. Roccaforte, and V. Raineri, “Highly efficient low reverse biased 4H-SiC Schottky photodiodes for UV-light detection,” IEEE Photonics Technol. Lett. 21(23), 1782–1784 (2009).
[Crossref]

Catania, G.

M. Mazzillo, G. Condorelli, M. E. Castagna, G. Catania, A. Sciuto, F. Roccaforte, and V. Raineri, “Highly efficient low reverse biased 4H-SiC Schottky photodiodes for UV-light detection,” IEEE Photonics Technol. Lett. 21(23), 1782–1784 (2009).
[Crossref]

Chang, S.

S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
[Crossref] [PubMed]

Chen, H. T.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Chen, P.

G. S. Deng, P. Chen, J. Yang, Z. P. Yin, and L. Z. Qiu, “Graphene-based tunable polarization sensitive terahertz metamaterial absorber,” Opt. Commun. 380, 101–107 (2016).
[Crossref]

Chen, S.

S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
[Crossref] [PubMed]

Chen, T.

Chen, T. J.

Y. N. He, B. Zhang, T. He, T. J. Chen, G. C. Wang, Y. B. Hou, W. Xiong, and J. L. Shen, “Optically-controlled metamaterial absorber based on hybrid structure,” Opt. Commun. 356, 595–598 (2015).
[Crossref]

B. Zhang, L. F. Lv, T. He, T. J. Chen, M. D. Zang, L. Zhong, X. K. Wang, J. L. Shen, and Y. B. Hou, “Active terahertz device based on optically controlled organometal halide perovskite,” Appl. Phys. Lett. 107(9), 093301 (2015).
[Crossref]

Chen, Z.

Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W. W. Liu, Q. H. Yang, M. Sanderson, and H. W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2015).
[Crossref] [PubMed]

Cich, M. J.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Condorelli, G.

M. Mazzillo, G. Condorelli, M. E. Castagna, G. Catania, A. Sciuto, F. Roccaforte, and V. Raineri, “Highly efficient low reverse biased 4H-SiC Schottky photodiodes for UV-light detection,” IEEE Photonics Technol. Lett. 21(23), 1782–1784 (2009).
[Crossref]

Cong, L.

L. Cong, Y. K. Srivastava, A. Solanki, T. C. Sum, and R. Singh, “Perovskite as a platform for active flexible metaphotonic devices,” ACS Photonics 4(7), 1595–1601 (2017).
[Crossref]

Dawson, P.

T. K. Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett. 84(18), 3555–3557 (2004).
[Crossref]

Deng, G. S.

G. S. Deng, P. Chen, J. Yang, Z. P. Yin, and L. Z. Qiu, “Graphene-based tunable polarization sensitive terahertz metamaterial absorber,” Opt. Commun. 380, 101–107 (2016).
[Crossref]

Dierre, B.

X. Fang, Y. Bando, M. Liao, U. K. Gautam, C. Zhi, B. Dierre, B. Liu, T. Zhai, T. Sekiguchi, Y. Koide, and D. Golberg, “Single-crystalline ZnS nanobelts as ultraviolet-light sensors,” Adv. Mater. 21(20), 2034–2039 (2009).
[Crossref]

Du, L.

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6(1), 7082 (2015).
[Crossref] [PubMed]

Fan, F.

S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
[Crossref] [PubMed]

Fan, K.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Fang, X.

X. Fang, Y. Bando, M. Liao, U. K. Gautam, C. Zhi, B. Dierre, B. Liu, T. Zhai, T. Sekiguchi, Y. Koide, and D. Golberg, “Single-crystalline ZnS nanobelts as ultraviolet-light sensors,” Adv. Mater. 21(20), 2034–2039 (2009).
[Crossref]

Feng, S.

Ferguson, B.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Garcia-Vidal, F. J.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[Crossref] [PubMed]

Gautam, U. K.

X. Fang, Y. Bando, M. Liao, U. K. Gautam, C. Zhi, B. Dierre, B. Liu, T. Zhai, T. Sekiguchi, Y. Koide, and D. Golberg, “Single-crystalline ZnS nanobelts as ultraviolet-light sensors,” Adv. Mater. 21(20), 2034–2039 (2009).
[Crossref]

Golberg, D.

X. Fang, Y. Bando, M. Liao, U. K. Gautam, C. Zhi, B. Dierre, B. Liu, T. Zhai, T. Sekiguchi, Y. Koide, and D. Golberg, “Single-crystalline ZnS nanobelts as ultraviolet-light sensors,” Adv. Mater. 21(20), 2034–2039 (2009).
[Crossref]

Gossard, A. C.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Gu, J.

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6(1), 7082 (2015).
[Crossref] [PubMed]

Han, J.

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6(1), 7082 (2015).
[Crossref] [PubMed]

Hao, J. M.

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Hauri, C. P.

M. Shalaby, M. Peccianti, Y. Ozturk, I. Al-Naib, C. P. Hauri, and R. Morandotti, “Terahertz magnetic modulator based on magnetically clustered nanoparticles,” Appl. Phys. Lett. 105(15), 151108 (2014).
[Crossref]

He, T.

G. C. Wang, B. Zhang, H. Y. Ji, X. Liu, T. He, L. F. Lv, Y. B. Hou, and J. L. Shen, “Monolayer graphene based organic optical terahertz modulator,” Appl. Phys. Lett. 110(2), 023301 (2017).
[Crossref]

B. Zhang, L. F. Lv, T. He, T. J. Chen, M. D. Zang, L. Zhong, X. K. Wang, J. L. Shen, and Y. B. Hou, “Active terahertz device based on optically controlled organometal halide perovskite,” Appl. Phys. Lett. 107(9), 093301 (2015).
[Crossref]

Y. N. He, B. Zhang, T. He, T. J. Chen, G. C. Wang, Y. B. Hou, W. Xiong, and J. L. Shen, “Optically-controlled metamaterial absorber based on hybrid structure,” Opt. Commun. 356, 595–598 (2015).
[Crossref]

B. Zhang, T. He, J. Shen, Y. Hou, Y. Hu, M. Zang, T. Chen, S. Feng, F. Teng, and L. Qin, “Conjugated polymer-based broadband terahertz wave modulator,” Opt. Lett. 39(21), 6110–6113 (2014).
[Crossref] [PubMed]

He, X.

S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
[Crossref] [PubMed]

He, Y. N.

Y. N. He, B. Zhang, T. He, T. J. Chen, G. C. Wang, Y. B. Hou, W. Xiong, and J. L. Shen, “Optically-controlled metamaterial absorber based on hybrid structure,” Opt. Commun. 356, 595–598 (2015).
[Crossref]

Hein, G.

T. K. Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett. 84(18), 3555–3557 (2004).
[Crossref]

Hendry, E.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[Crossref] [PubMed]

Hibbins, A. P.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[Crossref] [PubMed]

Hong, J. T.

Hou, Y.

Hou, Y. B.

G. C. Wang, B. Zhang, H. Y. Ji, X. Liu, T. He, L. F. Lv, Y. B. Hou, and J. L. Shen, “Monolayer graphene based organic optical terahertz modulator,” Appl. Phys. Lett. 110(2), 023301 (2017).
[Crossref]

B. Zhang, L. F. Lv, T. He, T. J. Chen, M. D. Zang, L. Zhong, X. K. Wang, J. L. Shen, and Y. B. Hou, “Active terahertz device based on optically controlled organometal halide perovskite,” Appl. Phys. Lett. 107(9), 093301 (2015).
[Crossref]

Y. N. He, B. Zhang, T. He, T. J. Chen, G. C. Wang, Y. B. Hou, W. Xiong, and J. L. Shen, “Optically-controlled metamaterial absorber based on hybrid structure,” Opt. Commun. 356, 595–598 (2015).
[Crossref]

Hu, Y.

Hwang, H. Y.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Ji, H.

H. Ji, B. Zhang, G. Wang, W. Wang, and J. Shen, “Photo-excited multi-frequency terahertz switch based on a composite metamaterial structure,” Opt. Commum. 412, 37–40 (2018).
[Crossref]

Ji, H. Y.

G. C. Wang, B. Zhang, H. Y. Ji, X. Liu, T. He, L. F. Lv, Y. B. Hou, and J. L. Shen, “Monolayer graphene based organic optical terahertz modulator,” Appl. Phys. Lett. 110(2), 023301 (2017).
[Crossref]

Kang, C.

H. K. Yoo, C. Kang, Y. Yoon, H. Lee, J. W. Lee, K. Lee, and C. S. Kee, “Organic conjugated material-based broadband terahertz wave modulators,” Appl. Phys. Lett. 99(6), 061108 (2011).
[Crossref]

Kee, C. S.

H. K. Yoo, C. Kang, Y. Yoon, H. Lee, J. W. Lee, K. Lee, and C. S. Kee, “Organic conjugated material-based broadband terahertz wave modulators,” Appl. Phys. Lett. 99(6), 061108 (2011).
[Crossref]

Keiser, G. R.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Kittiwatanakul, S.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Koch, M.

T. K. Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett. 84(18), 3555–3557 (2004).
[Crossref]

Koide, Y.

X. Fang, Y. Bando, M. Liao, U. K. Gautam, C. Zhi, B. Dierre, B. Liu, T. Zhai, T. Sekiguchi, Y. Koide, and D. Golberg, “Single-crystalline ZnS nanobelts as ultraviolet-light sensors,” Adv. Mater. 21(20), 2034–2039 (2009).
[Crossref]

Lee, H.

H. K. Yoo, C. Kang, Y. Yoon, H. Lee, J. W. Lee, K. Lee, and C. S. Kee, “Organic conjugated material-based broadband terahertz wave modulators,” Appl. Phys. Lett. 99(6), 061108 (2011).
[Crossref]

Lee, J. W.

H. K. Yoo, C. Kang, Y. Yoon, H. Lee, J. W. Lee, K. Lee, and C. S. Kee, “Organic conjugated material-based broadband terahertz wave modulators,” Appl. Phys. Lett. 99(6), 061108 (2011).
[Crossref]

Lee, K.

H. K. Yoo, C. Kang, Y. Yoon, H. Lee, J. W. Lee, K. Lee, and C. S. Kee, “Organic conjugated material-based broadband terahertz wave modulators,” Appl. Phys. Lett. 99(6), 061108 (2011).
[Crossref]

Lee, S.

Li, B.

Li, Q.

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6(1), 7082 (2015).
[Crossref] [PubMed]

Li, Z.

Liao, M.

X. Fang, Y. Bando, M. Liao, U. K. Gautam, C. Zhi, B. Dierre, B. Liu, T. Zhai, T. Sekiguchi, Y. Koide, and D. Golberg, “Single-crystalline ZnS nanobelts as ultraviolet-light sensors,” Adv. Mater. 21(20), 2034–2039 (2009).
[Crossref]

Liu, B.

X. Fang, Y. Bando, M. Liao, U. K. Gautam, C. Zhi, B. Dierre, B. Liu, T. Zhai, T. Sekiguchi, Y. Koide, and D. Golberg, “Single-crystalline ZnS nanobelts as ultraviolet-light sensors,” Adv. Mater. 21(20), 2034–2039 (2009).
[Crossref]

Liu, M.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Liu, W. W.

Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W. W. Liu, Q. H. Yang, M. Sanderson, and H. W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2015).
[Crossref] [PubMed]

Liu, X.

G. C. Wang, B. Zhang, H. Y. Ji, X. Liu, T. He, L. F. Lv, Y. B. Hou, and J. L. Shen, “Monolayer graphene based organic optical terahertz modulator,” Appl. Phys. Lett. 110(2), 023301 (2017).
[Crossref]

Liu, X. L.

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Lockyear, M. J.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[Crossref] [PubMed]

Lu, J.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Lv, L. F.

G. C. Wang, B. Zhang, H. Y. Ji, X. Liu, T. He, L. F. Lv, Y. B. Hou, and J. L. Shen, “Monolayer graphene based organic optical terahertz modulator,” Appl. Phys. Lett. 110(2), 023301 (2017).
[Crossref]

B. Zhang, L. F. Lv, T. He, T. J. Chen, M. D. Zang, L. Zhong, X. K. Wang, J. L. Shen, and Y. B. Hou, “Active terahertz device based on optically controlled organometal halide perovskite,” Appl. Phys. Lett. 107(9), 093301 (2015).
[Crossref]

Mao, Q.

Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W. W. Liu, Q. H. Yang, M. Sanderson, and H. W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2015).
[Crossref] [PubMed]

Martin-Moreno, L.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[Crossref] [PubMed]

Mazzillo, M.

M. Mazzillo, G. Condorelli, M. E. Castagna, G. Catania, A. Sciuto, F. Roccaforte, and V. Raineri, “Highly efficient low reverse biased 4H-SiC Schottky photodiodes for UV-light detection,” IEEE Photonics Technol. Lett. 21(23), 1782–1784 (2009).
[Crossref]

Miao, Y.

S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
[Crossref] [PubMed]

Morandotti, R.

M. Shalaby, M. Peccianti, Y. Ozturk, I. Al-Naib, C. P. Hauri, and R. Morandotti, “Terahertz magnetic modulator based on magnetically clustered nanoparticles,” Appl. Phys. Lett. 105(15), 151108 (2014).
[Crossref]

Nelson, K. A.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Omenetto, F. G.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Ostmann, T. K.

T. K. Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett. 84(18), 3555–3557 (2004).
[Crossref]

Ozturk, Y.

M. Shalaby, M. Peccianti, Y. Ozturk, I. Al-Naib, C. P. Hauri, and R. Morandotti, “Terahertz magnetic modulator based on magnetically clustered nanoparticles,” Appl. Phys. Lett. 105(15), 151108 (2014).
[Crossref]

Padilla, W. J.

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Pan, X. C.

X. J. Wu, X. C. Pan, B. G. Quan, and L. Wang, “Optical modulation of terahertz behavior in silicon with structured surfaces,” Appl. Phys. Lett. 103(12), 121112 (2013).
[Crossref]

Park, J. Y.

Peccianti, M.

M. Shalaby, M. Peccianti, Y. Ozturk, I. Al-Naib, C. P. Hauri, and R. Morandotti, “Terahertz magnetic modulator based on magnetically clustered nanoparticles,” Appl. Phys. Lett. 105(15), 151108 (2014).
[Crossref]

Pierz, K.

T. K. Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett. 84(18), 3555–3557 (2004).
[Crossref]

Qin, L.

Qiu, L. Z.

G. S. Deng, P. Chen, J. Yang, Z. P. Yin, and L. Z. Qiu, “Graphene-based tunable polarization sensitive terahertz metamaterial absorber,” Opt. Commun. 380, 101–107 (2016).
[Crossref]

Qiu, M.

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Quan, B. G.

X. J. Wu, X. C. Pan, B. G. Quan, and L. Wang, “Optical modulation of terahertz behavior in silicon with structured surfaces,” Appl. Phys. Lett. 103(12), 121112 (2013).
[Crossref]

Raineri, V.

M. Mazzillo, G. Condorelli, M. E. Castagna, G. Catania, A. Sciuto, F. Roccaforte, and V. Raineri, “Highly efficient low reverse biased 4H-SiC Schottky photodiodes for UV-light detection,” IEEE Photonics Technol. Lett. 21(23), 1782–1784 (2009).
[Crossref]

Rivas, J. G.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[Crossref] [PubMed]

Roccaforte, F.

M. Mazzillo, G. Condorelli, M. E. Castagna, G. Catania, A. Sciuto, F. Roccaforte, and V. Raineri, “Highly efficient low reverse biased 4H-SiC Schottky photodiodes for UV-light detection,” IEEE Photonics Technol. Lett. 21(23), 1782–1784 (2009).
[Crossref]

Sanderson, M.

Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W. W. Liu, Q. H. Yang, M. Sanderson, and H. W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2015).
[Crossref] [PubMed]

Schmuttenmaer, C. A.

J. B. Baxter and C. A. Schmuttenmaer, “Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy,” J. Phys. Chem. B 110(50), 25229–25239 (2006).
[Crossref] [PubMed]

Sciuto, A.

M. Mazzillo, G. Condorelli, M. E. Castagna, G. Catania, A. Sciuto, F. Roccaforte, and V. Raineri, “Highly efficient low reverse biased 4H-SiC Schottky photodiodes for UV-light detection,” IEEE Photonics Technol. Lett. 21(23), 1782–1784 (2009).
[Crossref]

Sekiguchi, T.

X. Fang, Y. Bando, M. Liao, U. K. Gautam, C. Zhi, B. Dierre, B. Liu, T. Zhai, T. Sekiguchi, Y. Koide, and D. Golberg, “Single-crystalline ZnS nanobelts as ultraviolet-light sensors,” Adv. Mater. 21(20), 2034–2039 (2009).
[Crossref]

Shalaby, M.

M. Shalaby, M. Peccianti, Y. Ozturk, I. Al-Naib, C. P. Hauri, and R. Morandotti, “Terahertz magnetic modulator based on magnetically clustered nanoparticles,” Appl. Phys. Lett. 105(15), 151108 (2014).
[Crossref]

Shen, J.

H. Ji, B. Zhang, G. Wang, W. Wang, and J. Shen, “Photo-excited multi-frequency terahertz switch based on a composite metamaterial structure,” Opt. Commum. 412, 37–40 (2018).
[Crossref]

B. Zhang, T. He, J. Shen, Y. Hou, Y. Hu, M. Zang, T. Chen, S. Feng, F. Teng, and L. Qin, “Conjugated polymer-based broadband terahertz wave modulator,” Opt. Lett. 39(21), 6110–6113 (2014).
[Crossref] [PubMed]

Shen, J. L.

G. C. Wang, B. Zhang, H. Y. Ji, X. Liu, T. He, L. F. Lv, Y. B. Hou, and J. L. Shen, “Monolayer graphene based organic optical terahertz modulator,” Appl. Phys. Lett. 110(2), 023301 (2017).
[Crossref]

B. Zhang, L. F. Lv, T. He, T. J. Chen, M. D. Zang, L. Zhong, X. K. Wang, J. L. Shen, and Y. B. Hou, “Active terahertz device based on optically controlled organometal halide perovskite,” Appl. Phys. Lett. 107(9), 093301 (2015).
[Crossref]

Y. N. He, B. Zhang, T. He, T. J. Chen, G. C. Wang, Y. B. Hou, W. Xiong, and J. L. Shen, “Optically-controlled metamaterial absorber based on hybrid structure,” Opt. Commun. 356, 595–598 (2015).
[Crossref]

Singh, R.

L. Cong, Y. K. Srivastava, A. Solanki, T. C. Sum, and R. Singh, “Perovskite as a platform for active flexible metaphotonic devices,” ACS Photonics 4(7), 1595–1601 (2017).
[Crossref]

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6(1), 7082 (2015).
[Crossref] [PubMed]

Solanki, A.

L. Cong, Y. K. Srivastava, A. Solanki, T. C. Sum, and R. Singh, “Perovskite as a platform for active flexible metaphotonic devices,” ACS Photonics 4(7), 1595–1601 (2017).
[Crossref]

Srivastava, Y. K.

L. Cong, Y. K. Srivastava, A. Solanki, T. C. Sum, and R. Singh, “Perovskite as a platform for active flexible metaphotonic devices,” ACS Photonics 4(7), 1595–1601 (2017).
[Crossref]

Sternbach, A. J.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Strikwerda, A. C.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Sum, T. C.

L. Cong, Y. K. Srivastava, A. Solanki, T. C. Sum, and R. Singh, “Perovskite as a platform for active flexible metaphotonic devices,” ACS Photonics 4(7), 1595–1601 (2017).
[Crossref]

Tao, H.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Taylor, A. J.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Teng, F.

Tian, W.

Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W. W. Liu, Q. H. Yang, M. Sanderson, and H. W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2015).
[Crossref] [PubMed]

Tian, Z.

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6(1), 7082 (2015).
[Crossref] [PubMed]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Wang, G.

H. Ji, B. Zhang, G. Wang, W. Wang, and J. Shen, “Photo-excited multi-frequency terahertz switch based on a composite metamaterial structure,” Opt. Commum. 412, 37–40 (2018).
[Crossref]

Wang, G. C.

G. C. Wang, B. Zhang, H. Y. Ji, X. Liu, T. He, L. F. Lv, Y. B. Hou, and J. L. Shen, “Monolayer graphene based organic optical terahertz modulator,” Appl. Phys. Lett. 110(2), 023301 (2017).
[Crossref]

Y. N. He, B. Zhang, T. He, T. J. Chen, G. C. Wang, Y. B. Hou, W. Xiong, and J. L. Shen, “Optically-controlled metamaterial absorber based on hybrid structure,” Opt. Commun. 356, 595–598 (2015).
[Crossref]

Wang, J.

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Wang, L.

X. J. Wu, X. C. Pan, B. G. Quan, and L. Wang, “Optical modulation of terahertz behavior in silicon with structured surfaces,” Appl. Phys. Lett. 103(12), 121112 (2013).
[Crossref]

Wang, W.

H. Ji, B. Zhang, G. Wang, W. Wang, and J. Shen, “Photo-excited multi-frequency terahertz switch based on a composite metamaterial structure,” Opt. Commum. 412, 37–40 (2018).
[Crossref]

Wang, X. K.

B. Zhang, L. F. Lv, T. He, T. J. Chen, M. D. Zang, L. Zhong, X. K. Wang, J. L. Shen, and Y. B. Hou, “Active terahertz device based on optically controlled organometal halide perovskite,” Appl. Phys. Lett. 107(9), 093301 (2015).
[Crossref]

Wen, Q. Y.

Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W. W. Liu, Q. H. Yang, M. Sanderson, and H. W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2015).
[Crossref] [PubMed]

West, K. G.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Wolf, S. A.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Wu, X. J.

X. J. Wu, X. C. Pan, B. G. Quan, and L. Wang, “Optical modulation of terahertz behavior in silicon with structured surfaces,” Appl. Phys. Lett. 103(12), 121112 (2013).
[Crossref]

Xiong, W.

Y. N. He, B. Zhang, T. He, T. J. Chen, G. C. Wang, Y. B. Hou, W. Xiong, and J. L. Shen, “Optically-controlled metamaterial absorber based on hybrid structure,” Opt. Commun. 356, 595–598 (2015).
[Crossref]

Yang, J.

G. S. Deng, P. Chen, J. Yang, Z. P. Yin, and L. Z. Qiu, “Graphene-based tunable polarization sensitive terahertz metamaterial absorber,” Opt. Commun. 380, 101–107 (2016).
[Crossref]

Yang, Q. H.

Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W. W. Liu, Q. H. Yang, M. Sanderson, and H. W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2015).
[Crossref] [PubMed]

Yin, Z. P.

G. S. Deng, P. Chen, J. Yang, Z. P. Yin, and L. Z. Qiu, “Graphene-based tunable polarization sensitive terahertz metamaterial absorber,” Opt. Commun. 380, 101–107 (2016).
[Crossref]

Yoo, H. K.

H. K. Yoo, C. Kang, Y. Yoon, H. Lee, J. W. Lee, K. Lee, and C. S. Kee, “Organic conjugated material-based broadband terahertz wave modulators,” Appl. Phys. Lett. 99(6), 061108 (2011).
[Crossref]

Yoon, Y.

H. K. Yoo, C. Kang, Y. Yoon, H. Lee, J. W. Lee, K. Lee, and C. S. Kee, “Organic conjugated material-based broadband terahertz wave modulators,” Appl. Phys. Lett. 99(6), 061108 (2011).
[Crossref]

Zang, M.

Zang, M. D.

B. Zhang, L. F. Lv, T. He, T. J. Chen, M. D. Zang, L. Zhong, X. K. Wang, J. L. Shen, and Y. B. Hou, “Active terahertz device based on optically controlled organometal halide perovskite,” Appl. Phys. Lett. 107(9), 093301 (2015).
[Crossref]

Zhai, T.

X. Fang, Y. Bando, M. Liao, U. K. Gautam, C. Zhi, B. Dierre, B. Liu, T. Zhai, T. Sekiguchi, Y. Koide, and D. Golberg, “Single-crystalline ZnS nanobelts as ultraviolet-light sensors,” Adv. Mater. 21(20), 2034–2039 (2009).
[Crossref]

Zhang, B.

H. Ji, B. Zhang, G. Wang, W. Wang, and J. Shen, “Photo-excited multi-frequency terahertz switch based on a composite metamaterial structure,” Opt. Commum. 412, 37–40 (2018).
[Crossref]

G. C. Wang, B. Zhang, H. Y. Ji, X. Liu, T. He, L. F. Lv, Y. B. Hou, and J. L. Shen, “Monolayer graphene based organic optical terahertz modulator,” Appl. Phys. Lett. 110(2), 023301 (2017).
[Crossref]

B. Zhang, L. F. Lv, T. He, T. J. Chen, M. D. Zang, L. Zhong, X. K. Wang, J. L. Shen, and Y. B. Hou, “Active terahertz device based on optically controlled organometal halide perovskite,” Appl. Phys. Lett. 107(9), 093301 (2015).
[Crossref]

Y. N. He, B. Zhang, T. He, T. J. Chen, G. C. Wang, Y. B. Hou, W. Xiong, and J. L. Shen, “Optically-controlled metamaterial absorber based on hybrid structure,” Opt. Commun. 356, 595–598 (2015).
[Crossref]

B. Zhang, T. He, J. Shen, Y. Hou, Y. Hu, M. Zang, T. Chen, S. Feng, F. Teng, and L. Qin, “Conjugated polymer-based broadband terahertz wave modulator,” Opt. Lett. 39(21), 6110–6113 (2014).
[Crossref] [PubMed]

Zhang, H. W.

Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W. W. Liu, Q. H. Yang, M. Sanderson, and H. W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2015).
[Crossref] [PubMed]

Zhang, K.

S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
[Crossref] [PubMed]

Zhang, W.

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6(1), 7082 (2015).
[Crossref] [PubMed]

Zhang, X.

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6(1), 7082 (2015).
[Crossref] [PubMed]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Zhang, X. C.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Zhang, Y.

Zhi, C.

X. Fang, Y. Bando, M. Liao, U. K. Gautam, C. Zhi, B. Dierre, B. Liu, T. Zhai, T. Sekiguchi, Y. Koide, and D. Golberg, “Single-crystalline ZnS nanobelts as ultraviolet-light sensors,” Adv. Mater. 21(20), 2034–2039 (2009).
[Crossref]

Zhong, L.

B. Zhang, L. F. Lv, T. He, T. J. Chen, M. D. Zang, L. Zhong, X. K. Wang, J. L. Shen, and Y. B. Hou, “Active terahertz device based on optically controlled organometal halide perovskite,” Appl. Phys. Lett. 107(9), 093301 (2015).
[Crossref]

Zhou, L.

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Zide, J. M. O.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

ACS Photonics (1)

L. Cong, Y. K. Srivastava, A. Solanki, T. C. Sum, and R. Singh, “Perovskite as a platform for active flexible metaphotonic devices,” ACS Photonics 4(7), 1595–1601 (2017).
[Crossref]

Adv. Mater. (1)

X. Fang, Y. Bando, M. Liao, U. K. Gautam, C. Zhi, B. Dierre, B. Liu, T. Zhai, T. Sekiguchi, Y. Koide, and D. Golberg, “Single-crystalline ZnS nanobelts as ultraviolet-light sensors,” Adv. Mater. 21(20), 2034–2039 (2009).
[Crossref]

Appl. Phys. Lett. (7)

B. Zhang, L. F. Lv, T. He, T. J. Chen, M. D. Zang, L. Zhong, X. K. Wang, J. L. Shen, and Y. B. Hou, “Active terahertz device based on optically controlled organometal halide perovskite,” Appl. Phys. Lett. 107(9), 093301 (2015).
[Crossref]

M. Shalaby, M. Peccianti, Y. Ozturk, I. Al-Naib, C. P. Hauri, and R. Morandotti, “Terahertz magnetic modulator based on magnetically clustered nanoparticles,” Appl. Phys. Lett. 105(15), 151108 (2014).
[Crossref]

X. J. Wu, X. C. Pan, B. G. Quan, and L. Wang, “Optical modulation of terahertz behavior in silicon with structured surfaces,” Appl. Phys. Lett. 103(12), 121112 (2013).
[Crossref]

H. K. Yoo, C. Kang, Y. Yoon, H. Lee, J. W. Lee, K. Lee, and C. S. Kee, “Organic conjugated material-based broadband terahertz wave modulators,” Appl. Phys. Lett. 99(6), 061108 (2011).
[Crossref]

G. C. Wang, B. Zhang, H. Y. Ji, X. Liu, T. He, L. F. Lv, Y. B. Hou, and J. L. Shen, “Monolayer graphene based organic optical terahertz modulator,” Appl. Phys. Lett. 110(2), 023301 (2017).
[Crossref]

T. K. Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett. 84(18), 3555–3557 (2004).
[Crossref]

J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. Mazzillo, G. Condorelli, M. E. Castagna, G. Catania, A. Sciuto, F. Roccaforte, and V. Raineri, “Highly efficient low reverse biased 4H-SiC Schottky photodiodes for UV-light detection,” IEEE Photonics Technol. Lett. 21(23), 1782–1784 (2009).
[Crossref]

J. Phys. Chem. B (1)

J. B. Baxter and C. A. Schmuttenmaer, “Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy,” J. Phys. Chem. B 110(50), 25229–25239 (2006).
[Crossref] [PubMed]

Nanoscale (1)

S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, J. Han, and W. Zhang, “Active graphene-silicon hybrid diode for terahertz waves,” Nat. Commun. 6(1), 7082 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Nat. Photonics (2)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Nature (2)

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Opt. Commum. (1)

H. Ji, B. Zhang, G. Wang, W. Wang, and J. Shen, “Photo-excited multi-frequency terahertz switch based on a composite metamaterial structure,” Opt. Commum. 412, 37–40 (2018).
[Crossref]

Opt. Commun. (2)

G. S. Deng, P. Chen, J. Yang, Z. P. Yin, and L. Z. Qiu, “Graphene-based tunable polarization sensitive terahertz metamaterial absorber,” Opt. Commun. 380, 101–107 (2016).
[Crossref]

Y. N. He, B. Zhang, T. He, T. J. Chen, G. C. Wang, Y. B. Hou, W. Xiong, and J. L. Shen, “Optically-controlled metamaterial absorber based on hybrid structure,” Opt. Commun. 356, 595–598 (2015).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. Lett. (1)

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[Crossref] [PubMed]

Sci. Rep. (1)

Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W. W. Liu, Q. H. Yang, M. Sanderson, and H. W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) The absorption spectrum of indium oxide film. (b) Schematic diagram of the terahertz time domain spectroscopy (THz-TDS) system and a photograph of the indium oxide sample.
Fig. 2
Fig. 2 (a) Time-domain spectroscopy of an indium oxide/quartz structure under various laser light irradiances. (b) THz transmission power spectra of an indium oxide/quartz structure under various laser light irradiances.
Fig. 3
Fig. 3 (a) THz power transmission and (b) modulation factor, averaged over a frequency window in the 0.2–2.6 THz range, versus laser intensity for the In2O3/Quartz structure. (c) Photo-conductivity versus laser intensity for the In2O3/Quartz structure.
Fig. 4
Fig. 4 (a) Photograph of indium oxide nanoparticles dissolved in ethanol spin coated onto a flexible metamaterial quartz substrate and (b) THz transmission spectra of the metamaterial spin-coated indium oxide film under different UV light intensities.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

MF= P laseroff (ω)d ω- P laseron (ω)d ω P laseroff (ω)d ω ,

Metrics